
 

Neural Network Interest Group

 
 

 
 

 
 
 
 
 
 
 
 
 

Título/Title: 
Introduction to Statistical Learning Theory 
PART II –Data Regression 
 
Autor(es)/Author(s): 
F. Sereno, J.P. Marques de Sá 
 
 
Relatório Técnico/Technical Report No. 2    /2003 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal 



2 NNIG – Introduction to Statistical Learning Theory  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Título/Title: 
Introduction to Statistical Learning Theory 
PART II –Data Regression 

Autor(es)/Author(s): 

F. Sereno, J.P. Marques de Sá 

Relatório Técnico/Technical Report No.    2   /2003 

Publicado por/Published by: NNIG. http://paginas.fe.up.pt/~nnig/ 

 
© INEB: FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

 



 Part II. Data Regression 3 

 
 

 
 
 
 
 
 

Contents 
 

8 The Data Regression Learning Problem ................................................................5 
9 Diversity of a Set of Real Functions ......................................................................6 
10 Consistent Learning for Sets of Real Functions ................................................8 
11 Bounds on the Rate of Convergence................................................................10 

11.1 VC-Dimension of a Set of Real-Valued Functions......................................10 
11.2 Distribution Independent Bounds for Convergence ....................................11 

12 Pseudo- and Fat-Shattering Dimensions..........................................................14 
Appendix – Regression Solutions................................................................................21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 NNIG – Introduction to Statistical Learning Theory  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Part II. Data Regression 5 

8 The Data Regression Learning Problem 

In data regression we are seeking a functional relation of one random variable y 
depending on a predictor variable x, which may or may not be random, as shown in 
Figure 8.1. 
 

y = g(x). 
 
We see that for every predictor value xi, we must take into account the probability 
distribution of y as expressed by the density function fy(y). 
 
 

y

x
x1 x2 x3 x4

y = g(x)
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y4

 
Figure 8.1 

 
We can cast the problem of learning the functional dependence y = g(x) in the same 
framework as minimizing a certain risk function, as given by formula 1.1: 
 

∫ Α∈= ααα ),(),()( zdFzQR .                                   8.1 
 
As a matter of fact, classic regression consists in minimizing the above risk when the 
following loss function is used (the well-known least mean square method): 
 

2)),(()),(,()),,((),( αααα xgyxgyLxyQzQ −=== .                  8.2 
 
For the above loss function the minimization leads to a particular α0 such that (see Appendix): 
 

[ ]x|)|(),( 0 ydydxxyyfxg Ε== ∫
∞

∞−

α  

 
Thus, for a quadratic loss function the sought for regression solution is the conditional 
mean of y given the predictor x, as depicted in Figure 8.1. This does not hold for other 
loss functions  (see Appendix). 
 
Figure 8.1 assumes a known conditional distribution of y given the predictor x, namely 
with normally distributed deviations (residuals) from Ε[y|x], with zero mean and equal 
variance: the classical model. 
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In the general case, the probability distribution of the data F(z) is unknown (and f(y|x) 
as well); we then attempt to minimize the following empirical loss: 
 

∑
=

−=
n

i
iiemp xfy

n
R

1

2)),((1)( αα ,                                             8.3 

 
in a training sample Zn = {(x1,y1),…, (xi,yi),…, (xn,yn)} (using e.g. a neural network 
approach). 
 
As we have already seen in section 3 
, in order to have a consistent learning for the regression problem based on the ERM 
principle, the Theorem 3.1 has to hold true, since this Theorem applies to any risk 
functional. 

9 Diversity of a Set of Real Functions 

In section 6 the three milestones of learning theory for data classification were 
expressed in terms of an integer measure, NA(Zn), that reflected the "expressiveness" 
of the family of clasifying functions. 
 
Let us again consider the set of n-dimensional vectors for α∈Α: 
 

q(α) = (Q(z1,α), … , Q(zn,α)) 
 
For data classification the elements of q(α) were discrete (e.g. dichotomic). For data 
regression the vectors q(α), α∈Α, describe a subset of a continuous n-dimensional 
domain, depending on the training set Zn and of the particular family of loss functions. 
For instance, in Example 4.1 the vectors q(α) for n = 3 objects were represented by 
vertices of a cube. Now, in data regression, the set of vectors q(α) contains an infinite 
number of elements. We assume that Q(z,α) , α∈Α, is a family of uniformly bounded 
functions: 
 

|Q(z,α)| < C , ∀α∈Α. 
 
We then have for n = 3 a set of infinite points inside a cube of edge 2C, as shown in 
Figure 9.1. 
 

Q(z1,α)

Q(z2,α)

Q(z3,α)2C

q(α)

 
Figure 9.1 

 



 Part II. Data Regression 7 

The generalization of NA(Zn) for an infinite set is possible if the infinite set can be 
covered by a finite ε-net1. 
 
Definition 
The set B of elements b in a metric space M (with a distance measure ρ) is called an ε-
net of the set G, if any point g ∈ G is distant from some point b ∈ B by an amount not 
exceeding ε: 

ερ <),( gb  
 
The set G admits a finite ε-net if for each ε there exists an ε-net, Bε, with a finite 
number of elements. The *

εB  set with minimal number of elements is the minimal ε-
net, with a number of elements: 
 

N(ε; z1, …, zn) ≡ N(ε; Zn)              2 
Example 9.1 

Consider the following sample of 2 points in [0, 1]:  Z2 = {(0, 0.2), (1, 0.5)}. For 
Q(z,α) = L(y,g(x,α)) with g(x,α) = {b; α=b ∈ [0, 1]} and loss function 8.2 determine 
the set {q(α)} and find a 0.1-net using Euclidian norm. 
Figure 9.2 shows the solid curve corresponding to the set G = {q(α)}. The open 
circles with center b have 1.0),( <gbρ , where ρ is the Euclidian norm. We see that 
the set B = {(0, 0.2), (0, 0.1), (0.1, 0), (0.23, 0), (0.4, 0.1), (0.5, 0.2), (0.6, 0.2)} 
constitutes a 0.1-net. 
  

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Q (z 1)

Q (z 2)

 
Figure 9.2 

 
Even for such an easy configuration as in the previous example it may be a hard task 
to find the minimal ε-net. Next example illustrates simpler solutions for another type 
of loss function and distance measure. 
 
Example 9.2 

Consider the following loss function and Chebyshev distance measure:  
|),(|)),(,(),( ααα xgyxgyLzQ −==  

                                                 
1 We follow the notation of Vapnik (1998). Also called ε-cover by other authors. 
2  For the parameter set Α, i.e., NA(ε; Zn); we omit A for uncluttered notation. 
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ii
i

gbgb −= max),(ρ  (instead of balls we have hypercubes) 

Also, consider the cover by closed hypercubes: ερ ≤),( gb . 
 

Let Z2 = {(0, 1), (1, 0.5)}and g(x,α) = {b; α=b ∈ [0, 1]}. Then, N(0.125; Z2) = 4 
(Figure 9.3a). 
Let Z2 = {(0, 0.5), (1, 0.5)}and g(x,α) = {b; α=b ∈ [0, 1]}. Then, N(0.125; Z2) = 2 
(Figure 9.3b). 
In both cases |Q(z,α)| < 1 , ∀α∈Α. 
Let Z2 = {(0, 1), (1, 0)}and g(x,α) = {ax + b; α = (a, b) ∈ Α = [-1, 1]2}. In this case 
|Q(z,α)| < 2, ∀α∈Α the{q(α)} set is the dotted region in Figure 9.3c .Then, N(0.125; 
Z2) = (2/0.25)2 – 12 = 52. 
 
 

a
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Figure 9.3 

As in section 5 we define: 
 
Random entropy of the set of bounded functions Q(z,α) on the sample Zn (this is a 
r.v.): 

);(ln);( nn ZNZH εε =  
 

ε-entropy (or VC-entropy) of the set of bounded functions Q(z,α)on the sample Zn: 
 

[ ] [ ]);(ln);();( nn ZNZHnH εεε Ε=Ε=  

10 Consistent Learning for Sets of Real Functions 

Theorem for uniformly bounded functions (Vapnik) 
In order that uniform convergence 

0),(1)(),(sup
1 ∞→=Α∈

→












>−∫ ∑
n

n

i
izQ

n
zdFzQP εαα

α
 

 

over a set of uniformly bounded functions Q(z,α) be valid, it is necessary and 
sufficient that the following holds: 
 

0);(
∞→

→
nn

nH ε
,     ∀ ε > 0 
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A stronger Theorem also proves that the above condition guarantees almost sure 
convergence. 
 
Similarly to section 6, the three milestones for learning sets of bounded real functions 
are: 
 

1. Sufficient condition for the consistency of the ERM principle: 

0);(lim =
∞→ n

nH
n

ε
,     ∀ ε > 0 

 
2. Sufficient condition for fast convergence: 

 

0
);(

lim ann =
∞→ n

nH
n

ε
,   ∀ ε > 0 ,  with [ ]nZNnH ;(ln);(ann εε Ε=  

 
3. Necessary and sufficient condition for the consistency of the ERM 

principle, independently of the probability measure (independently of the 
problem to be solved): 

0);(lim =
∞→ n

nG
n

ε
,     ∀ ε > 0,   with 











= );(supln);( n
Z

ZNnG
n

εε .           10.1

 
It is also a sufficient condition for fast convergence. 
 
The computation of the entropy, the annealed entropy and the growth function as 
previously defined is usually very difficult (virtually impossible) in practical cases. In 
the following section more practical measures of expressiveness (capacity) of sets of 
real-valued functions are presented. The following is a naif example for illustrating 
the growth function concept. 
 
Example 10.1 

Consider the same conditions as in Example 9.2 with g(x,α) = {b; α=b ∈ [0, 1]}. 
Furthermore, consider that Z =YxX = {0,1}x [0,1], i.e., the observed y values to be 
approximated by g(x,α) in [0,1] only have two values, 0 or 1. Then, the {q(α)} set is 
always a main diagonal of the [0,1]n hypercube, with length n . On the other hand, 

the ε-hypercube diagonal has length nε2 . Thus: 
 

)2ln(
2

ln);(supln);( ε
ε

εε −==












=
n

nZNnG n
Zn

, 

 
and condition 10.1 is satisfied.  
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11 Bounds on the Rate of Convergence 

The entropy and annealed VC-entropy can be used to establish distribution-dependent 
rates of convergence of Remp(αn) and R(αn) to the optimal risk (learning process). 
Usually F(z) is unknown; therefore, one is usually more interested in establishing 
distribution-independent rates of convergence using the growth function. 

11.1  VC-Dimension of a Set of Real-Valued Functions 
 
Definitions: 
 
1 - The set of indicators for the real-valued function Q(z,α*) is: 
 

( ) ( )βαθβα −=− ),(),( ** zQzQI  with 




∈ ),(sup),,(inf ** ααβ zQzQ
zz

 

 
 

Figure 11.1 

Figure 11.1 illustrates one of the indicator functions of the set of indicators of Q(z,α). 
 
2 – The set of indicators of Q(z,α), for any α∈Α, is called the complete set of 
indicators of the family Q(z,α). 
 
These two definitions allow to apply the same concepts already presented in Part I, as 
follows: 
 
3 - Let N(Zn) ≡ NA,β(z1, …, zn) be the number of different separations of Zn by a 
complete set of indicators of the family Q(z,α). As in Part I we similarly define: 
 
4 – Annealed entropy of the set of indicators of real-valued functions: 
 

[ ])(ln)()( ann
,

ann nZNnHnH Ε=≡Α β  

 
5 – Growth function of the set of indicators of real-valued functions: 
 

)(maxln)()(,
n

Z
ZNnGnG

n
=≡Α β  

z
o

0

1

β
Q(z,a*)

I(Q(z,a*)-β)
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As in the case of indicator functions presented in Part I, these two quantities are 
related as: 







 +≤≤ 1ln)()(ann h

nhnGnH , 

where h is: 
 
6 – VC Dimension of a set of real-valued functions: maximal number h of vectors z1, 
…, zn, that can be shattered by the complete set of indicators of Q(z,α). 
 
Example 11.1 

The VC dimension of a set of functions that are linear in their parameters: 
 

∑
=

+=
d

i
ii zzf

1
0)(),( αφαα , 

 
equals d+1, the number of parameters. The proof is based on the result of Example 
7.2. 
 
Remark 
Note that, as we saw already in section 7.1, the VC-dimension is defined in terms of a 
family of loss functions Q(z,α). In the case of 2-class data classification, the VC-
dimension of the loss function equals the VC-dimension of the set of approximating 
functions φ(x,α). 
In data regression with a quadratic loss function, we have: 
 

2)),(()),(,(),( αφαφα xyxyLzQ −== . 
 
Let hf denote the VC-dimension of the set φ(x,α). Then it can be shown (Vapnik, 
1995) that the VC-dimension h of the set of real functions 2)),((),( αφα xyzQ −=  is 
bounded as: 

hf  ≤ h  ≤ c hf , 
 

where c is some universal constant. According to Vapnik (cited in Cherkassky V, 
Mulier F, 1998), for practical applications one can use h  ≈ hf . 
 

11.2  Distribution Independent Bounds for Convergence 
 
The following theorems are similar to the ones presented in section 7.4 and apply to a 
family of non-negative functions: 
 

0 ≤ Q(z,α) ≤ B,    α∈Α, Β ∈ℜ+ 
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Theorem (Vapnik) 
With probability at least 1-δ simultaneously for all functions in a set of non-negative 
real-valued functions the following inequality holds true: 
 














+++≤

)(
)(4

11
2

)()()( emp
emp n

RnRR B
B n

nn ε
ε α

αα  

with n
h
nh

n
)4/ln(12ln

4)(
δ

ε
−






 +

= .                               11.1 

 
 
Corolary: with probability at least 1-2δ  the following inequality holds true: 
 




























+++

−
≤−=∆

)(
)(4

11)(
2
ln)()()( emp

0 n
R

n
n

BRR B
n

nn ε
ε

αδααα . 

 
 
Example 11.2 

Consider a set of linear functions φ(x,α) = ax + b, with VC-dimension h = 2 (see 
Example 10.1). Assume we use a significance level  n/4=δ , as recommended by 
(Vapnik, 1998) and also used by Cherkassky V, Mulier F, 1998). Assume further that 
the training error is Remp(α) = 0.07 and B = 1.  
Figure 11.2 illustrates the behaviour of the R – Remp with n. (Compare with Figure 
7.10.) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 500 900 1300 1700 2100 2500 2900
n

R -R emp

 
Figure 11.2 

 
If now we fix m = 10000 and δ = 0.05 and vary h = 2,…,18 we can see that the 
expected risk increases with the VC-dimension (Figure 11.3) almost linearly. 
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Figure 11.3 

 
Tighter bounds can be derived for sets of unbounded nonnegative functions. As 
described in (Vapnik, 1998) for unbounded non negative real-valued loss functions, 
when F(z) is a distribution with light tails, then with probability at least 1-δ, 
simultaneously for all loss functions in the set, the following distribution-independent 
bound holds: 
 

∞














−
≤

)(1

)(
)( emp

nc

R
R

ε
α

α 3.                                          11.2 

 
In most practical problems, one may take c = 1. 
 
Example 11.3 

Figure 11.4 shows the values of the risk computed with formulas 11.1 (dotted curve) 
and 11.2 (solid curve) in the conditions of the prvious example. It is clear that formula 
11.2 provides a much tighter bound. 
 

0.07

0.09

0.11

0.13

0.15

0.17

0.19

1000 3000 5000 7000 9000 11000 13000 15000
n

R

 
Figure 11.4 

 
 Note that in regression the loss functions should be considered as being unbounded 
and nonnegative, since usually we cannot provide finite bounds for mean squared 
error and the bounds on the true function or the additive noise are not known. There is 

                                                 
3 The subscripted ∞ means that R(α) < ∞ if the denominator turns out to be negative. 
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always a small probability of observing very large output values that can yield large 
values for the loss function as well. Formula 11.2 (Vapnik, 1998) considers 
distributions with so called "light tails", i.e., small probabilities of observing large 
values.  

12 Pseudo- and Fat-Shattering Dimensions 

Let us first consider the following example. 
 
Example 12.1 

Let i = 1,…,7 and consider the following real vector z ∈ {XxY}7 = {[0,1]x[0,1]}7: 
 

[ ]





























==

767.0833.0
697.0722.0
633.0611.0
517.0500.0
330.0389.0
317.0278.0
093.0167.0

),(),( 7711 'z' yxyx K
 

 
Consider the following three linear functions (see Figure 12.1), belonging to a set F of 
linear functions: 
 
fdash = 2.018 x – 0.244   dash line 
fdot = 1.068 x – 0.085   dot line 
fdash-dot = 0.117 x + 0.284  dash-dot line 
 
 
 

 
Figure 12.1 
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At each point xi ∈ {0.167, 0.278, 0.389, 0.5, 0.611, 0.722, 0.833} and for each 
function: 

 
the graph of f(xi) can either pass above or through yi, or else below yi . We then can 
denote the set 

by  

E.g.,  means that: 

 
 
For a given class F of linear functions it may be possible to obtain all 27 binary 
sequences (above/below). 
  
  
We generalize the VC-dimensionof a class of functions F, to the pseudo-dimension, 
denoted P-dim(F), in order to study the learnability of [0,1]-valued functions.  
 
Definition: 

Given F ={X→ [0,1]} and a set S={x1,…,xn}. The set S is P-shattered by 

F, with c∈[0,1]n as the witness, if for every binary vector e∈{0,1}n there 

exists a function fe∈ F such that: 

 

The  P-dim(F) is the largest integer n for which there exists a set of cardinality n 

that is P-shattered by F. Thus, the only extra feature of the  P-dim(F) is the possibility 

of introducing the "off-set" vector  c∈[0,1]n. 
 

Example 12.2 

(Function class with witness)  

Given a class of (measurable) linear functions  F ={X→ [0,1]} such that: 

 
and a set S: 
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suppose we have the following pairs of real numbers, the first one, xi being a member 

of the set S and the second one, ci, being a witness, and that 

where : 

 
We can say that the graph of the following instances of functions fdash and fdot that 
belong to the class F, and are represented in Figure12.2, can either pass above or 

through  ci, or else below  ci 

 

 

 

and , points are represented by 

boxes, and witness  ci by diamonds.  

Figure 12.2 

 
 

we can say that the graph of fe(x) can either pass above or through  ci, or else below  
ci. 
We can denote the set { fdash ,  fdot }by: 

 
where, e.g., (the dash line in figure ), , and the meaning is 

that this  passes above (or through) , therefore  
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and  fe passes below  c1 and c2 therefore   

 
Therefore as card(S) = 3 we can say that there are 23 different possible behaviors as 

varies over the all possible linear functions , where  
  

Lemma ([Vidyasagar03])  

Given a collection of functions F mapping X onto [0,1] define an 

associated collection of functions F as follows: For each 

define a corresponding  using the Heaviside 

function θ(x) by: 

 
Let F = { f; f∈ F} then: 

 
Definition 
We define the notion called fat-shattering dimension, denoted F-dim and usually 

referred to as a "scale-sensitive" version of the P-dim (see e.g. Vidyasagar, 2003): 

Given  F ={X→ [0,1]} and a set S={x1,…,xn}. The set  S is fat-shattered 

by F to width with as witness if, for every binary vector 

there exists a function  fe∈ F such that 

.                                      12.1 

The  F-dim of F to width , denoted by F-dim(F,γ) is the largest integer n for which 

there exists a set of cardinality n that is P-shattered by F. 
 
Example 12.3 

Given  F ={X→ [0,1]} and a set S = {0.167, 0.278, 0.389} as stated in Example 12.2, 
we show how the set S is  fat-shattered by 7 functions to width γ = 0.02 with the set 
{0.093, 0.317, 0.33} as witness, respectively. For every binary vector e∈{0,1}3 with 
the exception of the vector [010] there exists a function  fe∈ F such that expression 
12.1 is verified.  
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The set  S = {0.167, 0.278, 0.389} is fat-shattered to width γ > 0.02 with 
witness {0.093, 0.317, 0.33}. Note f010 is missing.  

Figure 12.3 

 
Figure 12.3 shows clockwise, and starting from the crossed end of the 

dash line, the following examples of linear functions  fe∈ F: 

 
Thus: 

 

 
The set  S = {0.167, 0.278, 0.389} is fat-shattered γ > 0.02 with witness 
{0.093, 0.12, 0.33}. Note  f010 exists but f101 is missing.  
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Example 12.4 

 (The set S is fat-shattered by 4 functions)  
 

The set  S = {0.167, 0.278, 0.389}is fat-shattered  γ > 0.02 with with linearely 
dependent witeness {0.093, 0.2115, 0.33} by only 4 functions.  

Figure 12.4 

 
Theorem ( see Anthony, 1999)  

Let  F ={[0,1]→ [0,1]} be the set of all functions mapping from the 

interval [0,1] to the interval [0,1] and having total variation at most V. 
Then: 

 
where 

 
The following theorem (see Anthony, 1999), gives a lower bound on the sample 

complexity m(ε,δ,B) of any learning algorithm in terms of the fat-shattering 
dimension of a function class.  
 
Theorem: 

Suppose that  F ={X→ [0,1]}. Then for B ≥ 2 and 0 < ε < 1, 0 < η < 0.01, 
any learning algorithm for any function class  F  has sample complexity 
satisfying: 
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α
αεδε

16
)/,dim(),,( F−

=
FBm  

 
for any 0 < α < 0.25, where B is a bound on in real prediction 
problem (p.233), ε is the estimation error of the algorithm, η is 
confidence level, and α is an unspecified parameter.  

Example 12.5 

 

 
 
Example 12.6  
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Appendix – Regression Solutions 

1 - Let us first assume the quadratic loss function 8.2. We have: 
 

∫ ∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

−=−= dydxxyfxgyxydFxgyR ),()),((),()),(()( 22 ααα ;4 

 

i.e., R(α) is simply the expectation of the square deviations ])),(([ 2αxgy −Ε . But: 
 

∫ ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

−=− dydxxyfxgyxfdydxxyfxgy )|()),(()(),()),(( 22 αα  

 
The integrand above is nonnegative; therefore, minimizing R(α) amounts to minimizing the 
following: 
 

[ ] [ ] 222 ),(|),(2|)|()),(()( αααα xgxyxgxydyxyfxgyR +Ε−Ε=−= ∫
∞

∞−
 

 
For every particular (x,α) the integral is a second-order moment relative to the constant 
g(x,α). It reaches a minimum for the particular value g(x, α0) such that: 
 

[ ]

[ ] ∫
∞

∞−

=Ε=

⇒=+Ε−⇒=
∂

∂

dydxxyyfyxg

xgxy
xg
xgR

)|(|),(

0),(2|20
),(
)),((

0 xα

α
α
α

 

2 – Let us now use the following loss function: 
 

|),(|)),(,(),( ααα xgyxgyLzQ −==  
we now have:  
 

∫ ∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

−=−= dydxxyfxgyxfdydxxyfxgyR )|(|),(|)(),(|),(|)( ααα  

 
Thus, we have to minimize: 
 

∫∫

∫
∞+

∞−

∞

∞−

−+−

=−=

),(

),(

)|()),(()|()),((

)|(|),(|)(

α

α

αα

αα

xg

xg

dyxyfxgydyxyfyxg

dyxyfxgyR

 

For uncluttered notation let us denote the constant g(x,α) as a. The above expression 
is then developed as: 
                                                 
4 We assume that the family of functions g(x,α), α ∈Α are square integrable. 
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Using the Fundamental Theorem of Calculus, we obtain: 
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