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1 General Learning Model

1.1 Basic Definitions

Object (instance or input) set: X R x= {x}; input (feature) vector Xx.
Target set: T=1{0,1} (or {—1,1}; a two-class problem)

Problem space: Z =X x T. There is a fixed but unknown probability measure
P defined on Z, for the r.v. pair (x,£). Note that we consider

that for any given x € X, both (x,0) and (x,1) may have a
non-null probability (so, neither 0 nor 1 is the "correct"
classification).

Training (design) sample: D, = {(xl s (X512, )} € Z" randomly drawn, with each

z; = (X,,1;) pair — labelled example - i.i.d. (D, ~ P").
Decision function (or classifier): ¢: X —> T

Class of classifiers (or machine):
C={p:X>T} (NN:Cp ={p,: X > T;weW};, Wis
the weight space)
Note that even if there is a correct "classification" function, f,

1.e., with P({(x, f(x)); x € X}) =1 (thus with zero probability
of error), it may happen that /' ¢ C.

Classifier designed on D,: ¢,

Risk (or error) of a classifier, ¢:

R(¢) = P(p(x) # t)= P((x,1) € Z; p(x) # 1)

Error of ¢,: R($,)=P((x,1) € Z; ¢, (x) % t)
Note that R(¢,) is a [0, 1]-valued r.v., dependent on D,,.

Empirical error' of ¢ (in D,):
~ 1 & L.
Rn (¢) = ;ZI{¢(x,«):tti;(x[,t[)eDn}(Xi) = ;Hl : ¢(Xz’) # tia(Xiati) € Dn }|
i=1

Note that Ién (¢) 1s a [0, 1]-valued r.v., dependent on D,. 14
is the indicator of set 4.

Optimal error® of the class C: Ry = inf R(¢) (this is a constant)
geC

! Also called sample error, observed error or error-count estimate.
% Also called approximation error. We use inf and not min because {R(¢#)} may be infinite.
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We may also express the risk as an expectation of a loss function:

R($) = [, L(t,¢(x))dF (2) ,
where the loss function is:

0 o .
L(li,¢(xi)):{1 ltl ¢Z((:l))’

Whenever the data distribution is continuous distribution we can also write:
1
R($) = X B[, L(t;,$(0) f (x,1;)dx
i=0

where f(x,;) is the pdf for class #; and P; are the prior probabilities.
1.2 Bayes error

Let us assume that the probability measure P for the the r.v. pair (x¢) taking value in Z
corresponds to:

e The distribution of x; (A) = P(xed; A < Xd);
e The "a posteriori" probability of class 1:  n(x)=P(¢=1]| x=x) = E[t| x=X]

We then define the Bayes classifier:

x 1 if n(x)>1/2
¢ (x)= .
0 otherwise

which can be proved to be optimal, i.e.:
R = R($") = Bl pynyc1/2y 0100 + 1 o2 (A= (3)] < R(¢) forany ¢: X — T

Hence: VC, R’ Siq)nfR(¢).
eC

1.3 Learning Algorithm

Definition 1.1
Given C = {¢ X oY } a learning algorithm L for Cis a function

L:OZ”—)C
n=1

from the set of all training sets to (C, such that given ¢, 6 € 10, 1| (3), there is an integer

no( &, 0) — sufficient sample size - such that for n > ny(¢, ) and every training sample D,, (as
above), then ¢, = L(D,) satisfies

P”(R(¢n) <e+ ;nf R(¢)] >1-6
eC

for any probability distribution P on Z (therefore, P" on Z").
C1is learnable if there is a learning algorithm for C.

3 1—gand 1-6 are known as accuracy and confidence, respectively. In practice &, & € 10,0.5]
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Equivalent formulations:
1 3 ny(&, ) such that for n > ny(e, 6), P" (R(¢n )—inf R(@) > gj <0 (see Figure 1.1)
geC

2 vV ¢€]0,1[, P" (R(¢n )— i¢nf R(¢p) > {;‘j — 0 (convergence in probability)
eC n—»
d&¢(n,0) suchthat Vn,0,P,D,

n—0

P”(R((pn)—;jnfR(qﬁ) <80(n,5)j21—5 with &y(n,8) > 0
eC

&,(n,0) 1s the estimation error bound.

4 E[R(g/)n )— ;nf R(¢)} <&  (or E[R(¢,)]< ;nf R($)+ &)
cC eC

with E=E .
bt

As a matter of fact, by Markov's inequality,
E[R((zﬁn ) —inf R(¢)} <gd = P (R(¢n) —inf R(¢) > gj < £ _ o
deC peC g
Conversely, assuming that

P”[R(qﬁ,,)—;nfR(@ Za/2j <al2
eC

since R(¢,)— (iﬁnf R(p) <1, we have
eC

E[R(qﬁn ) — inf R(¢)} <% pn (R(¢n )—inf R(¢) < ﬁj +p" (R((/ﬁn )—inf R($) > ﬁj <a (%
geC 2 geC 2 geC 2

Thus, in terms of convergence of the mean deviations we have a sample complexity
n'y(a)=ng(ax/2,a/2).

From now on we will simplify the notation using P instead of P".

Definition 1.2

Sample complexity of L: n;(g,0)= 1%111}1 ny(&,0)
o
Estimation error of L: er(n,0)= r{nin &y(n,0)
"o
The sample complexity sets a lower bound on the sample size needed by L for learning C.
|

4 Let d, =R(¢,)—inf, . R(#) <1. Then, note that Eld,]= J'“/z

1 1
o dudPd)+[ d,dP(d,)<a/2+[  dP(d,)
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Figure 1.1. Error curves for a class C.
Definition 1.3
Inherent complexity needed by any learning algorithm:
ne(e,0) =minn; (&,0)
iz}
|

2 Error Estimation

2.1 Deviations of Empirical Errors from True Errors

We now consider the error-count estimate or empirical error, instead of the "true" error

R(9):

Notes:

3.

~ 1&
R,(§) = . zl{gﬁ(x[):tt,-;(x,«,ti)eDn} (x;) 2.1
i=1

The distribution of the r.v. k= nf?n (¢) (obtaining k errors in D,) is binomial with
parameters n and R(¢) °.
Formula 2.1 can be written as Ién (@) = Z?:NC:' , Where the x; are »n i.i.d. Bernoulli

r.v. (see Figure 2.1).

1-R(9)
R(9)

[

0/n 1/n
Figure 2.1

Ién (@) 1s an unbiased estimate of the true error: E[]%n (#)] = R(¢) (convergence of
averages to the true mean).

* k.= NOiR($), R($)1 - R(#));

R,(#) = N(R(@), R(@)(1 - R(#))/ n)
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How does Ién (¢) converges with n?

Theorem 2.1 (Hoefding's Inequality)
Let x, ...,x be independent and bounded r.v. such that each x; falls in the [a;, b;] interval
with probability one. Consider the sum S, = Z;xi . Then,for any &> 0:

P(S, —E[$,]2 &)< e 22" and (s, —E[s,]<—g) < e 2n 0

(thus’ P(|S}’l - E[Sn ]| 2 8) < 26_282 /Z?:I(bi_ai)z ) -
Corolary 2.1

When the x; take value in [—c, ¢] and have zero mean, Hoefding's inequality can be written
as:

/n> 8) < Qe 2D

n

P(s

Proof:
Since E[S,] = 0, we get for the first Hoefding's inequality:

26213 (b-a;)?
P(S, > 5)< e/ Tt

We now consider: S, /n = Z)(,. /n.But x;/ n € [—c/n, ¢/n]; therefore:
i=1

P(S,/n>e)< exp( 2¢* /[n(%jz D = exp(— ne’ /(2c2 ))

Using the second inequality we obtain the result above.

]
We now proceed to bound PQﬁn (@) — R(¢)‘ > g).
Theorem 2.2
For any £> 0, n and P,
PR, ()~ R@)| > £)< 20 22

Proof:

As previously seen, ﬁn (@) 1s the sum of n independent {0/n, 1/n}-valued random.variables.
Thus, we may apply Hoefding's inequality obtaining the above result. (Notice that
(b, —a)? =n(l/n) =1/n). ]

Comments:

e Formula 2.2 can also be obtained from additive Chernoff bounds, applicable to
Bernoulli variables. As a matter of fact, Hoefding's formula is a kind of
generalization of Chernoff bounds.

e From formula 2.2 we have:

5 > 26—2}’132 — > ny (8, 5) — Lln(gj , 2.3
262 o
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which shows an O(1/¢7,1/8) behavior of ny(&,0). These bounds are independent of
the data distribution and the class (.

e As illustrated in Figure 2.2, for the same 6 we get higher bounds for » when the
accuracy increases (which makes sense).

e The variance of ﬁn () —R(p) can be computed taking into account that

n Ién (@) has a binomial distribution. Thus:

£ [, rep| |- KD L

S .~
—-—
—

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

Figure 2.2. Hoefding-based bound. For the same & larger values of n are required for smaller &. The usual
0 =0.05 is marked.

We may write the Ién (@) — R(¢) deviations as:

By 0) R0 = 3 gy (50~ RO = 3 100 () - RED =1 S,

The x random variables are now Bernoulli {—R(¢), 1-R(¢)}-valued r.v. with zero mean
and variance R(¢@)(1-R(¢)) (see Figure 2.3).

1-R(¢)
R($)

RP 1R

Figure 2.3
Note that:

e E[x;]=0

o Elx/]=Varlx;]= R(#)(1-R($))
o % 1x] S 1~ R(¢) (assuming R(¢) < %)
Using Corolary 2.1 (denoting S, = Z; x; ) we have:

PQﬁn #) - R g)=P(S,|/n> &)< 2expl-ne? 120 - R()?)). 2.4
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which has the advantage of expressing the bound in terms of R(¢). (However, it does not
outperform the Hoefding's bound.)

There are several formulas for bounding the sum of independent r.v., namely in the form of
exponential inequalities.Here is one of them:

Theorem 2.3 (Bernstein's inequality)

Let xj, ...,x; be independent r.v.. with |x; | < ¢, zero mean and such that c?= E[xiz] .

Then, for any £>0
S . s
ples= )T P 207 +2cel3 '

When applying this formula as in 2.4, we take into account that:

c=1-R(¢); o =R(@)(1-R($))
Thus:

. B I’lé‘z
Pan (4)- R(¢)‘ = 5)— P(s,|/nz¢)s zeXp[_ 2R($)(1— R($)) +2(1 - R(¢))g/3j

Example 2.1

Figure 2.4 shows how formulas 2.3 and 2.5 behave for several values of ¢ and R(¢). We
see that the increase of ¢, keeping R(¢) constant, leads to a drastic decrease of n for the
same P; the increase of R(¢), keeping ¢ constant, leads to the decrease of » for the same P,
but the difference between the bounds becomes smaller.
Let us consider a classifier ¢ with R(¢) = 0.05. We want to determine the number of cases
for which the probability of an estimate Ién (¢) deviating from R(¢) more than £= 0.02 is
less than 5%. We see that this occurs for n > 1000 cases (Bernstein).

a

Corolary 2.2 (*)

The number of cases for which the probability is not greater than ¢ of an empirical estimate
Ién (¢) deviating from R(¢) more than ¢ is bounded as:

2R(P)(1 - R(¢)) +2(1 - R(¢))&/3 ln( 2 ] '
o

82

nzny(s,0)= 2.6

]
Note:

The bounds P( 1%,,(¢)—R(¢)‘ > 6‘) apply to any ¢ € (C . Thus, they also apply to any

R,(¢,)-R(4,)

classifier of C designed with D,, i.e. to P( > g).
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1 1
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0.2 024 ¢
0.1 01| -
0 o A e 0 A e
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1 1
O.QP— ----- Bernstein O.QP— ----- Bernstein
. Hoefding Hoefding
0.8 | 0.8 |
0.7 | 0.7 |
0.6 0.6 1
0.5 | 0.5 |
0.4 0.4
0.3 0.3
0.2 0.2
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0 T I A e e R
c 2 402 802 1202 1602 2002 2402 2802 n d 2 402 802 1202 1602 2002 2402 2802 n

Figure 2.4. Formulas 2.3 and 2.5 for: a) R(¢) = 0.05; £ = 0.02; b) R(¢) = 0.05; £ = 0.05; c) R(¢) = 0.3;
£=10.02; d) R(p) = 0.3; £=0.05. Note that Hoefding-based formula is independent of R(¢).

800 . . . . . . . . . o 10"
700 - / 1 1.8F _—
600} / ] 1.6 —

500 / , i

c 400} / 4 1? / /
300 / q 08r /

00l / | 06} /

0.4t 1
100} — Hoefding | q 02l —— Hoefding | |
—— Bemstein : —— Bemstein
0 . . . . . . . . I 0 . . . . . . . . I
0 0.05 0.1 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
a error b error

Figure 2.5. Values of bounding n for 6= 0.05 and several values of R(¢) with: a) £=0.05b) £=0.01.

2.2 Deviations of ERM Errors from Optimal Errors

We now assume an algorithm L that picks up the classifier minimizing the empirical error
(ERM principle):
¢, =L(D,) suchthat R,(¢,)=minR,($)
eC

Using the preceding results we will see in later sections that it is possible to bound:
R,(#) - R@) > ¢)

The so-called probability of an uniform two-sided distance®.

P(sup peC

% Given two probability distributions F and G, their uniform distance is P(F,G)=sup,|F(x) - G(x)|-
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We then proceed to determine if this uniform convergence guarantees that the ERM
algorithm is a learning algorithm. Before we do that we present an important Lemma.

Lemma 2.1 (Vapnik and Chervonenkis, 1974)
R(4,) - inf R(¢) < 2 sup R,(¢)~- R(¢)‘
€ eC

R,(¢) - R($,)| < sup|R, (4)~ R(#)

< sup
geC

Proof:
The second inequality is trivial (see Figure 2.6).
For the first inequality we have:

R(¢,)~inf R(g) = R(4,) = R, (#,) + R, (4,) ~inf R(p)

<R(@)-R,(4)+ sup R,($)- R($)

<25unR, (9) - R()

True errors  Empirical errors

= o
oof Q\\
o oy * AN

/ R(g,) *

§ n\¥n Y

%
5
5
s

g
a
¢
4

g ~AF
S R(P)
R(9)

Figure 2.6

R, (#)— R(#)| also bounds:

This Lemma shows that an upper bound of sup,_.

e The suboptimality of the selected classifier ¢, ,i.e, R(¢, )— i¢nf R(9).
eC

e The error deviation, R, (4)) - R(¢,)

, due to using the error count estimate.

In what concerns the Bayes error, even if we use a Bayes-consistent rule’ there isn't any
estimation method assuring the convergence of Ién (@) — R (¢) towards zero rapidly for all
distributions, as shows the following:

Theorem 2.4

For any n, any estimate Ién of the Bayes probability of error R", and for every &> 0, there is
a distribution of (x,t), such that

7 The Bayes consistency of a classifier implies either E[Rn(¢)] — R(¢") (weak consistency) or

P(R,(¢)-R(¢)=¢) - 0 (strong consistency).
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i

We now determine how to bound P(R((ﬁ: )—infye R(¢)<50) using a bound on
Ry@) - R > ).

R -R

] 1
>——c.
4

P(sup eC

Theorem 2.5
Suppose (Cis a finite class. Let L: ULZ " — C be such that, for any n and D,, L picks up

the classifier ¢, = L(D,) with Ién (4,) = rélin Ién (@) . Then L is a learning algorithm for (,
eC

We first note thatP(sup dec Ién (¢:) —R((b:) > g)s o0 means that with probability at least

1 — 9, the following holds:

R($,)~& <R, () <R(@,) +¢
Equivalently:

R,($)-e<R(B,)<R,($)+¢
Therefore, with probability at least 1 — &:

R$)SR,(4)+e
But, by the ERM definition of L:

R<¢Z>sén(¢2)+e=;nfﬁn(¢>+s
eC

Now, infy. Ién (@) is surely less than or equal than the empirical estimate of any other

classifier of ¢, namely the optimum ¢ (note that ¢ is an optimum for sets of size ). Thus,

with probability at least 1 — &

R(¢,) < ;nffzn(¢)+g <SR )+e<(R($ ) +&)+6=Ryy +2¢
eC

Hence, we can boundP(R(¢: ) —infec R(¢)<go) with probability at least 1 — & by

choosing & = 2¢.

[ |

ke O

& ‘ £1
A H
R *

G
= @ £]1
3 £1
2¢

Figure 2.7. The 2&-configuration of p(R(¢;) —inf e R($) < & )
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3 ERM Learning with Finite Classes

We start by presenting an uniform two-sided convergence theorem.

Theorem 3.1

Suppose (s a finite class. Then, for any P, ¢ and n:

P(n;lax‘f?n (9)— R(¢)‘ > 8) < 2|C|e_2"‘gZ (using Hoefding inequality) 3.1
eC
. ne’
P(max , > 8) < 2|Clexp| —————— | (using Bernstein inequality) 3.2
geC | | 207 +2ce/3

Proof:
The proof is based on the union bound result.
Assume ( has N functions ¢ and consider the sets:

4=z’ R, >g| with P(4)<p

We have:
(maX‘R (#) - R(¢)‘ >g) (U j<ZP(A)_Np

i=l1

The probability p is given either by Hoefding or Bernstein inequality.

2R (#)-R()
A ¢1 ¢2

Figure 3.1. 4, and A4, are the black and grey intervals, respectively. The maximum deviation corresponds to
the union of these intervals.

Corolary 3.1

The ERM algorithm is a learning algorithm with estimation error bound

gL(n§)>[ (icm , 33
n

n, (&, 5)>—1 [2|C|j 3.4
L 5 .

The proof is the direct application of Theorem 2.5 and Theorem 3.1.

and sample complexity bound
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Corolary 3.2 (*)

Using Bernstein inequality we obtain the following sample complexity bound from 3.2 by
using &2 instead of &

n(6.5)> J2R@)(A = R($,)) + (1= R($,)/3 1n[2|c|] |

&’ o

35

Application to Perceptrons

We consider perceptrons with weight vectors (including bias) represented with b bits.
Thus, each weight can have 2° values and |¢| < 2°“*D.

Theorem 3.2

Let C be the class of perceptrons with d + 1 weights represented with b bits. Let
L: U;Z " — C be such that for any n and D, L picks up the perceptron ¢ = L(D,)such
that R, (¢,)=minR, ().

Then L is a learning algorithm for C, with sample complexity
2 2
n;(&,0) 2 —zln[b(d +1)In2+ ln(gjj . 3.6
&£

Proof:

Direct application of Corolary 3.2.
|

One can obtain a more general result for the class of perceptrons with d + 1 integer weights
represented in [k, k]:

d+1
,,,L@,g)z%m[m)
&

Result 3.6 is then the special case for b =log,(2k+1).
Theorem 3.3 (*)

Let C be the class of perceptrons with d + 1 integer weights represented in [k, k]. Then,
for any P, ¢ and 6, the following bound for the sample complexity holds:

2R(¢,)(1- R($,)) + (1- R(4, ))s/sln(zmk,d)j
g o '

n;(&,0) =4

Proof:
Based on the previous Theorems and C. Felgueiras result. u
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12000
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0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05

a error b error

Figure 3.2. Sample complexity for d =2 and 6= 0.05: a) £=0.05, k=4;b) £=0.05, k= 16.

—— Hoefding — Hoefding
—— Bernstein 8 —— Bemstein ||

~__

T e ——

0 I | 0 . . . . n T —
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
a eps eps

Figure 3.3. Sample complexity for several values of R(¢#) with d = 2 and 6= 0.05: a) R(¢) = 0.1, k= 2; b)
R(9)=04,k=4.

4 Vapnik-Chervonenkis Theory

Vapnik Chervonenkis (VC) Theory concerns the consistency of the ERM principle (not the
Bayes error consistency) for a given class of functions (finite or infinite).
The empirical error is:

~ 1
Rn (¢) = ;le{qé(xi)iti}(xi) ’

The rule empirically selected is ¢: = arginfy., (ﬁn (¢)).

One expects that the true error, R(¢, ), is near the optimal error, inf gec R(@), for the given

class of functions.

¥ VC Theory texts often make explicit the parametrization of the classifier class, using a parameter vector
a € A. The empirical and true errors (risks) are then denoted R.,,(¢,) and R(a,). We will keep the previous

notation, with the understanding that: ]A?n (4)) = R, (a,), R()=R(a,), i¢nf R(p) = ian' R(a).
eC ae
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VC Theory allows us to bound R(¢,) — inf 5o R(¢) independently of the data distribution
and with a convergence rate that only depen(fs on the structure of  (which can either be
finite or infinite).

However, inf, . R(¢) may be far away of the Bayes error (see Figure 4.1)...

R($;) =R = (R(4;) - inf R($)) + (inf R(¢)~ K)

geC

R(g,)) — i¢nf R(p):  Estimation error (can be controlled with a learning algorithm; often
eC

small)
i¢nf R(¢)-R": Approximation error (cannot be controlled; often larger than the
eC
estimation error)
Figure 4.1
|C| small: When the cardinality of ( is small we can expect a small estimation error
(compare with the discrete weight perceptron class), but the approximation
error will probably be very large.
|C| large: As we enlarge C we expect to reach a better approximation to the Bayes

error, but the estimation error will probably be very large (due to the
richness of class ().

Assuming ( the class of all (!) decision functions, we may then expect to find a classifier in
C with zero empirical error; however, this classifier may have arbitrary large errors outside
D,. An example is:

if x=x;, i=1...,n

* _ ti
¢n(x) - O

otherwise

We obtain the overfitting behaviour: the too large class ( overfits the data. VC Theory
stipulates precise conditions on C in order to avoid this.
We have two choices:

1. Select C such that inf, . R(¢)is near R’. This corresponds to the Bayes error
consistency issue. It can be shown for several classification rules that Bayes error
consistency is assured as far as C grows with n in a certain way (e.g., k-NN).

2. Assume that C is fixed and minimize the estimation error R(¢ ) — inf sec R(D).
This is the approach we take.
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4.1 Growth Function

4.1.1 Definitions

Definition 4.1

Let 4 represent a collection of measurable sets (class) defined on X". For (xy,...,X,) € X" <
(RY)" we define the diversity of the collection A on the sample { xi,....X,}, and we will
represent it by Na(xy,...,X,), as the number of different sets in {{ x;,....x, }" 4; 4 € A4}:

Na(X1yeeeXn n) = [{{ X15eeenxs N A; A € A}|. 4.1

Notes: u
e Some authors call concept class to the collection A4.
e The original formulation in SLT (see e.g.,Vapnik,1998) is in terms of Z", where Z is
the problem space (see SLT-I Tutorial, section 4). However, for classification
problems both formulations are equivalent (see Note in page 21).

Example 4.1

Consider the class of semi-closed rectangles 4 = {]a, b]x]c, d]} such that a — b and ¢ — d
are less than w.
For the point configurations of Figure 4.2 we have:

a) Na ({Xla X2, X3}) = ‘ {@’ {Xl}a {Xz}’ {X3}’ { X1, X3}a {Xza X3}} ‘ =6
b) Na ({x1, X2, X3}) = [ {J, {x1}, {x2}, {x3}, {X2, X3}} [=5

X, o
X X, X,
o< "i >eo |@
b) Eereemmmmenesenneened]
Figure 4.2
a
Definition 4.2
The n-th shatter coefficient of A is
S,(n)=  max N, (X,....,x,) 4.2
(K| X )EX
|

Example 4.2

Class 4 of Example 4.1 shatters any 3-point set in the equilateral triangle configuration of
Figure 4.2a) when || x;—Xa|| <w

On the other hand, the class Q= {]—o, b]x] —0, d]} (see Figure 4.3) doesn't shatter any 3-

point set. We have maxNq ({x1, X0, X3}) = 5.
a
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Notes:

X
1 @ .Xz

Figure 4.3

Sa(n) 1s the maximum number of different subsets of n points that can be picked out
by the collection 4. It measures the richness of class 4.

An alternative formulation considers a function class & consisting of binary
functions X — {0,1}. To ¥ we associate a concept class Cz= {Cy f€ F}, where C,=
{xeX; f(x) = 1}. This functional definition is equivalent to the set definition, since
one can always take the indicator function of the subsets; in other words, one can
always think in terms of the subsets induced in X by the function class .

Clearly Sa(n) < 2". If Na(x,...,x,) = 2" for some (xi,...,X,) € X" we say that 4
shatters {Xi,...,X,}.

If | 4| is finite, then clearly Sa(n) < |4| for all n, and Sx(n) = | 4] for sufficiently large
n. Therefore, Sa(n) can be considered a refinement of the cardinality notion
applicable to classes of infinite sets.

Some authors call growth function to Su(n). Keeping with Vapnik original
definition we will use:

Definition 4.3

Ga(n) =1n Sa(n) is called the growth function of the concept class A4.

Example 4.3

Let £ be the collection of the left half-lines ]—oo, x], x € ‘R.
Then s,(2) = 3. As a matter of fact, given any set { zj, z2; z1<z, z; € R}, £ only produces

the three intersections in {&J, {zi}, {z1, zo} }, instead of the maximum 4 intersections. As a
matter of fact, it is easy to see £ only shatters 1-point sets and:

S.m=n+1=(;)+(1).

a
Example 4.4
If Iis the class of all intervals in ‘R, then
< nn+1 " " 0
S,(m)=1+> (n—k+1)= ( 5 )+1=(0)+(1 )+(2)
k=1
(Proof in Devroye et al., 1996) i

Example 4.5
Let H= {]-o0, x]; x € R } U {[y, +oo[; ¥ € R } be the collection of half-lines.
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Then Sy(2) = 4 and S#(3) = 6 (see Example 4.1 of SLT-I). % shatters any 2-point set and it
can be shown that:
Ss(n) =2n

Example 4.6

Let @ = H U {[x1,x2]; x1< X2, x1,x2 €R} be the collection of half-lines and closed line
intervals. (In Example 4.3 of SLT-I this collection was induced by a family of parabolic
classifiers.)

Then S#3) = 8. @shatters any 3-point set. (see page 22 of SLT-I) and it can be shown that:

Sen)=n*—n+2

Comment
S#(n) is related to counting the number of bitonic sequences. These are binary sequences
that have at most two transitions (0 — 1 or 1 — 0).

0

Definition 4.4

Let 4 be a concept class with | 4 | > 2. The largest k for which Sa(k) = 2, is denoted VCD
and called Vapnik-Chervonenkis dimension (or simply, VC-dimension) of the class A. If,
for every n, Sa(n) = 2", then by definition VCD4 = o. A class 4 such that VCD; < o is

called a VC class.
]

Example 4.7
Example 4.3: VCD=1. Example 4.5: VCDy = 2. Example 4.6: VCDy= 3.

Note that:
a) In order to prove that / is a VCD lower bound we only need to show that there is at
least one [-sized dataset that can be shattered.
b) In order to prove that u is a VCD upper bound we need to show that all u-sized
datasets cannot be shattered.

4.1.2 Growth Function Properties

How fast grows S4(n)? The interesting thing is that no matter which concept class 4 we
consider it can be shown that Sjs(n) grows only ploynomially with #n, instead of
exponentially.

For two nonnegative integers n, d with n > d consider the function ®(n,d) computing the
number of possible subsets of an n-element set with at most d elements:

)= () .3
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Lemma 4.1

The function @ satisfies
O(n,d)y=dn-1,d)+ dn-1,d-1).
Proof:

Based on (," ) = (ZH )+ (?:11)
Lemma 4.2

The function @ satisfies

®(n,d) =Zd0:()s 2%3(%} .

The first inequality is established by double induction on » and d, as follows:

Cased=1
Then ®(n,d) =n + 1 < 2n for all n > 1. Hence the inequality holds.

Casen=d
Then @(n,d) = 2°. But, by the binomial expansion:

d-1 d-1
d-1 d-1

Now suppose that the inequality is verified for d —1 with (n =d —1):

(d —1)""

®(n—1,d-1)=2""<2
(d -1)!

Combining these two inequalities:

d—-1 @d-1 “@d-n " d

d-1 _1\d-1 d-1 d
2d<( d j 2(d 1) _5 d _2d
This establishes the inductive step for n =d > 1.

Casen>d>1.
From the previous Lemma we have:

®(n,d) < 2(n_1)d +2(n—1)d71
d! (d—1)!

Thus, we have to show that:

N\ _ yd-l d
Ul ) Ul PP L
d! (d-1)! d!
Multiplying both sides by d!/2:

=D +dn-)"<n’ =>@+n-Dn-D)"<n’ =1+

d £(1+
n-—1

1
n-—1

T

4.4
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The last inequality follows from the binomial expansion.
The second inequality is proved using Stirling's approximation.:

d'>\2md d%e™

|
Theorem 4.1 (Vapnik-Chervonenkis, 1971; Sauer-Shelah, 1972)
Suppose that VCD 4= h < . Then, for each n > & and all sequences xi,...,x,, we have
Sa(n) < d(n, h). 4.6
The proof can be found e.g in Sontag (1999).
|

Thus Sa(n) grows polynomially with 7.

Theorem 4.2 (Vapnik, 1974)

Any growth function either satisfies
Gn)y=nln2 ifn<h
or is bounded by:

1

x n

G(n) < ln( ()j < h(l +1n Z] ifn>h, 47
=0

where 4 is the V'C-dimension.

The proof is based on the previous Theorem 4.1. The structure of the growth function is

shown in Figure 4.2.
[ ]

G(n)
! nln2 \/;

- -
Pid

L !

Figure 4.4 For n > h, G(n) is bounded by a logarithmic function with coefficient 4. It cannot be, for example,
G(n) :\/; .The quantity A, separating the two different behaviors of the growth function, is the Vapnik-
Chervonenkis dimension.

Example 4.8

Let X be an arbitrary set, e.g., X = {a, b, ¢, d, e} (the elements could be any points on a d-
dimensional space). Let 4 represent the set of subsets of X, which have at most /4 elements.
For the example of X, we have for h = 3: 4= {9, {a}, {b}, ..., {a, b}, ..., {a, b, c}, ...}.
Finally, assume we had a family of functions defined on 4, Q(x, A), A€ 4, such that:

xe A

1
Q(X’A):{o xeX-A
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Then, max N(x,,...,x,)=2" if n < h. For instance, for the previous example of X and 4,
one can obtain any dichotomy of a subset with 1, 2 or 3 elements.
On the other hand, maxN(z,,...,z,) = Z?:o(? ) , if n > h. For the previous example of X

and 4, one can only obtain the dichotomies that correspond to subsets with 1, 2 or 3
elements, which correspond to the combinations in the formula. Thus, formula 4.6 is a tight
bound.

0

4.1.3 VC-Dimension of Some Classes

1.
veD, veD, A ' hn
S, (n)< < "Dyt = (1+n) P because LA L
A Z():() Zo( b= Nn—i)~ Ah—i)!
Thus:

VCDy finite: S, (n) < (n+1)""
VCDa=0:  San)=2" (Note that 3 (7)=2").

2. Forn>2VCDg:

ven, veo,
S,(n)< Z(?)S( e j <n'® 41

i=0 VCD}I

In particular, for VCD» > 2, we have S, (n) < n" P
3. Boolean Combinations
L. A=410 A = San) <Sau(n)+ Snn)
1. A={A4,U Ay, A1€ A1, Are A} = Sa(n) < Sa(n) Sn(n)
iii. Given Aletq ={4; A4 e a}. Then, S, (n)=S,(n)

v. 4= {A1 N Ay Are A1, Are Ay = Sa(n) < Sa(n)San(n)

4,
If 4= {]-o0,x] x]-0,x2]x ...x ]-0,x4] }, then VCD 4= d.
If 4 is the class of all rectangles in SRd, then V1= 2d.

5.
If 4 is the class of all convex polygons in R?, then VCD 4 = .

6.
VCD = 0 implies that the class has only one function.

Results on Boolean combinations can be found with
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Lemma 4.3

Let #,...,F represent k classes of classifiers and b:{O,l}k — {0,1} a fixed Boolean
function. Consider the following new class of classifiers:

B=b(F,,...F,) = B[, [, ) fi€F, i=1,...k}
Then
VCD, < 2klog, (ek) max /CD, |. 48

,,,,,

Proof:
Assume that S < X is shattered by B, with |S| = n, and consider the restrictions:

Fs © S > 10,1} F=Fg XX F 1S > {0,1}*

Now, the mapping F— @ is onto, since to any k-tuple of functions (f1, ..., fx) corresponds a
Boolean compositionb o (fi, ..., fr). Therefore:

o<t =TT

Let h, =VCD, <o (otherwise there is nothing to prove). By Lemma 4.2,

h;
(2]
h[
|(B| § [ﬁjkh
“\h

kh
< (%j = % < kelogz[%j = n<2dklog, (ek)

This last result follows from the calculus argument: m < glog,(m) = m < 2qlogy(g), when
g >4 and m > 1, which is certainly true in our case.

Thus, with 7 =max,_, , &,

As S is shattered by B, we have

4.1.4 Growth Function of Perceptrons with Linear Thresholds

Theorem 4.3 (Cover, 1965)

d
Let G= {z ay.; a,e ER}

i=1
be the linear space of functions spanned by a set of d fixed functions y;, i =1,...,d: R* -
R. Define ¥(x) = (y1(X), ..., wu(x)) (a point in R?) and assume that every r-element subset
of n points {¥(x)), ..., Y(x,)} is linearly independent (equivalently, the n points are in
general posotion). Then, the n-th shatter coefficient of the class of sets 4= {{x; g(x) > 0};

geGyh is:

Sg(n) = ch(;’*l ) 4.9
i=0
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This result shows that VCDg = d. As a matter of fact, using the previous formula, we have
S(d) =2 and S¢(d + 1) =2.2¢ -2 < 2%,

Corolary 4.1

Let 4 be the class of half-spaces in R?, of the form {x; a x —b > 0}. Then VCD4=d +1
and
d
S, (=23 (1")< 20 -1)" +2
i=0
The proof is based on Theorem 4.3 by choosing y; = x;for 1<i<dand v, , =1
]

Corolary 4.2
The number of linearly separable dichotomies of » points in general position or (regularly

distributed ) in R | is:
d(n-—1
22( ] , n>d+1;

D(n,d) = i=0 1
2" , n<d+1.
]
We may also write:
d
D(n,d)=2> (). 410
i=0

with the convention (Z ) =0 if b > a. As a matter of fact, we then obtain for n <d + 1:

Dindy=2 S ()3 () |=220 =2

1
i=0 i=n

0

>
InD(n,d)) 1

2 4 6 8 10 12 14 16 18 20
Figure 4.5

Other results can be obtained along theselines ('°).

? A set of n points is regularly distributed or in general position in R if no d+1 points lie on a linear variety

of RY . Equivalently, as we did in Theorem 4.4, every r-element subset of the vectors defined by the » points,
r <d, is linearly independent.
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Corolary 4.3

Let # be the class of functions implemented by a simple perceptron with d real inputs and
hard-limiting activation function.We have:

S, (n)=D(n,d).

Therefore, VCDy =d + 1.
|

Corolaries 4.1 and 4.3 didn't take into account the "general position" restriction of
Theorem 4.4. We now show that this restriction is not relevant, since if it is not verified it
can only decrease the number of dichotomies. We will show it for the perceptron.

Consider the set of dichotomies implemented by a perceptron H'in a set D = { xy, ..., X,},
represented as the restriction of #to D:

j{\D ={fires fi}

Each f; represents a dichotomy: f;: D — {0,1}. We don't know the value of k = |#p|.

Now, consider a set of perceptron weights {(w;, wo)} that correspond to each f; in H p, i.e.

L if w;'x; +wy; 20
fj(x.)z .
0 otherwise

The distance of any point x; to the hyperplane represented by (w;, wo) is given by:
=W, "%+l w |

Now, some of these distances can be zero; but let us consider:

I1<i<n, W;'x; +wy; ;tO},

— 1 ' .
oy —mln{‘wj X; + Wy ls

and 6 =min;o;. If we replace wy by w(')j =wy; +6/2, we obtain a new set of
parameters {(wj, w;; )}, corresponding to the same dichotomies (W;'x; + wo; 2 0 = w;'x; +
we; + /2 > 0), with the additional separation property that (w ;'x; +wp;|>6/2> 0 forall i

and j (therefore, all distances are # 0).

If there are points that are not in general position, let us perturb these points in a small ball
around them, by a distance less than:

o0/(2w) with w= max”wju
J

This perturbation will create a new distribution of points D, such that: ‘?{ | D‘ <|#H 5| Now,
the set of n-tuples of points in R? that are not in general position has Lebesgue measure

' The following can also be proved: Let 4 be the class of all closed balls in . Then, VCD 4 < d +2.
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zero; therefore, one will always ﬁrd an n-tuple lying inside the balls that is in general
< D(n,d).

position. Thus, one always has |H

&

h

(%)
£

Figura 4.1

Theorem 4.4 (Baum and Haussler, 1989)
Let C(k) be the NN class with # hidden nodes and thresholds as activation functions. Then:

d+1, \'( s h(d+1) hl
" " ne ne hd+2h+1
S < ; S| — —_— < . 4.11
Hence: Vc(") < (2hd +4h+2)log,(e(hd +2h +1)).

Sharper bounds are obtained with:
Theorem 4.5 (Baum and Haussler, 1989)

Let #be the class of functions computed by a feed-forward linear threshold network with a
total of w weights and thresholds, and & computation units. Then, for n > w we have

S, (n)< (ﬂj : 412
w

and hence VCDy < 2wlogy(2k/In2).
]

In order to find the VC dimension notice that if n > wlog,(enk/w), then 2" > Sy(n) = VCDy
< n. An inequality in the Appendix shows the stated bound.

This formula yields pessimistic upper bounds. Example for d = 2:

h 1 2 3 4 5 6

VCDmax 10 57 92 131 173 217

We know that for #=1,2 the true values are 3 and 6.

Theorem 4.6 (Sakurai, 1993)

Let H be the class of functions computed by a two-layer feed-forward linear threshold
network, fully connected, with a total of w weights and thresholds, # computation units in
the first layer and d > 3 inputs, such that 4 <2%*~% Then

dh hy_w h
VvceD,, > ?logz(ZJ > —logz[zj . 4.13

Note that w=dh +2h + 1. u
The constraint on / can be written as: d > 2(logxh+2).
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Example 4.9
VCD bounds for two layers MLP with d = 10 (setting VCDmin>1)

h 1 2 3 4 5 6
VCDmax 34 156 261 377 502 633
VCDmin 1 1 1 1 2 4

a0
Definition 4.5

Let H be a class of {0,1}-valued functions defined on X, and ¥ a class of real-valued
functions defined on RxX. #is a k-combination of sgn(¥) if there is a boolean function g:
{0,1}* - {0,1} and functions fi,...,f; in F such that for all / in % there is a parameter
vector aeR? satisfying

h(x) = g(sgn(f1(a,x)),...,sgn(f; (a,X))) V xeX

A function fin ¥ is continuous in its parameters (continuous in its p derivatives, C*) if V
xeX f{.,X) is continuous (respectively, C7).

Definition 4.6

A set {fi,...fi} of differentiable functions mapping from R? to R is said to have regular
zero-set intersections if, for all nonempty subsets {ii,...,i;} < {1,...,k}, the Jacobian of
(f},»---».f; ) has rank / at every point a of the solution set

laeR f(a)="-= £, (a)=0}

This definition forbids degenerate intersections of the zero-sets of the functions, i.e., they
must have "true" intersections

Definition 4.7

Let G be a set of real-valued functions defined on R?. We say that G has solution set

components bound B if for any 1 < k < d and any {f},....fsx} < G that has regular zero-set
intersections, we have

CC[ﬁ{a R’y f(a) =0}j33

i=1

where CC denotes the number of connected components of a set.

Example 4.10

Figure 4.5a shows straight lines in %%, as could be obtained by a simple perceptron; i.e., in
this case we have:

fi iR 5N

(x1,x,) = fi(x),x,) =ax; +bx, +c
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and the set {(x;,x2)eR; fi(x1,x2) = 0} is a straight line. Thus, we obtain 1 connected
component for either £ = 1 or k£ = 2. Hence, B = 1. (Notice that the intersection is always
empty for k > d regular zero-set intersections.)

In Figure 4.5b the zero-sets of the functions are parabolas. f; and f; have no regular
intersections. For &=1 we have 1 CC; for £&=2 we have 2 CC. Hence B=2.

f

h
f

Figure 4.6

Theorem 4.7

Suppose that & is a class of real-valued functions defined on R/xX, and % is a k-
combination of sgn(F). If F is closed under addition of constants'!, has solution set
components bound B, and the functions in ¥ are ¢ in their parameters, then

S, (n) < Bzd:(;'k)s B(efl—kjd

for n > d/k.

|
This theorem is useful for deriving results for other types of activation functions (e.g.
sigmoids).

For the perceptron (a 1-combination of sgn(#) with B=1) one obtains:

d+l1

d
S, m <3 (1)=22(7)+ (i)
i=0 i=0
larger than the correct value by (Z;ll )
Theorem 4.8 (Goldberg and Jerrum, 1993)

Suppose that F s a class of real-valued functions defined on R“xX; so that, for all xeX and
f € Fthe function f(a,x) is a polynomial on R of degree no more than /. Suppose that #'is
a k-combination of sgn(¥). Then if n > d/k

S, (n) < 2(

2enkl J ¢

and hence VCDy < 2dlogy(12kl).

"fef = f4+ceF, VceR
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4.1.5 Growth Function of Perceptrons with Sigmoids

Theorem 4.9

Suppose o:'R—R satisfies lim,_,,, o (x) =1 and lim,_, . o (x) =0. Let N be a feed-forward
linear threshold network and N’ a network with the same structure as N but with the
threshold activation functions replaced by o in all non-output neurons. Suppose that S is
any finite set of inputs. Then, any function computable by N on S is also computed by N’

and VCDN” > VCDN.
|

Lemma 4.4

The class F= {x — sgn(sin(ax); x € N, a € R} has VCD = co.

Proof:

Is based on showing that for any d € N and a set of points x; = 2 i=1,...,d, one can
always shatter this set with functions of F.

With this Lemma one can prove:

Theorem 4.10 (Anthony and Bartlett)
Define

o(x)= +exle™ sin(x)

—X

1+e

for ¢ > 0. Then o(x) is analytic (continuous derivatives), and for sufficiently small ¢ > 0,
we have

limo(x)=1; lirp o(x)=0;

X—>0

d*c(x) |<0 x>0
dx*> >0 x<0

Let N be a two-layer network with one real input, two first-layer neurons using o(x), and
one output neuron with threshold function, such that the set of functions of NV is

Wy = {x = sgn(w, + w,o(a,x) + w,0(a,x)); X, w,,w,,a,,a, € R}
Then VCD,, =oo.

0.9 1
0.8
0.7 1
0.6
0.5
0.4
0.3
0.2 1
0.1 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4.7
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Theorem 4.11 (Bartlett, Maiorov and Meir, 1998)

Suppose o:'R—R satisfies lim, . o (x) =1 and lim,_, ,, o (x) = 0 and is differentiable at
some point @, with o'(a)#0. For any £ > 1 and w > 10k — 14, there is a feed-forward
network with / layers and a total of w parameters, where every computation unit but the
output has activation function o, the output being a linear threshold unit, and for which the
set # of functions computed by the network has

-2} 3]

Theorem 4.12 (Karpinsky and Macintyre, 1997)

Let # be the set of functions computed by a feed-forward network with w parameters and k&
computatipn units, in which each computation unit other than the output unit has the
standard sigmoid activation function (the output unit being a linear threshold unit. Then

S, (n) < 202 (18w ) (ﬂ)
w

provided n > w and
VCD,, < (wk)’ +11wklog, (18wk?)

[ ]
Example 4.11
VCD bounds for two layers with =10 and sigmoid
h 1 2 3 4 5 6
VCDmax 1044 15512 43686 98910 195435 350913
VCDmin 5 12 18 24 30 36
a
4.2 Learning Bounds for Infinite Classes of Classifiers
4.2.1 Upper Bounds
Theorem 4.13 (Vapnik and Chervonenkis, 1971)
Suppose C={¢} is a class of classifiers defined on a set X. Then, forn>0and 1 > ¢ >0,
P |R@)~ R, (9|2 £)< 45 2mpe 414
The proof is based on the Glivenko-Cantelli Theorem.
]

Corolary 4.4

Suppose ( has finite VC-dimension 2 = VCD¢> 1 and L is the ERM algorithm. Then L is a
learning algorithm for C and if n > A4/2, we have:
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£,(n,6) = [E[hln(ze—m] + 1n(im . 415
n h o
n,(£,5) = 6—2‘(2;; 1{% ; h{iD . 416
& & )

The proof is based on the previous Theorem and Lemma 3.1. Thus,

P( R(¢:) - inf¢ec R(¢) > 5) < 4SC (Zn)e—ns2 /32

|
Sharper bounds are obtained with the folowing theorem.
Theorem 4.14 (Vapnik and Chervonenkis, 1998)
Suppose C={¢} is a class of classifiers defined on a set X. Then, forn>0and 1 > ¢ >0,
P( sup|R(#) - R, (¢)\ > gj < 4S.(2n)e " 417
¢eC
P[ supw > 5] < 4SC(2n)e‘”g2 4 4.18
< \[R(9)
The proof is based on the Glivenko-Cantelli Theorem.
|

Formula 4.6 establishes a bound of two-sided uniform convergence; formula 4.7
establishes a bound of relative uniform convergence.

Corolary 4.5

Using 4.6 and Lemma 4.2 ( P(R(4]) —inf,_. R(¢) > &)= Plsup,,..|R, (#) - r(#)| > £/2)) we

have
P R - inf Ry > ¢ ) < 45 Gmpe 271 o
and
£(n,8) = 2(1/n + (1 + In@2n /H)) —In(5 / %))/ n). 420
|

Formula 4.7 can be rewritten as

R($) - R, ($) G@2n) &
P{ilelg m > g} < 4exp{[ ; 2 Jn}, 4.21

where G(2n) < h(1+1In(2n/h) is the growth function for 2n and VC-dimension 4. (The
slightly tighter combinatorial bound leads to computational problems for large n.)
Note that 4.7 holds for any ¢ € ¢ therefore it also holds for ¢, , the ERM function.

n?o
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Let ¢, =arginf, . R(¢). The additive Chernoff bound allows us to state that with
probability at least 1-o the following inequality holds true:

—Inod

R(g,) = inf R(§) = R, (40) ==
eC n

Using this result together with formula 4.9, one can conclude that with probability at least
1-26 the following inequality holds true:

R(¢:)—R(¢0)S1/ln5+i(1+\/1+ﬂe”—g¢b]. 4.23
2n 2 &

h(ln 2h” + 1) ~In(5/4)

with ¢ =4

n

The result 4.11 is obtained by solving 4.9 in terms of R (4’) and using the bound on

G(2n). In order to obtain bounds in terms of R(¢#, ) we use:

Theorem 4.15 (¥)

Let Cbe a class of classifiers with VC dimension 4. Then for any P, n and ¢ the following
holds:
PR@,) = R(9) 2 &(n,5,1))< 5

Sn.5.h) = [- 1n§i/2) 2 \/R(¢: )(A(1+ 1n(2:/h)) ~In(5/8)) . 124

Equivalently, the ERM algorithm is a learning algorithm with estimation error &n,d,h).

with

Proof:
From 4.9 we have for the ERM classifier ¢, and any given &:

P{sup(R(c»: )= R, ()2 e} <5

geC
AR(4:
by choosing: £* = M(G(%) ~In(5/4)).
n

Using 4.11 and expressing the probability in terms of 6 we obtain the above result.

Example 4.12
VCD =3, 6=10.05

£ 0.01 0.02 0.03 0.04 0.05
4.15 30030392 6842177 2867969 1544189 954006
423 (R=0.1) 312722 72344 30613 16599 10312
4.23 (R=0.25) 676236 155819 65772 35596 22082
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4.2.2 Lower Bounds

Theorem 4.16 (Devroye and Lugosi, 1995)

Let C be a class of classifiers with VC-dimension V' > 2 and such that
R=inf, . R(§) € ]0,1/ 4]. Then, for any classifier ¢, based upon D,, and any ¢ < R

sup P(R(¢,)—R>¢) > ie-“"‘*”ﬂ 4.25
zZ

The theorem applies to any ¢, (not only the ERM-based ¢,).

From 4.16 we obtain the bound:

Rln(1/45)

457 4.26
&

n,(£,6)>

Theorem 4.17 (Simon, 1996)

Suppose (C is a class of classifiers with VC-dimension 4. For any learning algorithm L the

sample complexity n;(&, 0) satisfies
h

n(g,6)>——
(&:9) 320>

for all 0 < g, 6 < 1/64. Furthermore, if C contains at least two functions, we have

nL(g,é')ZZr_len[ ! ]J 427
¢ 85(1-25)

forall0 <e<1and 0 <6< 1/64.

Example 4.13
VCD =3, 6=10.05

£ 0.01 0.02 0.0.3 0.04 0.05
4.26 10214 2552 1134 636 406
425 (R=0.1) 402 101 45 25 16
4.25 (R=0.25) 1006 251 112 63 40
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5 Restricted Learning Model

5.1 Basic Definitions

In the restricted learning model we have the values of ¢ defined in terms of the values of x;
i.e., there is a "correct" classification of any x € X represented by some target function
#(x). Therefore, there is only one probability distribution (A4) defined on X (instead of Z as
before) and R =0.

Definitions:
Concept: C={xeX;tx)=1}
Concept class: nonempty {C} < 2%

Training sample corresponding to t:

D, ={(X,t(X)))y..0, (X, 1(X, D} € Z".
Hypothesis (classifier): h:X->Y
Class of hypotheses:

H={h: X oY) teH

Error of a hypothesis, 4:
R(h) = R(h,t) = P, (h(x) # t(x)) = P, (h(X) At(X))

Definition 5.1
Given # = {h: X — Y} a learning algorithm L for #{ is a function

Lo} ot

n=1

such that given g, o € 0, [, there is an integer no(¢, o) such that for n > ny(¢, ) and every
training sample D, (as above), then &, = L(D,) satisfies

P(R(h,)<g)>1-65

for any probability distribution  on X.
|

The restricted model is a special case of the general model, since given ¢ € # and a
distibution x on X, there is a corresponding distribution P on Z. As a matter of fact, for any
measurable subset 4 < R*:

P((x, (x)); x €4;) = 1(A)
P((x,y); x €d,y # (x)) =0

Furthermore, R, (h) =R, (h,t). Thus the restricted model corresponds to considering only

a subset of all distributions on Z.
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Theorem 5.1 (Vapnik-Chervonenkis, 1974)

Assume |C| <o and rilin R(¢) =0. Then, for every £>0,
eC

1+ ln|C|

P(R(#]) > £)<|cle™ and E[R(g))]< — 5.1

In this case the ERM principle converges to rqrjﬁn R(¢) =0 with n of O(1/¢, 1/9).
eC

Definition 5.2

A learning algorithm for the restricted model is said to be PAC (Probably Approximately
Correct) if it satisfies the following conditions: ¢, d € ]0, %2 ]; the learning algorithm time
(thus no(g, 0)) is polynomial in d, 1/, 1/6 and size(c), where size(c) is the number of

parameters needed to represent a concept.
|

5.2 Consistent Learning

A consistent learning algorithm for the restricted model is one that outputs a hypothesis
that perfectly fits the training data:

in € Dn’ h(xi) = t(xi)
As far as we use consistent learning, we can relax the condition |C| < o in Theorem 3.1, as
shown in
Theorem 5.2

Assume a consistent learning algorithm L that outputs 42 = L(D,). Then, the sample
complexity is:

m, (&,0) ——ln( J 5.2
o
|
6
10 ‘ ‘ ‘ 10° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
—— Hoefding —— Hoefding
—— Bernstein —— Bemstein
\ 10°L
10° \ .
< N, < 10°
~=
~—=
10 T
—
10°L ™~
-
—
_
_
_—
103 L L L 1 1 1 1 L L 102 L L L L L L 1 1 1
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
a eps eps

Figure 5.1. Bounds for d =2, 6= 0.05, k= 8 in logarithmic scale: a) R(¢) = 0.4; b) R(¢#) = 0.
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5.3 Learning Bounds

Theorem 5.3 (Blumer et al., 1989)

Let C be a class of classifiers. Suppose that infy . R(#) = 0 (i.e., the Bayes classifier is in
0). Let ¢ denote the classifier that minimizes the empirical error, with R'=0. Then:

P(R(#)) > £)< 25.(2m)27""2, 53

Theorem 5.4 (Blumer et al., 1989)
Let Cbe a class of concepts and H a hypothesis space. Then:

1.  Cis PAC-learnable iff V'CD(is finite.
ii.  If VCD(is finite, then:

(a) For 0 < £< 1 and sample size at least

{4 (2) 8VCD, (13}}
n, = max| —log,| = |, log,| — ||, 5.4
& ) & g

any consistent algorithm is of PAC learning for (.

(b) For 0 < £< ', and sample size less than

n = max[l _8‘9 h{é} DvC,(1-2(s(1-5)+ 5))} , 55

no learning algorithm, for any hypothesis space H, is of PAC learning for C.

A sharper upper bound is obtained with:
Theorem 5.5 (Shawe-Taylor et al., 1993)

P(R(4])> £)<2S. ()2

h(1+ In(n> / 1))~ In(5/2)

Thus: g(n,0) = 5.6
nln?2
where /£ is the VC-dimension.
]
Example 5.1
VCD =3, 6=0.05
& 0.05 0.1 0.15 0.2 0.25
54 3851 1685 1030 723 547
5.7 1346 604 375 267 204
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Theorem 5.6 (Devroye e Lugosi, 1995)
Let C be a class of classifiers with VC-dimension V' > 2. Suppose that infs ¢ R(#) = 0 (i.e.,
the Bayes classifier is in €). Let ¢, denote the classifier that minimizes the empirical error,

with R'= 0. Then for any classifier based on D,, with n > ¥ — 1 and for any &< %

1 (2nee)' ™"
sup P(R, 2 ¢) 2 ( J g telim4e) 5.7
(x,7)eN eNaV \V —1
Furthermore, if 15 <7 and n < (V- 1)/(12¢)
sup P(R, >2¢)2 L
(x.y)eN 10
|
Example 5.2
VCD =3, 6=10.05
£ 0.01 0.02 0.0.3 0.04 0.05
5.5 297 147 97 72 57
0

6 Appendix
6.1 The Glivenko-Cantelli Theorem

Let zi, ..., z, be 1.1.d. real-valued r.v. with distribution function F(z) = P(z; < z). Denote the
empirical distribution function by

F (2)= lZJZ -
na
Then
P(sup|F(z) ~F,(z)|> g) <8(n+1)e™®

zeR

and, in particular, by the Borel-Cantelli lemma,
lim sup|F (z2)-F, (z)| =0 with probability one.

% ZeR

This theorem states a.s. convergence of the empirical distribution to the true one and is
sometimes referred to as the fundamental theorem of mathematical statistics.

6.2 Useful Formulas

6.2.1 Markov's inequality

If ar.v. xis almost surely nonnegative, then
E
P()(Za)éM Va>0
a

To see this, notice that E[x|> E[x | x > a]P(x > a) > aP(x > a)
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6.2.2 Logarithms

2lnx <x
3 5 2n+l
lnxzzx 1+(x 1)3+(x 1)5+...+ (x=1) —+.. x>0
x+1 3(x+1) 5(x+1) Cn+1D(x+1D)™""
_ _ 2 _ 3 _ n
lnxz)C 1+(x ? +(x ? +...+u+.. x>l
X 2x 3x nx" 2
_ 2
xlanx—l—i—M x>l
2x 2
—1?2 _ _1\2 N1\3
xlnxSx—l—i—M x>1 (xlnx=x'1+(x D”_ -1 o)

2! 3!
Suppose g >4, m > 1. Then

m 2> 2q logx(q) = m > q loga(m)

Equivalently,
m < gloga(m) = m < 2qlogx(q)

Forany a, x>0
Inx<ax—Ina—1
with equality only if ax = 1.

6.2.3 Binomial Formulas

P
Newton binomial formula: (1+x)” = Z (.” )x"

i
i=0

() Cporaue(r)=(r")+ ("))

Zhol()< 2[%} < [%jh V> h

i(?)ﬁnhﬂ Vh,Vn>2h; Z(f’)Sn" Vh>2,Yn>2h
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6.2.4 Exponentials

l+x<e' VxeR

(1+lj <e ;(l—l} <e” Vx>0
X X

Euler's inequality:

(1+EJ <e’  Vx>0,acR.a#0
X

6.2.5 Stirling Formula

P 1
n!: nne—n 2727’1 (1+gn) com gn :L++—9”2
12n  288n~ no=

nne—n /2717’1 el/(12n+l) < n!< nne—n [27m el/(lZn)
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