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Foreword 
The main purpose of the present tutorial text is to familiarize the reader with the main 
topics of Statistical Learning Theory. We then skip proofs of Theorems which can be 
found in the References and put the emphasis on illustrative examples.  
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1 Learning Problem 

Objects

Supervisor

X

Sampling
(distribution F(x) )

Xn
T

t

Learning
algorithm t = φ(x,α)

 
Figure 1.1 

 
Figure 1.1 shows the general configuration of an algorithm/machine attempting to 
learn the target values t assigned by a supervisor to a set of objects, represented by a 
feature or predictor vector x. These are sampled according to a probability distribution 
F(x), often unknown. The algorithm/machine issues estimates ),(ˆ αxt φ= , where 

Α∈α is a parameter vector from a certain parameter vector set Α. (When the 
machine is a neural network α is a weight vector.) 
Let: 

X - Object space (objects, cases, patterns, instances) 
Xn- Sample with n objects 
T - Target value domain (e.g. {0, 1} or [0, 1]) 

 

Consider the risk     ∫ Α∈= ααα ),(),()( zdFzQR 1 1.1 
 
with z = (t, x),   Target-object data pair 
 Q(z, α) = L(z, φ(x, α))  Loss function 
 φ(x,α)    Approximating function 
 dF(z)    Joint probability distribution of (t, x) 
 
Learning problem: 
 
Choose in the function set {Q(z, α),  α ∈ Α} a function Q(z, α0) (therefore, an optimal 
parameter α0) which minimizes R(α) when F(z) is unknown but a sample with n 
random i.i.d. (independent and identically distributed) observations Zn = {z1,…,zn} is 
given. 
 
 
The loss function Q(z, α) can be suitably chosen in order to encompass the 
classification, regression and pdf learning problems. 
 

                                                 
1 Note that it is an expectation of the loss function Q(z,α). 
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In this Part I we will restrict ourselves to the data classification ("pattern recognition") 
problem, with: 
 

zi = (ωi, xi) (where xi is a d-dimensional vector and ωi is a class label; thus, zi has      
d + 1 coordinates) 

  
Furthermore, for classification problems, one usually uses: 
 

Q(zi, α) = 




≠
=

=
),(1
),(0

)),(,(
αφω
αφω

αφω
ii

ii
ii x

x
xL , 

 
i.e., the loss function is an indicator function (T = {0, 1}), assigning zero loss to 
correct classifications and equal unitary losses to misclassifications. 

2 Empirical Risk Minimization (ERM) Principle 

Determination of the α0 minimizing 1.1 is generally impossible. In practice, one has 
available a training set Zn with n objects, and approximates Q(z, α0) by the function 
Q(z, αn) which minimizes the empirical risk in the training set Zn: 
 

∑
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=
n

i
izQ

n
R

1
emp ),(1)( αα  2.1 

 
For the classification problem2: 
 

∑∑
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11
emp

ˆ)),(,(1),(1)( αφωαα  2.2 

 
Therefore: "Minimize Remp(α)"  ≡  "determine the function φ(x,αn) that achieves the 
smallest error rate (estimate of the probability of error, eP̂ ), in the training set Zn". The 
empirical risk minimization is widely used in practice. Instead of an optimal (usually 
unknown) α0 we are only able to determine (empirically) a "best" αn. 

3 Consistency of the Learning Process 

The following issues can be raised when using the empirical risk minimization 
principle: 
 

1. Do the empirical risks converge to the optimal risk when the training-set 
size increases to arbitrarily large values (n → ∞ )? 

2. Do the true risks of the machine designed with a training set also 
converge to the optimal risk when n → ∞  (i.e. does the machine 
generalize its performance to any new independent set of cases)?  

                                                 
2 Note that Remp(α) is the relative frequency (or frequency for short) of the correct classification event, 
whereas R (α) is the (true) probability of correct classification. 
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Classical definition of consistency: 
The ERM principle (method) is consistent for the set of functions {Q(z, α),  α ∈ Α}, 
and for the probability distribution F(z), if the following two sequences converge in 
probability to the same limit: 

 1: )(inf)(emp αα
α

RR
P

n
n

Α∈∞→
→ . 

 2: )(inf)( αα
α

RR
P

n
n

Α∈∞→
→ . 

 
 
Figure 3.1 depicts the general behavior of learning curves. Often – but not necessarily 
for all n -, Remp(αn) is "optimistic" and R(αn) is "pessimistic". For consistent learning 
the stochastic processes Remp(αn) and R(αn)  should both converge in probability to inf 
R(α). 
 

Note that for a given sample, one expects that Remp(αn) < R(αn), because the function 
φ(x,αn) obtained by ERM (equivalently, the particular value of the parameter αn 
obtained by ERM) constitutes a biased estimate of the functions minimizing true risk.  
 
The above first condition states that the empirical risks, computed with 2.2, should 
converge to the lowest attainable (optimal) true risk, for all the set of functions. After 
all, without this condition, the ERM principle would be quite useless. 
 
The second condition states that the expected risks, computed with 1.1, taking into 
account the sample distribution and the determined αn, should also converge to the 
optimal risk. This is a generalization condition, because the expected risk depends not 
only on the particular αn (thus, on the particular sample) determined by the ERM 
principle, but depends also on the probability of every possible sample. 
 
The above consistency conditions include trivial cases of consistency3. A stricter, 
nontrivial consistency condition is needed (see VN Vapnik, 1999, for details; see also 
the Appendix for notions on convergence of stochastic processes). 
 
 

n

R(αn)

Remp(αn)

inf R(α)
 α

 
Figure 3.1 

 

                                                 
3 For instance, by adding to the Q(z,α) family a function ),(inf)( αφ

α
zQz

Α∈
< , we obtain a new trivially 

consistent set, because true and empirical risks will converge to φ(z). Such sets with a minorizing 
function are said to be trivially consistent. 
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Key Theorem for consistent learning (Vapnik and Chervonenkis, 1989): 
Let {Q(z, α),  α ∈ Α} be a set of functions that have a bounded loss for the 
probability measure F(z): 
 

∫ Α∈∀≤≤ αα BzdFzQA )(),(  
 
Then, for the ERM principle to be nontrivially consistent, it is necessary and sufficient 
that the empirical risk converges uniformly4 to the actual risk: 
 

00))()((suplim emp >∀=








>−
Α∈∞→

εεαα
α

RRP
n  

 3.1 
                  
Equivalently: 
 

))()((sup)( empworst ααα
α

RR −=∆
Α∈

 converges in probability to zero. 

 
Figure 3.2 shows learning curves for two different sets of parameters, α1 and α2. For 
consistent learning the worst case difference between Remp(αn) and R(αn) must 
converge in probability to zero. 
 

n

R(α1)

Remp(α1)

R(α2)

Remp(α2)

∆(αworst)

 
Figure 3.2 

 

Example 3.1 

Consider the classification of two classes of points in [0, 1], i.e., XxΤ = [0,1] x{0, 1}.  
The data distribution is as follows (see Figure 3.3a): 
 
P(ω1) = P(ω2) = ½; p(x | ω1) = unif(0, 0.47);  p(x | ω2) = unif(0.53, 1) 
 

                                                 
4 This is called one-sided uniform convergence. The two-sided uniform convergence corresponds to 

.0|)()(|suplim emp =








>−
Α∈∞→

εαα
α

RRP
n

 Using two-sided convergence in the key theorem is also 

allowed (see section 5). 
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a 0 10.5

0.47 0.53

1/0.53
Class 0 Class 1

 b 
x

R(∆)0.5

0.0566

0 1  
Figure 3.3 

 
A 10-case sample, Z10, sorted according to the values of x and obtained with this 
distribution could be: 
 
# 1 2 3 4 5 6 7 8 9 10 

ωi 0 0 0 0 1 0 1 1 1 1 
x 0.0138 0.0401 0.1337 0.2092 0.5074 0.5130 0.8035 0.8762 0.9259 0.9742 

 
Assume that, in order to classify a data sample we use the following set of 
approximating (classifying) functions: 
 

φ(x,α) = {θ(x – α); α∈ℜ}, where θ is the Heaviside function. 
 
Thus, the learning procedure consists of choosing a threshold that achieves the 
dichotomy with minimal empirical error. For that purpose, we may just scan the 
ordered set from left to right and choose a best threshold. In the sample above, if we 
choose α∈] 0.2092, 0.5074] we obtain one misclassified case (#6). If α∈] 0.5074, 
0.5130] we obtain two misclassified cases (#5, #6). If α∈] 0.5130, 0.8035] again we 
obtain one misclassified case. A minimum error situation corresponds to the first 
interval and we set α10 as the middle point of the interval α10 = ∆ = 0.3583. 
For any ∆ (i.e. the ERM derived αn for a given Zn) the empirical risk (equivalently, 
the training set error rate) is: 

∑
=

==∆=∆
n

i
ii xL

n
R

1
emp 1.0

10
1)),(,(1)( φω . 

 
The true risk (probability of error) is computed as follows: 
 

dxxpxLPzdFzQR ii
i

i )|(),(,()()(),()(
1

0

1

0

ωφωω ∆=∆=∆ ∫ ∑ ∫
=

 

 
We now distinguish three situations (see Figure 3.3b): 
 

∆ < 0.47:  





 ∆

−==∆ ∫
∆ 53.0

1
2
1

53.0
1

2
1)(

53.0
dxR  

 

0.47 ≤ ∆ < 0.53: 0566.0
53.0
47.01

2
1

53.0
1

2
1

53.0
1

2
1)(

47.0

53.0
=






 −=+=∆ ∫∫

∆

∆

dxdxR  

 

∆ ≥ 0.47:  





 −∆

==∆ ∫
∆

53.0
47.0

2
1

53.0
1

2
1)(

47.0

dxR  
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0
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R (αn )

R emp(αn )

 
Figure 3.4 

 
Figure 3.4 shows an experiment of randomly drawing a sample with n cases (points) 
and computing the empirical and true risk as described above (simulation in 
MATLAB). The true risk quickly converges to the optimal risk, inf(R(∆)) = 0.0566 
(∆opt=0.5). The empirical risk has a slower convergence. Figure 3.5 is similar to the 
previous one showing coarser details up to n = 600. 
 

0
0.01
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0.08

10 90 170 250 330 410 490 570

n

R (αn )

R emp(αn )

 
Figure 3.5 
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n
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Figure 3.6 

 
Finally, Figure 3.6 shows with dotted lines the R(∆) – Remp(∆) differences for 3 
experiments, and with solid line the sup(R(∆) – Remp(∆)). This last stochastic series 
should converge in probability to zero in order to guarantee that the above described 
learning process is nontrivially consistent. As a matter of fact, it does, as will be 
shown in section 5.  
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Example 3.2 

We now analyze the convergence of sup(R(∆) – Remp(∆)) as in the previous example, 
considering that the data distributions are exponential (see Figure 3.7): 
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=






<
≥

=
−−−

10
1)|(;

00
0)|(

)1(

21 x
xexp

x
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xx λλ λωλω  
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p (x |ωi )

 
Figure 3.7.  Data distributions for λ =1 (solid line) and λ =5 (dotted line). 

 
We use the same "family of classifying functions" as in the previous example. For any 
∆∈ ]-∞, 0.5] the (true) error probability of the classifier is: 
 

( )∫∫
+∞

∆

∆−∆−−−
∆

∞−

−− +=+=∆ 2/)()()( )1(
2

)1(
1

λλλλ λωλω eedxePdxePR xx
, 

 
and symmetrically for ∆∈ [0.5, +∞[ (see Figure 3.8). The optimal error corresponds to 
∆ = 0.5 with inf(R(∆)) = e-λ/2. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.2 0.4 0.6 0.8 1∆

R (∆)

 
Figure 3.8. True error curves: Dotted curve: λ=5; Solid curve: λ=1. 

 
Figure 3.9 shows the true and empirical error curves for one experiment with λ=1 
(left) and λ=5 (right). Figure 3.10 shows sup(R(∆) – Remp(∆)) for three experiments 
with λ=1 (left; Ropt = e-0.5=0.6065) and λ=5 (right; Ropt = e-2.5=0.0821).  
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Figure 3.9 
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Figure 3.10 
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Figure 3.11 shows sup(R(∆) – Remp(∆)) for 50 experiments with λ=1 (left) and λ=5 
(right). We notice that for λ=5 a faster convergence is obtained as could be expected 
by looking at the true error curves (Figure 3.8), which reflect the fact that for λ=5 the 
classes are "better" separated.  

4 Diversity of a set of indicator functions 

The Key Theorem 3.1 does not afford a constructive procedure for assessing the 
consistency of the learning process based on the approximating functions. In order to 
derive practical useful conditions one needs to characterize the "expressiveness" of 
the loss functions. This can be done using a measure of the diversity of separations in 
relation to the sample complexity and the classifier φ(x, α) complexity. For this 
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purpose, let Q(z,α), α∈Α, be a set of indicator functions and consider a sample of size 
n: 
 

Zn = {z1,…, zn} 
 
The diversity of the set of functions Q(z,α) on the given sample is characterized by: 
 

NA(Zn) ≡ {Nr. of different separations of Zn achieved with Q(z,α), α∈Α} 5 
 
Consider the set of n-dimensional binary vectors for α∈Α: 
 

q(α) = (Q(z1,α), … , Q(zn,α)) 
 
N(Zn) is the number of different vertices of the n-dimensional cube that can be 
obtained on the basis of the sample Zn and the set of functions Q(z,α). 
 
Example 4.1 

Consider a one-dimensional (d = 1) set of objects and the following family of 
classification functions into two classes (T ≡ Ω = {ωi} ≡ {0, 1}): 
 



 ≥+

=
ℜ∈= otherwise0

01
),(

2),(

bax
x
baα
αφ ;    

 
Equivalently: 
 

)(),( baxx += θαφ  where θ is the Heaviside function.6 
 
The loss function for classification is: 
 





≠
=

==
φω
φω

αφωα
1
0

)),(,(),( xLzQ  

 

For n = 3 points with the classifications shown below (solid circle for ω = 1 and open 
circle for ω = 0) in Figure 4.1 and according to the values of the parameters (a, b), we 
have: 
 
 

x1 x2 x3

ω1=1 ω2=1 ω3=0  
 

Figure 4.1 
 

a > 0, decreasing b a < 0, increasing b 
110            (bold line) 001 
010 101 
000 111 
001 110 

 
                                                 
5 In general NA(Zn) will depend on the set of parameters A (see following Example 4.2). However, for 
the sake of simplicity we will from now on denote N(Zn). 
6 Note that this classifying family is equivalent to the one used in Examples 3.1 and 3.2, with α = -b/a. 
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The set of 3-dimensional binary vectors q(α) = (Q(z1,α), … , Q(zn,α)) is as shown in 
Figure 4.2. We see that N(Z3) = 6. 
 

000 001

011
010

100 101

111110
x1

x2

x3

  
Figure 4.2 

 
For the other distinct configurations of 3 points (excluding the complementary 
configurations) we obtain the cubes shown in Figure 4.3. 
 

x1 x2 x3

ω1=1 ω2=1 ω3=0  

x1 x2 x3

ω1=1 ω2=1 ω3=0  

000 001

011
010

100 101

111
110

 000 001

011
010

100 101

111
110

 
Figure 4.3 

 
In general, for this set of linear functions we get:  N(Zn) = 2n 
 
Proof: 
For the Q(z,α) set of functions, N(Zn) corresponds to the number of achievable 
dichotomies. Let us consider the number of runs (one-symbol sequences) in an n-
dimensional sequence of 0s and 1s. Then, the only sequences corresponding to 
achievable dichotomies are those that have 1 or 2 runs. For 1 run there are 2 
sequences. For 2 runs there are 2(n-1) sequences. 
E.g. for n = 4: 
 

1 runs 2 runs 
0000 0001 0011 0111 
1111 1000 1100 1110 

 
In this example N(Zn) varies with n, but not with the particular sample.  
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Example 4.2 

Same as before but now the family of functions φ is constrained with b∈ [-B, B]. 
Then we get situations such as shown in Figure 4.4: on the left, the straight lines can 
"walk beyond" x3 and all 2n dichotomies are achievable; on the right the straight lines 
can only go until somewhere between x1 and x2. 
 

x1 x2 x3

ω1=1 ω2=1 ω3=0
 

x1 x2 x3

ω1=1 ω2=1 ω3=0
 

N(Z3) = 6 N(Z3) = 4 
Figure 4.4 

 
Thus, in this example N(Zn) depends on the particular sample.  
 

Example 4.3 

Again a one-dimensional case but with a more "expressive" family of classifying 
functions: 
 

)(),( 2 cbxaxx ++= θαφ  
 
α = { (a, b, c) ∈ ℜ3 }   

Figure 4.5 

 
N(Zn) = 2n + "Nr of distinct sequences with 3 runs" 

 

n 1,2 runs 3 runs N ln(N) 
1 2 0 2 0.693 
2 4 0 4 1.386 
3 6 2 8 2.079 
4 8 6 14 2.639 
5 10 12 22 3.091 
6 12 20 32 3.466 
7 14 30 44 3.784  0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

n

ln(N )

 
Figure 4.6 

Counting the number of distinct sequences with 3 runs, one can build the table above. 
As shown in Figure 4.6. N(Zn) grows less than linearly with n. 
  
Example 4.4 

Now, the family of classifying functions is the following "very expressive" family 
shown below. 
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))(sin(),( xx αθαφ =   with x ∈ [0, 2π], α  ∈ ℜ+ 
 

Furthermore we consider the set of n points located in [0, 2π] such that xi = 2π10-i. 
Then, for any class-label assignment of the points, {ω1,…ωi,…,ωn}∈{0,1}n, one can 
find the following value of α, achieving the classification: 
 









+−= ∑

=

n

i

i
i

1

* 110)1(
2
1 ωα  

 
 Thus, N(Zn) = 2n

.  

5 Entropies and Growth Function 

The quantity N(Zn), reflecting the expressiveness of the set of classifying functions, 
influences the way on how Remp(αn) and R(αn) may converge to the optimal risk. To 
see how, we first need the following: 
 
Definitions: 
 
Random entropy for {Q(z, α),  α ∈ Α} and Zn sample: 
 

H(Zn) = lnN(Zn); H(Zn) is a r.v. (trivial or nontrivial) 
 
Entropy for {Q(z, α),  α ∈ Α} ≡ Expectation of the random entropy: 
 

H(n) = Ε [lnN(Zn)] (depends on the distribution law) 
 
Theorem (Vapnik): 
For uniform two-sided convergence of the frequencies Remp(α) to their probabilities 
R(α): 

0,0)()(suplim emp >∀=






 >−

Α∈∞→
εεαα

α
RRP

n
 

 
it is necessary and sufficient that: 

0,0)(lim >∀=
∞→

ε
n
nH

n
 

 
Remark 1: For a finite number N of functions the condition reduces to: 

0,0lim >∀=
∞→

ε
n
N

n
 

Thus, for a finite number of functions uniform two-sided convergence holds. 
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Remark 2: The condition is also necessary and sufficient for almost sure convergence 
(see definition of almost sure convergence in the Appendix). 
 
Example 5.1 

Let us consider the classification problem of Example 4.1. We have: 
 
N(Zn) = 2n; H(Zn) = H(n) = ln(2n), since it is independent of F(z). 
 

Thus: 0)2ln(lim)(lim ==
∞→∞→ n

n
n
nH

nn
. ERM is consistent for that set of functions, as 

well as for the set in Examples 3.1 and 3.2. 
  
 
Example 5.2 

Let us now consider the classification problem of Example 4.4. We have: 
 
N(Zn) = 2n; H(Zn) = H(n) = nln(2), since it is independent of F(z). 
 
We have:  
 

)2ln()2ln(lim)(lim ==
∞→∞→ n

n
n
nH

nn
.  ERM is inconsistent for that set of functions. 

  

6 Three Milestones in Learning Theory 

Definitions: 
 
Entropy for sets of indicator functions: H(n) = Ε [H(Zn)] 
 
Annealed VC-entropy:               Hann(n) = ln{Ε [N(Zn)]} 
 
Growth function:    G(n) = ln[

nZ
sup N(Zn)] 

 
 
 
Note that: 
 

a) Both H(n) and Hann(n) depend on a probability measure P(z). G(n) is 
independent of P(z). 

 

b) These quantities satisfy: H(n) ≤ Hann(n) ≤ G(n)                           6.1 
 
The three milestones are: 
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1. Necessary and sufficient condition for the consistency of the ERM 
principle: 

0)(lim =
∞→ n

nH
n

 

 
2. Sufficient condition for fast convergence: 

 

{ } )constant0()()(,0
)(

lim
2

00
ann ><>−>∀⇒= −

∞→
ceaRRPnn

n
nH nc

nn

εεα  

 
3. Necessary and sufficient condition for the consistency of the ERM 

principle, independently of the probability measure (independently of the 
problem to be solved): 

0)(lim =
∞→ n

nG
n

                                                    6.2

 
            It is also a sufficient condition for fast convergence. 
 
Computation of H(n) in the case of a sample with only one object (!): 
 

H(1) = Ε [H(Z1)] with { }11 ),( xZ ω=  
 
But: dxPxpdxxpxPxdFxPxdFzdF )()|()()|()()|(),()( ωωωωω ====  
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Computation of H(n) in the case of a sample with two i.i.d. objects: 
 

Ε[H(Z2)]= 212211221121 )|()|()),(),,(()()(
1 2 21

dxdxxpxpxxHPP
xXX

ωωωωωω
ω ω
∑ ∑ ∫∫

Ω∈ Ω∈
. 

 6.3 
Example 6.1 

Assume that we have two points in d = 1, distributed in [0, 1], and two classes, with: 
 

P(ω1) = P(ω2) = ½  (equal prevalences) 
 

p(x2 | ωi) = 1   (uniform for all classes) 
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Figure 6.1 depicts how the pairs of points (x1,x2) are distributed in X1xX2=[0,1]2 with 
the respective conditional distributions for the two classes. 
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Assume further that {Q(z,α), α∈Α} is: 
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Thus, the number of different 
separations depends on the data. 
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Figure 6.1 

 
Since in 6.3 we have two equal terms for ω2, independent of ω2, we get: 
 

Ε [H(Z2)]= ∑ ∫∫
Ω∈1 21
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Given the symmetry for x1 around ½  (see Figure 6.1), we have: 
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Now, we distinguish the two cases of N(Zn) (triangular region): 
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Working along the same lines, we obtain: 
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Finally: 

386.1)4ln())((supln)2( 2
2

=== ZNG
Z

 

 

Thus, we then confirm 6.1:  )2()2()2( ann GHH <<  
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7 Bounds on the Rate of Convergence 

The entropy and annealed VC-entropy can be used to establish distribution-dependent 
rates of convergence of Remp(αn) and R(αn). Usually F(z) is unknown; therefore, we 
are more interested in establishing distribution-independent rates of convergence 
using the growth function. 

7.1 VC-dimension 
 
Theorem  about the structure of the growth function (Vapnik): 
Any growth function either satisfies  
 

G(n) = n ln2 if n ≤ h 
 
or is bounded by: 
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Figure 7.1 

 
The structure of the growth function is shown in Figure 7.1. Note that for n > h: 
 

( ) 





 +=






≤








≤ ∑

= h
nh

h
ennG

hh

i

n
i ln1lnln)(

0
.                          7.2 

 
Thus, for n > h, G(n) is bounded by a logarithmic function with coefficient h. It 
cannot be, for example, G(n) = n . 
The quantity h, separating the two different behaviors of the growth function, is called 
Vapnik-Chervonenkis dimension, and denoted dVC: 
 

h = dVC, integer such that
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Alternative definition of the VC-dimension for a set of indicator functions: 
 
The VC-dimension of a set {Q(z, α),  α ∈ Α} is the maximum number h of vectors 
z1,…,zh, which can be separated in all 2h possible ways using functions of the set 
(shattered by the set). 
 
 
Remark 
Note that the VC-dimension is defined in terms of a family of loss functions Q(z,α). 
In the case of data classification, one has: 
 

Q(z, α) = 
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For two-class classification φ(x,α) is an indicator function. Therefore: 
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In this case the VC-dimension of the loss function equals the VC-dimension of the set 
of approximating functions φ(x,α). Thus, for data classification, it makes no 
difference to talk about one or the other. 
 
Example 7.1 

Let Z  = {z1, z2, …} be an arbitrary set, e.g., Z = {a, b, c, d, e} (the elements could be 
any points on a d-dimensional space). Let S represent the set of subsets of Z, which 
have at most h elements. For the example of Z, we have for h = 3: S = {∅, {a}, {b}, 
…, {a, b}, …, {a, b, c}, …}. Finally, assume we had a family of functions defined on 
S, Q(z, A), A∈S, such that: 
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Then, h
nzzN 2),,(max 1 =K  if n ≤ h. For instance, for the previous example of Z 

and h, one can obtain any dichotomy of a subset with 1, 2 or 3 elements. 

On the other hand, ( )∑
=

=
h

i

n
inzzN

0
1 ),,(max K  if n > h. for the previous example of Z 

and h, one can only obtain the dichotomies that correspond to subsets with 1, 2 or 3 
elements, which correspond to the combinations in the formula. 
Thus, formula 7.1 is a tight bound. 
  
Example 7.2 

Consider a set of linear indicator functions in d-dimensional space: 
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The VC-dimension is equal to the number of parameters: dVC = d + 1 (we skip the 
proof). 
  
Example 7.3 

Consider a set of points in d = 2 dichotomized by a straight line. According to the 
result in Example 7.2, dVC  = 3. 
 
Now consider the following Theorem (Cover,1965): 
 
The number of linearly separable dichotomies (i.e. by a linear discriminant) of n 
points regularly distributed 7 in dℜ , is: 
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According to this Theorem, 3 points regularly distributed in ℜ2 can be shattered (see 
Figure 7.2). 
 
 

    

    
Figure 7.2 

 
Figure 7.3 shows the upper bounds for the growth function when dVC = 3. These upper 
bounds are independent of the family of classifying function used. They depend only 
on the particular value of dVC. Figure 7.3 also shows the lnD(n,2) curve, which reflects 
the type of evolution expected for the growth function in the conditions of the 
example. (Note that the definition of the VC-dimension does not require the set of 
points being regularly distributed.) 
  

                                                 
7 A set of n points is regularly distributed in dℜ if no d+1 points lie on a linear variety of dℜ . 
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Figure 7.3 

 

7.2 Bounds on the VC-Dimension for Neural Networks 
 
We consider Multi Layer Perceptrons (MLPs) with (see Figure 7.4): 
 

• Two layers 
• A hidden layer with m neurons 
• One output 
• Neuronal activation function: step (threshold) function. 

 

...

x1

x2

x3

x0=1 (bias)

...

y1

y2

y0=1 (bias)

ym

 
Figure 7.4 

 
Model complexity: 
 
Number of neurons (processing units): u = m + 1 
 
Number of weights (model parameters): w = (d+1)m + m + 1 
 
Model representation capability: 
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Each neuron of the first layer implements a linear discriminant, dividing the space 
into half-spaces: 
 

)( 0wy j += xw'θ    
 
The output layer can be thought of as implementing logical combinations of the half-
spaces. 
 
Example 7.4 

Figure 7.5a illustrates the classic XOR example with the linear discriminants obtained 
with an MLP2:2:1 (2 inputs; 2 hidden neurons; one output; see Figure 7.5b), and 
using θ as a threshold function in [-1, 1]. The classification table is shown below,. 
Notice that the two discriminants can originate 4 linearly separable regions. 
 

a    

x1

x2

1

1

= -1
= 1

 b    

x1

x2

x0=1 (bias)

y1

y2

y0=1 (bias)

z
-0.73

1.53

-0.99

1.27

-1.33

-1.09

1

1

0.5

 
Figure 7.5 

 
x1 x2 y1 y2 z = y1 OR  y2 

1 1 -1 -1 -1 
1 -1 -1 1 1 

-1 1 1 -1 1 
-1 -1 -1 -1 -1 

  
 
Theorem (Mirchandani and Cao, 1989): 
The maximum number of regions linearly separable in dℜ , by a MLP (satisfying the 
mentioned conditions) with m hidden neurons, is: 
 

( ) ∑
=









=

),min(

0
,

dm

i i
m

dmR .                                                  7.3 

 
Note that:  R(m, d) = 2m for m ≤ d . 
Number of linearly separable regions for d = 2 inputs: 
 

m 1 2 3 4 5 6 7 8 
R(m, 2) 2 4 7 11 16 22 29 37 
 
 
Corolary 1: 
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Lower bound for the number of training set objects:   n ≥ R(m, d). Since we need at 
least one example to learn one of the possible regions. 
 
Corolary 2: 
 
The lower bound on the VC-dimension for the MLP is: dVC(MLP) ≥ R(m, d) (see 
Figure 7.6). Since, according to the definition, in order to find a lower bound for dVC it 
is sufficient to find a configuration of points that can be shattered by the MLP. By 
placing each of the R(m, d) points in a distinct linearly separable region we can 
achieve every possible dichotomy (provided the final layer implements the correct 
Boolean combination of regions). 
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dVC

d=2
d=3
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lower bound

 
Figure 7.6 

 
An upper bound for dVC is difficult to find: 
 
dVC (MLP) ≤ k:  Prove that no set of k + 1 points can be shattered by the MLP. 
 
The following upper bound for an MLP with u neurons and w weights is due to 
(Baum and Haussler, 1989): 

( )euwdVC 2log2≤ .                                              7.4 
 
For d=2 inputs we have: 
 
m 1 2 … 10
lower bound  2 4 … 56
upper bound 6* 54 … 402
* Using only one unit (neuron) 
 
Notice the wide range between the two bounds. 
In some simple cases, it may be possible by enumeration to derive the dVC value, as in 
the following: 
 

Example 7.5 

Assume that we want to derive the dVC value for an MLP2:2:1 as in Example 7.4, 
constrained to the sample points being regularly distributed. Notice that if all the n 
points are the vertices of a convex hull we need trunc(n/2)-1 lines to shatter the set 
(since in the most unfavorable case we have alternating 0, 1 class-label sequences, 
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with one possible repeating label; see also Huang S-C and Huang Y-F, 1991). Thus 
with 2 lines we shatter a pentagon (5-gon) as shown in Figure 7.7a. On the other hand, 
it is easy to find a 6-point configuration which can also be shattered: the pentagon 
with one point inside as shown in Figure 7.7b. As a matter of fact, whatever the class 
label of the inside point is, one can always move the lines discriminating the vertices 
in order to include it appropriately. 
 
 

a  b  
Figure 7.7 

 
 
Thus, we know that the dVC for a MLP2:2:1 is at least 6. Now, to confirm that dVC = 6, 
we need to show that no regularly distributed configuration of 7 points can be 
shattered. For this purpose, we enumerate these configurations of 7 points by 
enclosures of n-gons as shown in Figure 7.8, and try to find at least one class labeling 
that cannot be achieved by two lines. Figure 7.8 also shows examples of such 
configurations. Thus, indeed dVC = 6. 
 
 

7:0 6:1 5:2 

   
4:3 3:4 3:3:1 

   
Figure 7.8 
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7.3 VC-Dimension for a ∆-Margin Separating Hyperplane 
 
Consider a hyperplane: 

 (w'x) – b = 0,    |w| = 1 
 
The ∆-margin separating hyperplane classifies x vectors as follows: 
 





∆−≤−−
∆≥−
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b

y
xw'
xw'

1
1

 

 
(Classifications of vectors that fall into the (-∆, ∆)-margin are undefined.) 
 
Theorem (Vapnik): 
Let the vectors x belong to a sphere of radius R (see Figure 7.7). Then, the set of ∆-
margin separating hyperplanes has the VC-dimension bounded by: 
 

1,min
2
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≤ dRh .                                                  7.5 
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Figure 7.9 

 
The table below compares the dVC lower bound for a "normal" d-dimensional 
hyperplane (Example 7.2), with the lower bound for a ∆-margin separating hyperplane 
(formula 7.5) for two values of R/∆. Notice how increasing ∆ lowers dVC (relative to d 
+ 1). 
 
 

d 1 2 3 4 5 … 10 … 30
for hyperplane 2 3 4 5 6 … 11 … 31

for ∆-margin hyperplane with(R/∆) = 3  2 3 4 4 4 … 4 … 4

for ∆-margin hyperplane with(R/∆) = 5 2 3 4 5 6 … 11 … 26
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7.4 Distribution Independent Bounds for Convergence Rates 
 
 
Theorem (Vapnik) 
For a set of indicator functions with finite VC-dimension h, the following inequality 
holds true: 
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This is a relative uniform convergence of Remp(α) to R(α) 8. 
 
Let: 
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Then, as a consequence of the Theorem, with probability at least 1-δ the following 
inequality holds true simultaneously for all indicator functions: 
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Therefore (denoting R(α), Remp(α) by R, Re, resp., for simplification): 
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Let Q(z, αn) be the function which minimizes the empirical risk. For this function the 
following bound holds true with probability1-δ: 
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8 The proof of this Theorem is based on the inequality 
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and 7.2. 
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Now, consider that α0 is the optimum parameter set; therefore, R(α0) denotes the 
minimum expected risk (optimal risk). 
 
Then, the following can be proved using the well-known result of the additive 
Chernoff bound: 
 
With probability at least 1-δ the following inequality holds true: 
 

n
RR

2
ln)()( 0emp0

δαα −
−>  ( Remp(α0) ≥ Remp(αn) ) 

 
Using this result together with formula 7.6, one can conclude that: with probability at 
least 1-2δ  the following inequality holds true: 
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Remarks 
 

• n/h large:  R (αn) ≈ Remp(αn) ≈ Remp(α0) (the network generalises) 
• n/h small:  a small Remp(αn) does not guarantee a small R (αn) 

 
Example 7.6 

Q(z, α) corresponds to a MLP2:2:1 (Example 7.5) with h = 6. Which n will guarantee 
an R(αn)−Remp(αn) deviation below 0.1, with 95% confidence (δ = 0.05), for an 
Remp(αn) = 0.05? 
 
Figure 7.10 dotted line shows the evolution of R(αn)−Remp(αn) with n (formula 7.6), 
for the given specifications. It turns out that only for n ≥ 3125 we obtain a deviation 
below 0.1. 
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Figure 7.10 
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Note, however, that formula 7.6 is based on the growth function upper bound given by 
formula 7.2. A tighter upper bound is given by formula 7.1. Using this tighter upper 
bound the value of ε(n) of  formula 7.6 becomes: 
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One then obtains the solid curve of Figure 7.10 and an equivalent n ≥ 3000. We see 
that the difference between the two curves is small.  
  
 
Figure 7.11 shows the evolution of formula 7.6 with dVC using the lower bounds given 
by formula 7.3, the other conditions of Example 7.6 remaining true. We see that for 
more complex classifying functions (higher h) we need increasing training set sizes in 
order to guarantee a given deviation R(αn)−Remp(αn) bound with the same confidence. 
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Figure 7.11 

 
Figure 7.12 shows the training set size n that will guarantee with 95% confidence the 
upper bound of R(αn)−Remp(αn) shown at the right (from 0.3 through 0.1), for various 
values of dVC and with Remp(αn)=0.05. We observe that, the value of n increases 
dramatically for small deviations of R(αn)−Remp(αn) and large dVC. 
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Figure 7.12 
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Example 7.7 

Compute for the previous Example 7.6 the upper bound deviation of the empirical 
classifier risk from the optimal risk with a probability at least a 90%: 
 

=+
−

≤∆ 1.0
2
ln)( 1900 n

δα 0.122 

  
 
Final Note 
 
The previous formulas 7.6 and 7.7 look unrealistically pessimistic. For instance, 
reported experiments with MLP2:2:1 do not indicate the need of such high values of n 
in order to obtain a generalization. However, one must take into account that these 
formulas are distribution-free bounds, based on general statistical laws, such as the 
Chernoff bound.  Something similar occurs when using the well-known Chebyshev 
inequality. 
 
It might be instructive to recall this issue. 
 
Example 7.8 

What is the probability that a r.v. deviates from the mean less than 1.5σ ? 
 
Distribution-free (Chebyshev): 

2
1)(

k
kP ≤>− σµx   ⇒ 2

11)(
k

kP −≤≤− σµx = 0.5556 

 
Uniform: P = 0.8660 
Normal:  P = 0.8664 
t3-Student: P = 0.9195 
  
Example 7.9 

How many observations of a r.v. x must one have in order to obtain a sample mean 
estimate that deviates less than 0.2σ from the true mean with 95% confidence?  

Distribution-free (Chebyshev): 2
1)(

k
kP ≤>− σµx  . 

Hence:  2
1)(

k
kP ≤>− xx σµ  ⇒ 2

11)(
kn

kP −≤≤−
σµx  

Therefore: 1/k2 = 0.05  ⇒  k2 = 20 

  σσ 2.0=
n

k  ⇒  2.0
kn =  ⇒  n = k2/0.04 = 500 

 
Normal distribution: 95% confidence ⇒  1.96 xσ = 0.2σ ⇒  n = 96 
Observe the disparity between the two values of n. 
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Appendix - Stochastic Convergence 

Definitions 
 
1. Limit of a sequence of numbers xn: 
 

xx
n

n
∞→

→  sse εε <−>∀∃>∀ xxnnn n,,,0 00  
 
2. Stochastic process = sequence of random variables: 
 

x(n) ≡ {x(1), x(2), … , x(n)} 
 

The ensemble of x(n) is the collection of the sample paths {x(1), x (2), … , x (n)}. 
 

Example A.1 
Bernoulli process of coin tossing (see Figure A.1) 
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Figure A.1 
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Convergence Types 
 
1. Convergence in distribution 
 
A stochastic process x(n), n = 1,2, … with distribution functions 
 

Fx(n)(x) ≡ Fn(x) = P(x(n) ≤ x) 
 
is said to converge in distribution if there is a distribution function F(x) such 
that )()( xFxF

n
n

∞→
→  for all x where F(x) is continuous. 

 
Example A.2 
The following stochastic process represented by a family of distribution functions, 
converges in distribution. 
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This is a weak type of convergence, that has very little to do with convergence of the 
sample paths of the process. 
 
Example A.3 
Bernoulli process with P(x(n) = 0) = P(x(n) = 1) = ½ . 
Convergence in distribution is obviously verified: 
 









<
<≤

≥
==

00
10½

11
)()(

x
x

x
xFxF (n)x  

 
However, the probability that a sample path converges is zero. 
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2. Convergence in probability 
 
A stochastic process x(n), n = 1,2, … is said to converge in probability if there exists a  
r.v. x (possibly a constant) such that: 
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Figure A.3 

Given a certain ε, it is possible to find n0 such that for n > n0 the probability of finding 
excursions above ε is zero. It may happen that all sample paths go on having 
excursions above ε, but they become rarer and rarer. 
 
Example A.4 
Weak Law of Large Numbers (Bernoulli) 
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k/n tends to p in probability. 
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Figure A.4 

Assume, for Example A.1, we want an estimate of p with ε = 0.1, for n ≥ 1000. 
Applying Chebyshev Inequality: 

{ }
40
391.0/ ≥<− pnP k  

Thus in 39 out of 40 of the trials we get ε < 0.1.  
Imagine we repeat the experiment 40 times with n > 1000 (say 2000). Then, for a 
specific n we expect that at the most only one bad run will exceed ε = 0.1. However, 
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we cannot conclude that all good runs will have ε < 0.1 for all n > 1000 (say between 
1000 and 2000). 
 
Consistency of the learning process: 
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Uniform Convergence (see Vapnik, 1998) 
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Glivenko-Cantelli Theorem 
The convergence 
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takes place. 
 
3. Convergence in mean square 
 
A stochastic process x(n), n = 1,2, … is said to converge in mean square if there exists 
a  r.v. x (possibly a constant) such that: 
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Figure A.5 

The expected value of the squared deviations tends to zero with increasing n. Above 
n0 one may find with constant probability excursions above ε, but still keeping the 
probability associated to large deviations sufficiently low in such a way that the 
expected value of the squared deviations is below ε. 
If x(n) converges in probability it will also converge in mean square if: 
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4. Convergence almost surely 
 
This is a strong type of convergence defined as: 
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A stochastic process x(n), n = 1,2, … is said to converge almost surely if there exists a  
r.v. x (possibly a constant) such that: 
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Equivalently (Vapnik): 
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Figure A.6 

Given a certain ε, it is possible to find n0 such that for n > n0 most of the sample paths 
are below ε. In the limit there are infinitely many paths all below e. 
 
Example A.5 
Let y(n) be an arbitrary stochastic sequence such that y(n) takes on only values 0 or 1, 
and let x0 be a r.v. Consider a stochastic sequence defined by: 
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For each value x0 = x0 all the sample paths: 
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converge to x0 regardless of the sequence y(n). 
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Figure A.7 

Example A.6 
Strong Law of Large Numbers (Borel) 
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k/n tends almost surely to p. 
 
In the previous Bernoulli-process example the Strong Law of Large Numbers says 
that all good runs will have excursions below 0.1, for n above 1000. 
 
Result due to a Borel-Cantelli Lemma: 
In order for x(n) to converge almost surely to x, it is sufficient (and necessary if the 
x(n) r.v are independent) that for any ε > 0 the following holds: 
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Relation among the Convergence Types 
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Figure A.8 
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