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October 10, 2003 
 
 
 
 
 

Abstract 
 

We make were a brief introduction to some entropy principles and information theoretic 
learning and also an overview of the Unsupervised Learning with Renyi´s Quadratic 
Entropy. 
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1. Entropy 
 
Consider the Hartley’s measure that defines the amount of information associated with 
the measurement of an equally likely event x  which occurs with probability p  as: 

p
xI 1log)( = . 

 
Shannon defined the entropy as the expectation of )( kpI ,  
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i.e the entropy measures de average amount of information conveyed by the event x . 
The more uncertain the event x , the larger is its information content which can be 
measured by its entropy. 
 

2. Joint Entropy and Conditional Entropy 
 
Let’s extend the definition of entropy to a pair of random variables. The pair ),( yx  can 
be considered to be a single vector-valued random variable. 
 
Definition: The joint entropy ),( yxH  of a pair of discrete random variables ),( yx  with 
a joint distribution ),( yxp  is defined as 
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We define the conditional entropy of a random variable given another as the expected 
value of the entropies of the conditional distributions, averaged over the conditioning 
random variable. 
 
Definition: The conditional entropy )|( xyH  is 
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We can prove that the entropy of a pair of random variables is the entropy of one plus 
the conditional entropy of the other. 
 

)|()(),( xyHxHyxH +=  
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We can easily see that )|()|( yxHxyH ≠ . However, 

)|()()|()( xyHyHyxHxH −=− . 
 

3. Relative Entropy and Mutual Information 
 
The relative entropy is a measure of the distance between two distributions.  
 
Definition: The relative entropy, or the Kullback-Leibler divergence measure, 

))();(( xqxpD  is 
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The relative entropy measures the penalty of using a wrong statistical model (i.e. using 

)(xq  when the true model is )(xp ). The relative entropy is always non-negative, is zero 
only if )()( xqxp = , and since it is not symmetric it is not a true distance measure. 
 
Entropy measures the amount of information required on the average to describe a 
random event or message. More generally we may be interested in quantifying the 
amount of information between joint events. For instance, we may be interested in 
quantifying the degree of uncertainty in the input x of a noisy system after observing its 
output y. 
 
Definition: The mutual information ),( yxI  is the relative entropy between the joint 
distribution and the product of the marginal distributions. 
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)()|()(),( xHxxHxHxxI =−=  and )(),( yHyyI =  
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Since )(),()|( xHyxHxyH −=  than: 
 

),()()(),( yxHyHxHyxI −+=  
 
The relationship between )(xH , )(yH , ),( yxH , )|( yxH , )|( xyH  and ),( yxI  can 
be expressed in the following diagram. The mutual information corresponds to the 
intersection of the information in x  with the information in y . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All the above definitions have been presented for the case of discrete random events. 
The definitions can be extended to the case of continuous random variables by 
substituting sums with integrals (as long as the integrals exist). For instance, differential 
entropy )(xh  is defined as 

dxxPxPxh
D
∫= )(log)()(  

where )(xP  is the probability density function (PDF) for the continuous random 
variable Dx ∈ . 
 
 

4. Entropy Optimization Principles 
 
The most common entropy optimization principles involve the K-L divergence with 
respect to the uniform target distribution (q(x) in Eq. 1 is set as the uniform 
distribution). Let us assume that y is a function of some parametric mapper y = g(x,w), 
where g(.) is the mapping, x the input vector, y the output vector, and w the adjustable 
parameters. So by analogy to optimization in Euclidean space, we can adapt the 
parameters w by manipulating p(y) and minimize the K-L distance to find de Kullback’s 
Minimum cross-entropy (MinxEnt), or maximize the K-L divergence to find de Jayne’s 
maximization of entropy (MaxEnt). 
Examples of this optimization principle are the work of Bell & Sejnowski on blind 
source separation and the work of Barlow and Attick in neural networks. Linsker also 
used the information principle in neural networks. He used a linear network assuming 
that the output was Gaussian distributed as well as the noise. The problem seems to 
become more complex if we work with arbitrary distributions and nonlinear networks. 
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One of the difficulties of the application of these information-theoretic criteria is that 
analytic solutions are known only for very restricted cases, e.g. Gaussianity and linear 
mappings. Otherwise mathematical approximations and computationally complex 
algorithms result.  
The two fundamental issues in the application of information-theoretic criteria to 
neurocomputing are: the choice of the criterion for the quantitative measure of 
information, and the estimation of the probability density function from data samples. 
 

5. Information-Theoretic Learning 
(This is an overview of Principe’s article in Information-Theoretic Learning) 
 
The concepts of entropy and mutual information are all that is needed to pose and solve 
optimization problems with information theoretic criteria. Consider a parametric 
mapping MKg ℜ→ℜ: , KM <  of a random vector Kℜ∈x , which is described by the 
following equation 

),( wxy g=    Eq. 2 

 
where y  is also a random vector Mℜ∈y , and w  is a set of parameters. The goal is to 
choose the parameters w of the mapping g(.) such that a figure of merit based on IT is 
optimized at the output space of the mapper (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Training a mapper (linear or non linear) with ITL 

 
This is what we call information-theoretic learning (ITL). Notice that we are only 
requiring the availability of observations ix  and iy  of random vectors without assuming 
any a priori knowledge about their probability density functions. Notice also that the 
mapper can either be linear or non-linear, and that the criterion may or may not exploit 
an external input normally called the desired response, i.e. information theoretic 
learning spans both the unsupervised and supervised frameworks. We also want the 
method to be general purpose and not developed for a single application. 
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5.1 Probability Density Function Estimation 
 
One obstacle of using information theoretic criteria (entropy or mutual information) is 
that information measures are a weighted sum of the logarithm of the PDF for discrete 
random variables (or an integral function of the logarithm of the PDF of continuous 
random variables). Since we can not work directly with the PDF (unless assumptions 
are made about its form), we rely on nonparametric estimators. Density estimation is an 
ill-posed problem, and in particular nonparametric density estimation is very unreliable 
in high dimensional spaces. The approach described here, however, relies on such 
estimates in the output space of a nonlinear mapper, where the dimensionality is under 
control of the designer, and is generally manageable. 
Principe uses the Parzen window method. The Parzen estimator is a kernel based 
estimator, which estimates the PDF, )(yYf , of a random vector Mℜ∈Y  at a point y  as 
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The vectors M

i ℜ∈a  are observations of the random vector and )(κ  is a kernel 
function which itself satisfies the properties of PDFs. The Parzen window can be 
viewed as a convolution of the estimator kernel with the observations. Principe says we 
can choose the symmetric Gaussian kernel  
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with covariance matrix I2σ  since we require that )(κ  be differentiable everywhere. 
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5.2  Unsupervised Learning with Renyi´s Quadratic Entropy 
 
One of Principe’s proposed methods to achieve information-theoretic learning is to use 
the Renyi´s Quadratic Entropy. 
 

In chapter 1 we have defined the information associated with an event 
p

xI 1log)( = .  

In the general theory of means the mean of the real numbers nxx ,...,1 with weights 

npp ,...,1 has the form: 
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where )( kxϕ  is the Kolmogorov-Nagumo function, which is an arbitrary continuous 
and strictly monotonic function defined on the real numbers. So, in general, an entropy 
measure satisfies: 
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and ))(( pkIϕ  is a measure of information. By being a measure of information  )(ϕ  can 
not be arbitrary since information is “additive”. To meet the additivity condition )(ϕ  
can be either xx =)(ϕ  or xx )1(2)( αϕ −= . If the first is used we get the Shannon’s 
entropy. If the second is used we get the Renyi’s entropy with order α , which we 
denote by αRH  
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For the continuous random variable Y  with PDF )(yYf , we can obtain the differential 
version of Renyi´s quadratic entropy: 
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5.2.1 Integration of Products of Gaussian Kernels 
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 be the Gaussian kernel in M dimensional 

space, where Σ  is the covariance matrix, MRy ∈ . Let M
i Ra ∈  and M

j Ra ∈  be two 
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data points in the space, 1Σ  and 2Σ  be two covariance matrices for two Gaussian 
kernels in the space, then it can be shown that the following relation holds: 
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The previous equation can also be interpreted as a convolution between two Gaussian 
kernels centered at ia  and ja  and it is easy to see that the result should be Gaussian 
function with a covariance equal to the sum of the individual covariances and centered 
at )( ji aa − . 
 
5.2.2 Quadratic Entropy Cost Function for Discrete Samples 
 
Let NiRa M

i ...,,1, =∈ , be a set of samples from a random variable MRY ∈  in M-
dimensional space. An interesting question is what will be the entropy associated with 
this set of data samples, without imposing any assumptions about the PDF. Part of the 
answer lies in the methodology of estimating the data PDF by the Parzen window 
method using a Gaussian kernel: 
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where ),(G  is the Gaussian kernel as above and I2σ is the covariance matrix. 
If we use Shannon entropy along with Parzen estimation, an algorithm to estimate 
entropy becomes unrealistically complex. Renyi’s quadratic entropy leads to a much 
simpler form. Using the last two equations we obtain an entropy estimator for a set of 
discrete data points { }ia as 
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The combination of Renyi’s quadratic entropy with the Parzen window leads to an 
estimation of entropy by computing interactions among pairs of samples which is a 
practical cost function for ITL. The only approximation in this evaluation is the PDF 
estimation. 
 
5.2.3 Quadratic Entropy and Information Potential 
 
We wrote Eq. 3 in this way because there is a very interesting physical interpretation for 
this estimator of entropy. Let us assume that we place physical particles in the locations 
prescribed by ia  and ja . Since is always positive and is inversely proportional to the 
distance between the particles, we can consider that a potential field was created in the 
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space of interaction with a field strength dictated by the Gaussian kernel, i.e. an 
exponential decay with the distance square. Physical particles interact with an inverse of 
distance rule, but Renyi’s quadratic entropy with the Gaussian kernel imposes a 
different interaction law (which by the way is controlled by the kernel utilized in the 
Parzen estimator).  
Now })({ iV a , which is the sum of all pairs of interactions, can be regarded as an overall 
potential energy of the data set. We will call this potential energy an information 
potential. So maximizing entropy becomes equivalent to minimizing information 
potential. The quadratic entropy is the negative logarithm of the information potential, 
so it measures the density of samples throughout the space. This procedure resembles 
the world of interacting physical particles which originated the concept of entropy. 
We can also see from 
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that the Parzen window method implemented with the Gaussian kernel and coupled with 
Renyi’s entropy of higher order )2( >α  will compute interactions among α -tuples of 
samples, providing even more information about the complex structure of the data set. 
 
5.2.4 Information Forces 
 
Just like in mechanics, the derivative of the potential energy is a force, in this case an 
information driven force, that moves the data samples in the space of the interactions. 
Therefore, 
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can be regarded as the force that a particle in the position of sample ja  impinges upon 

ia , and will be called an information force. If all the data samples are free to move in a 
certain region of the space, then the information forces between each pair of samples 
will drive all the samples to a state with minimum information potential. If we add all 
the contributions of the information forces from the ensemble of samples on ia  we have 
the net effect of the information potential on sample ia , i.e. 
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5.2.5 “Force” Back-Propagation 
 
The concept of information potential creates a criterion for ITL, which is external to the 
mapper of Figure 1. The only missing step is to integrate the criterion with the 
adaptation of a parametric mapper as the MLP. Suppose the data samples { ia } are the 
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outputs of our parametric mapper of Eq. 2, }...,,1,{ NiRM
i =∈y . If we want to adapt the 

MLP such that the mapping maximizes the entropy at the output })({ iH y , the problem 
is to find the MLP parameters }{ jiw  so that the information potential })({ iV y  is 
minimized. In this case, the data samples are not free but are a function of the MLP 
parameters. So, the information forces applied to each data sample by the information 
potential can be back-propagated to the parameters using the chain rule, i.e. 
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where T

iMii yy )...,,( 1=y  is the M  dimensional MLP output. The quantity 
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is the information force given by Eq. 4. Notice that from Eq. 5, the sensitivity of the 

output with respect to a MLP parameter 
w

i

∂
∂y  is the “transmission mechanism” through 

which information forces are back-propagated to the parameter (Figure 2). From the 
analogy of Eq. 5 with the backpropagation formalism we conclude that information 
forces take the place of the injected error in the backpropagation algorithm. So, we 
obtain a general, nonparametric, and samplebased methodology to adapt arbitrary 
nonlinear (smooth and differentiable) mappings for entropy maximization. Notice that 
we are adapting a MLP without a desired response. We have established an ITL 
criterion that adapts the MLP with a global property of its output sample distribution. 
 

 
Figure 2: Training a MLP with the information potential 

 
 
Principe states that the methodology presented here lays down the framework to 
construct an “entropy machine”, i.e. a learning machine that is capable of estimating 
entropy directly from samples in its output space, and can through backpropagation 
modify its weights to minimize or maximize output entropy. The algorithm has 
complexity )( 2NO  since the criterion needs to examine the interactions among all pairs 
of output samples. 
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Principe extends Bell and Sejnowski approach to Independent Component Analyses 
(ICA). Bell’s approach can not be easily extended to MLPs nor to data distributions 
which are multimodal in nature. In this approach he has decoupled the mapper from the 
criterion and the optimization problem, Renyi’squadratic entropy becomes essentially a 
general purpose criterion as widely applicable as the MSE. 
 

 
6. References 
 
Príncipe J., Fisher J., Xu D., "Information-Theoretic Learning”, CNEL, University of Florida, 1998 
 
Príncipe J., Xu D., "Information-Theoretic Learning Using Renyi´s Quadratic Entropy”, CNEL, 
University of Florida, 1999 
 
Cover T., Thomas G, “Elements of Information Theory”, Wiley, 1991 


