
 

Neural Network Interest Group

 
 

 
 

 
 
 
 
 
 
 
 
 

Título/Title: 
Learning Bounds 
 
Autor(es)/Author(s): 
J. P. Marques de Sá 
 
 
Relatório Técnico/Technical Report No. 1   /2004 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal 
 



Book Survey: Devoyre L, Gyorfi L, Lugosi G (1996) A Probabilistic Theory of PR ii 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Título/Title: 
Learning Bounds 
Autor(es)/Author(s): 

J.P. Marques de Sá 

Relatório Técnico/Technical Report No.    1   /2004 

Publicado por/Published by: NNIG. http://paginas.fe.up.pt/~nnig/ 

Abril 2004 

 
© INEB: FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

 
 
 
 
 
 
 
 



Book Survey: Devoyre L, Gyorfi L, Lugosi G (1996) A Probabilistic Theory of PR iii 

 
 
 

Learning Bounds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

J.P. Marques de Sá, FEUP/DEEC, 2004 



Learning Bounds 1 

 
Table of Contents 

 
1 General Learning Model................................................................................................ 3 

1.1 Basic Definitions ................................................................................................... 3 
1.2 Bayes error............................................................................................................. 4 
1.3 Learning Algorithm ............................................................................................... 4 

2 Error Estimation ............................................................................................................ 6 
2.1 Deviations of Empirical Errors from True Errors ................................................. 6 
2.2 Deviations of ERM Errors from Optimal Errors ................................................. 10 

3 ERM Learning with Finite Classes.............................................................................. 13 
4 Vapnik-Chervonenkis Theory ..................................................................................... 15 

4.1 Growth Function.................................................................................................. 17 
4.1.1 Definitions ................................................................................................... 17 
4.1.2 Growth Function Properties ........................................................................ 19 
4.1.3 VC-Dimension of Some Classes ................................................................. 22 
4.1.4 Growth Function of Perceptrons with Linear Thresholds ........................... 23 
4.1.5 Growth Function of Perceptrons with Sigmoids ......................................... 29 

4.2 Learning Bounds for Infinite Classes of Classifiers............................................ 30 
4.2.1 Upper Bounds .............................................................................................. 30 
4.2.2 Lower Bounds ............................................................................................. 33 

5 Restricted Learning Model .......................................................................................... 34 
5.1 Basic Definitions ................................................................................................. 34 
5.2 Consistent Learning............................................................................................. 35 
5.3 Learning Bounds ................................................................................................. 36 

6 Appendix ..................................................................................................................... 37 
6.1 The Glivenko-Cantelli Theorem.......................................................................... 37 
6.2 Useful Formulas .................................................................................................. 37 

6.2.1 Markov's inequality ..................................................................................... 37 
6.2.2 Logarithms................................................................................................... 38 
6.2.3 Binomial Formulas ...................................................................................... 38 
6.2.4 Exponentials ................................................................................................ 39 
6.2.5 Stirling Formula........................................................................................... 39 

References ........................................................................................................................... 39 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Learning Bounds 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Learning Bounds 3 

1 General Learning Model 

1.1 Basic Definitions 

Object (instance or input) set: dX ℜ⊆  X = {x}; input (feature) vector x. 
 

Target set:   T = {0,1} (or {−1,1}; a two-class problem) 
 

Problem space: Z = X × T. There is a fixed but unknown probability measure 
P defined on Z, for the r.v. pair (x,t). Note that we consider 
that for any given x ∈ X, both (x,0) and (x,1) may have a 
non-null probability (so, neither 0 nor 1 is the "correct" 
classification). 

 

Training (design) sample: { } n
nnn ZttD ∈= ),(,),,( 11 xx K  randomly drawn, with each 

zi = (xi,ti) pair – labelled example - i.i.d. ( n
n PD ~ ). 

 

Decision function (or classifier): TX →:φ  
 
Class of classifiers (or machine):   

{ }TX →= :φC       (NN: { }WwTXwW ∈→= ;:φC ; W is 
the weight space) 

Note that even if there is a correct "classification" function, f, 
i.e., with P({(x, f(x)); x ∈ X}) = 1 (thus with zero probability 
of error), it may happen that f ∉ C . 

 

Classifier designed on Dn: φn 
 

Risk (or error) of a classifier, φ: 
    ( ) ( )tZtPtPR ≠∈≡≠= )(;),()()( xxx φφφ  
 

Error of φn:   ( )tZtPR nn ≠∈= )(;),()( xx φφ  
Note that R(φn) is a [0, 1]-valued r.v., dependent on Dn. 

 

Empirical error1 of φ (in Dn): 

{ } { }niiii

n

i
iDttn Dtti

n
I

n
R

niiii
∈≠≡= ∑

=
∈≠ ),(,)(:1)(1)(ˆ

1
),;()( xxxxx φφ φ

Note that )(ˆ φnR  is a [0, 1]-valued r.v., dependent on Dn. IA 
is the indicator of set A. 
 

Optimal error2 of  the class C : )(infopt φ
φ

RR
C∈

=  (this is a constant) 

 
 
 
 
                                                 
1 Also called sample error, observed error or error-count estimate. 
2 Also called approximation error. We use inf and not min because {R(φ)} may be infinite. 
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We may also express the risk as an expectation of a loss function: 

∫=
Z

zdFtLR )())(,()( xφφ , 

where the loss function is: 





≠
=

=
)(1
)(0

))(,(
ii

ii
ii t

t
tL

x
x

x
φ
φ

φ , 

Whenever the data distribution is continuous distribution we can also write: 

∫∑
=

=
X ii

i
i dtftLPR xxx ),())(,()(

1

0
φφ  

where f(x,ti) is the pdf for class ti and Pi are the prior probabilities. 

1.2 Bayes error 

Let us assume that the probability measure P for the the r.v. pair (x,t) taking value in Z 
corresponds to: 

• The distribution of x:  µ(A) = P(x∈A; A ⊆ Xd);    
 

• The "a posteriori" probability of class 1:      η(x) = P(t = 1 | x = x) = Ε[t | x = x]   
 
We then define the Bayes classifier: 



 >

=
otherwise0

2/1)(if1
)(* x

x
η

φ , 

which can be proved to be optimal, i.e.: 

)(]))(1)(()()([)( }2/1)({}2/1)({
** φηηφ ηη RIIRR ≤−+Ε== >≤ xxxx xx  for any TX →:φ  

Hence: )(inf* φ
φ

RR
C

, C
∈

≤∀ . 

1.3 Learning Algorithm 

Definition 1.1 
Given { }YX →= :φC  a learning algorithm L for C is a function  

C→
∞

=
U

1

:
n

nZL  

from the set of all training sets to C , such that given ε, δ ∈ ]0, 1[ (3), there is an integer 
n0(ε, δ) – sufficient sample size - such that for n ≥ n0(ε, δ) and every training sample Dn (as 
above), then φn = L(Dn) satisfies 

δφεφ
φ

−≥





 +<

∈
1)(inf)( RRP n

n
C

 

 
for any probability distribution P on Z (therefore, Pn on Zn). 
C is learnable if there is a learning algorithm for C. 
  
                                                 
3 1−ε and 1−δ  are known as accuracy and confidence, respectively. In practice ε, δ ∈ ]0,0.5] 
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Equivalent formulations: 
 

1 ∃ n0(ε, δ) such that for n ≥ n0(ε, δ), δεφφ
φ

<





 ≥−

∈
)(inf)( RRP n

n
C

  (see Figure 1.1) 

2 ∀ ε ∈]0,1[, 0)(inf)(
∞→∈

→





 ≥−

nn
n RRP εφφ

φ C
 (convergence in probability) 

 

3 
0),(with1),()(inf)(

,,,thatsuch),(

00

0

∞→∈
→−≥






 <−

∀∃

n
n

n

n

nnRRP

DPnn

δεδδεφφ

δδε

φ C

 

 ),(0 δε n  is the estimation error bound. 
 

4 εδφφ
φ

<



 −Ε

∈
)(inf)( RR n

C
 (or [ ] εδφφ

φ
+<Ε

∈
)(inf)( RR n

C
) 

  
 with 

nZ
Ε≡Ε . 

 As a matter of fact, by Markov's inequality,  
 

δ
ε

εδεφφεδφφ
φφ

=<





 ≥−⇒<



 −Ε

∈∈
)(inf)()(inf)( RRPRR n

n
n

CC
 

 
 Conversely, assuming that 

2/2/)(inf)( ααφφ
φ

<





 ≥−

∈
RRP n

n
C

 

 since 1)(inf)( ≤−
∈

φφ
φ

RR n
C

, we have 

 

ααφφαφφαφφ
φφφ

<





 ≥−+






 <−<



 −Ε

∈∈∈ 2
)(inf)(

2
)(inf)(

2
)(inf)( RRPRRPRR n

n
n

n
n

CCC
   (4) 

 
Thus, in terms of convergence of the mean deviations we have a sample complexity 

)2/,2/()(' 00 ααα nn = . 
 

From now on we will simplify the notation using P instead of  Pn. 
 
Definition 1.2 

Sample complexity of L: 
{ }

),(min),( 0
0

δεδε nn
n

L =  

Estimation error of L:  
{ }

),(min),( 0
0

δεδε nn
n

L =  

The sample complexity sets a lower bound on the sample size needed by L for learning C. 
  
                                                 
4 Let 1)(inf)( ≤−= ∈ φφ φ RRd nn C

. Then, note that [ ] ∫∫∫ +<+=Ε
1

2/
1

2/
2/

0
)(2/)()(

αα
α α nnnnnn ddPddPdddPdd  
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Ropt

R(φn)

nn0(ε,δ)

+ε

For everyDn and from 
here on, only at most
δ of the curves
lie here

 
Figure 1.1. Error curves for a class C. 

Definition 1.3 

Inherent complexity needed by any learning algorithm: 
 

{ }
),(min),( δεδε L

L
nn =C  

  

2 Error Estimation 

2.1 Deviations of Empirical Errors from True Errors 

We now consider  the error-count estimate or empirical error, instead of the "true" error 
R(φ): 

                                                              )(1)(ˆ
1

}),;()({ i

n

i
Dttn niiii

I
n

R xxx∑
=

∈≠= φφ  2.1 

Notes: 
1. The distribution of the r.v. k = )(ˆ φnRn  (obtaining k errors in Dn) is binomial with 

parameters n and R(φ) 5. 
2. Formula 2.1 can be written as ∑ == n

i inR 1)(ˆ xφ , where the xi are n i.i.d. Bernoulli 
r.v. (see Figure 2.1). 

R(φ)

0/n 1/n

1-R(φ)

 
Figure 2.1 

3. )(ˆ φnR  is an unbiased estimate of the true error: )(])(ˆ[ φφ RRn =Ε  (convergence of 
averages to the true mean).  

 

                                                 
5 )/))(1)((),(()(ˆ)));(1)((),(( nRRRNRRRnRN n φφφφφφφ −≅−≅k  
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How does )(ˆ φnR  converges with n? 

Theorem 2.1 (Hoefding's Inequality) 

Let x1, …,xn be independent and bounded r.v. such that each xi falls in the [ai, bi] interval 
with probability one. Consider the sum ∑ =

=
n

i inS
1
x . Then,for any ε > 0: 

 

[ ]( )
2

1
2 )(/2 ∑≤≥Ε− =

−−
n

i ii ab
nn eSSP εε   and   [ ]( )

2
1

2 )(/2 ∑≤−≤Ε− =
−−

n

i ii ab
nn eSSP εε  

 

                                       (thus, [ ]( ) 2
1

2 )(/22 ∑≤≥Ε− = −− n
i ii ab

nn eSSP εε )  

Corolary 2.1 

When the xi take value in [−c, c] and have zero mean, Hoefding's inequality can be written 
as: 

( ) )2/( 22

2/ cn
n enSP εε −≤≥  

Proof: 
Since Ε[Sn] = 0, we get for the first Hoefding's inequality: 
 

( )
2

1
2 )(/2 ∑≤≥ =

−−
n

i ii ab
n eSP εε  

We now consider: ∑
=

=
n

i
in nnS

1
// x . But xi / n ∈ [−c/n, c/n]; therefore: 

( ) ( )( )22
2

2 2/exp2/2exp/ cn
n
cnnSP n εεε −=































−≤≥  

Using the second inequality we obtain the result above. 
  
We now proceed to bound ( )εφφ >− )()(ˆ RRP n . 

Theorem 2.2 

For any ε > 0, n and P, 

                                                              ( ) 222)()(ˆ εεφφ n
n eRRP −≤>−  2.2 

Proof: 
As previously seen, )(ˆ φnR is the sum of n independent {0/n, 1/n}-valued random.variables. 
Thus, we may apply Hoefding's inequality obtaining the above result. (Notice that 

( ) nnnabn
i ii /1/1)( 22

1 ==∑ −= ) .  
 

Comments: 
• Formula 2.2 can also be obtained from additive Chernoff bounds, applicable to 

Bernoulli variables. As a matter of fact, Hoefding's formula is a kind of 
generalization of Chernoff bounds. 

• From formula 2.2 we have: 

                                                 





=≥⇒≥ −

δε
δεδ ε 2ln

2
1),(2 20

2 2
nne n , 2.3 
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which shows an )/1,/1( 2 δεO  behavior of n0(ε,δ). These bounds are independent of 
the data distribution and the class C. 

• As illustrated in Figure 2.2, for the same δ we get higher bounds for n when the 
accuracy increases (which makes sense).  

• The variance of )()(ˆ φφ RRn −  can be computed taking into account that  

n )(ˆ φnR has a binomial distribution. Thus: 

nn
RRRRn 4

1))(1)(()()(ˆ 2
≤

−
=





 −Ε

φφφφ  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
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n

δ

 
Figure 2.2. Hoefding-based bound. For the same δ larger values of n are required for smaller ε. The usual     
δ  = 0.05 is marked. 

 
We may write the )()(ˆ φφ RRn −  deviations as: 

∑∑∑
==

≠
=

≠ =−=−=−
n

i
i

n

i
itx

n

i
itn n

RI
n

RI
n

RR
iiii

11
})({

1
})({

1))()((1)()(1)()(ˆ xφφφφ φφ xxx  

The xi random variables are now Bernoulli {−R(φ), 1−R(φ)}-valued r.v. with zero mean 
and variance R(φ)(1−R(φ)) (see Figure 2.3). 
 

-R(φ)

1-R(φ)
R(φ)

1-R(φ) 
Figure 2.3 

Note that: 
• 0][ =Ε ix  

• ))(1)((][][ φφ RRVar −==Ε i
2
i xx  

• ix , | ix | ≤ 1 − R(φ) (assuming R(φ) ≤ ½) 

Using Corolary 2.1 (denoting ∑ =
=

n

i inS
1
x ) we have: 

                       ( ) ( ) ( ))))(1(2/(exp2/)()(ˆ 22 φεεεφφ RnnSPRRP nn −−≤≥=≥− . 2.4 
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which has the advantage of expressing the bound in terms of R(φ). (However, it does not 
outperform the Hoefding's bound.) 
There are several formulas for bounding the sum of independent r.v., namely in the form of 
exponential inequalities.Here is one of them: 
 

Theorem 2.3 (Bernstein's inequality) 

Let x1, …,xn be independent r.v.. with |xi | ≤ c, zero mean and such that ][ 22
ixΕ=σ . 

Then, for any ε > 0 

                                







+

−≤





 ≥∑ = 3/22

exp21
2

2

1 εσ
εε

c
n

n
P n

i ix    2.5 

  
When applying this formula as in 2.4, we take into account that: 
 

))(1)(();(1 2 φφσφ RRRc −=−=  
Thus: 

( ) ( ) 








−+−
−≤≥=≥−

3/))(1(2))(1)((2
exp2/)()(ˆ

2

εφφφ
εεεφφ

RRR
nnSPRRP nn  

Example 2.1 

Figure 2.4 shows how formulas 2.3 and 2.5 behave for several values of ε and R(φ). We 
see that the increase of ε, keeping R(φ) constant, leads to a drastic decrease of  n for the 
same P; the increase of R(φ), keeping ε constant, leads to the decrease of  n for the same P, 
but the difference between the bounds becomes smaller. 
Let us consider a classifier φ with R(φ) = 0.05. We want to determine the number of cases 
for which the probability of an estimate )(ˆ φnR  deviating from R(φ)  more than ε = 0.02 is 
less than 5%. We see that this occurs for n > 1000 cases (Bernstein). 
  
Corolary 2.2 (*) 

The number of cases for which the probability is not greater than δ of an empirical estimate 
)(ˆ φnR  deviating from R(φ)  more than ±ε  is bounded as: 

                                  





−+−

=≥
δε

εφφφδε 2ln3/))(1(2))(1)((2),( 20
RRRnn .  2.6 

  
Note: 
The bounds ( )εφφ >− )()(ˆ RRP n  apply to any φ ∈ C . Thus, they also apply to any 

classifier of C designed with Dn, i.e. to ( )εφφ >− )()(ˆ
nnn RRP . 
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Figure 2.4. Formulas 2.3 and 2.5 for: a) R(φ) = 0.05; ε = 0.02; b) R(φ) = 0.05; ε = 0.05; c) R(φ) = 0.3;            
ε = 0.02; d) R(φ) = 0.3; ε = 0.05. Note that Hoefding-based formula is independent of R(φ). 
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Figure 2.5. Values of bounding n for δ = 0.05 and several values of R(φ) with: a) ε = 0.05 b) ε = 0.01. 

 

2.2 Deviations of ERM Errors from Optimal Errors 

We now assume an algorithm L that picks up the classifier minimizing the empirical error 
(ERM principle): 

)(*
nn DL=φ     such that   )(ˆmin)(ˆ * φφ

φ nnn RR
C∈

=  

Using the preceding results we will see in later sections that it is possible to bound: 

( )εφφφ >−∈ )()(ˆsup RRP nC   

The so-called probability of an uniform two-sided distance6. 

                                                 
6 Given two probability distributions F and G, their uniform distance is )()(sup),( xGxFGF x −=ρ . 
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We then proceed to determine if this uniform convergence guarantees that the ERM 
algorithm is a learning algorithm. Before we do that we present an important Lemma. 

 
Lemma 2.1 (Vapnik and Chervonenkis, 1974)  

)()(ˆsup2)(inf)( * φφφφ
φφ

RRRR nn −≤−
∈∈ CC

          

)()(ˆsup)()(ˆ ** φφφφ
φ

RRRR nnnn −≤−
∈C

 

Proof: 
The second inequality is trivial (see Figure 2.6). 
For the first inequality we have: 
 

)()(ˆsup2

)()(ˆsup)(ˆ)(

)(inf)(ˆ)(ˆ)()(inf)(

**

****

φφ

φφφφ

φφφφφφ

φ

φ

φφ

RR

RRRR

RRRRRR

n

nnnn

nnnnnn

−≤

−+−≤

−+−=−

∈

∈

∈∈

C

C

CC

 

  

)( *
nR φ

)(ˆ *
nnR φ

)(φR
)(ˆ φnR

)(inf φ
φ

R
C∈

True errors Empirical errors

 
Figure 2.6 

 
This Lemma shows that an upper bound of )()(ˆsup φφφ RRnC −∈  also bounds: 

 
• The suboptimality of the selected classifier *

nφ , i.e, )(inf)( * φφ
φ

RR n C∈
− . 

• The error deviation, )()(ˆ **
nnn RR φφ − , due to using the error count estimate. 

 
In what concerns the Bayes error, even if we use a Bayes-consistent rule7 there isn't any 
estimation method assuring the convergence of nR̂ (φ) − R (φ*) towards zero rapidly for all 
distributions, as shows the following: 
Theorem 2.4 

For any n, any estimate nR̂ of the Bayes probability of error R*, and for every ε > 0, there is 
a distribution of (x,t), such that 

                                                 
7 The Bayes consistency of a classifier implies either [ ] )()( *φφ RR

n
n

∞→
→Ε  (weak consistency) or 

0))()(( *

∞→
→≥−

n
n RRP εφφ  (strong consistency). 
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[ ] ε−≥−Ε
4
1ˆ *RRn . 

  
We now determine how to bound ( )0

* )(inf)( εφφ φ <− ∈ RRP n C  using a bound on 

( )εφφφ >−∈ )()(ˆsup **
nnn RRP C . 

 
Theorem 2.5 

Suppose C is a finite class. Let C→
∞

=U 1
:

n
nZL  be such that, for any n and Dn, L picks up 

the classifier )(*
nn DL=φ with )(ˆmin)(ˆ * φφ

φ nnn RR
C∈

= . Then L is a learning algorithm for C, 

We first note that ( ) δεφφφ ≤>−∈ )()(ˆsup **
nnn RRP C  means that with probability at least        

1 – δ, the following holds: 
εφφεφ +≤≤− )()(ˆ)( ***

nnnn RRR  
Equivalently: 

εφφεφ +≤≤− )(ˆ)()(ˆ ***
nnnnn RRR  

 
Therefore, with probability at least 1 – δ: 

 

εφφ +≤ )(ˆ)( **
nnn RR  

But, by the ERM definition of L: 
εφεφφ

φ
+=+≤

∈
)(ˆinf)(ˆ)( **

nnnn RRR
C

 

 

Now, )(ˆinf φφ nRC∈  is surely less than or equal than the empirical estimate of any other 

classifier of C, namely the optimum φ* (note that *
nφ is an optimum for sets of size n). Thus, 

with probability at least 1 – δ: 
 

εεεφεφεφφ
φ

2))(()(ˆ)(ˆinf)( opt
*** +=++≤+≤+≤

∈
RRRRR nnn

C
 

 

Hence, we can bound ( )0
* )(inf)( εφφ φ <− ∈ RRP n C  with probability at least 1 – δ by 

choosing ε0 = 2ε. 
  

R(φn )*

ε
Rn(φn )*^

R(φ*)
Rn(φ  )*^

ε

2ε  
Figure 2.7.  The 2ε-configuration of ( )0

* )(inf)( εφφ φ <− ∈ RRP n C . 

 
 
 



Learning Bounds 13 

3 ERM Learning with Finite Classes 

We start by presenting an uniform two-sided convergence theorem. 
 

Theorem 3.1 

Suppose C is a finite class. Then, for any P, ε and n: 

                               
222)()(ˆmax ε

φ
εφφ n

n eRRP −

∈
≤





 >− C

C
 (using Hoefding inequality) 3.1 

          







+

−≤




 >−

∈ 3/22
exp2)()(ˆmax 2

2

εσ
εεφφ

φ c
nRRP n C

C
 (using Bernstein inequality) 3.2 

Proof: 
The proof is based on the union bound result. 
Assume C has N functions φi and consider the sets: 

{ }εφφ ≥−∈= )()(ˆ: iin
d

i RRZzA      with    pAP i ≤)(  

We have: 

NpAPAPRRP
N

i
i

N

i
in ∑

==
∈

≤≤







=





 >−

11

)()()(ˆmax Uεφφ
φ C

 

 
The probability p is given either by Hoefding or Bernstein inequality. 
  

x

ε

|Rn(φi)-R(φi)|
^

φ1 φ2

 
Figure 3.1. A1 and A2 are the black and grey intervals, respectively. The maximum deviation corresponds to 
the union of these intervals. 

 

Corolary 3.1 

The ERM algorithm is a learning algorithm with estimation error bound 

                                                               

2/1
2

ln2),( 

















≥

δ
δε

C
n

nL , 3.3 

and sample complexity bound 

                                                                







≥

δε
δε

C
nL

2
ln2),( 2 .  3.4 

The proof is the direct application of Theorem 2.5 and Theorem 3.1. 
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Corolary 3.2 (*) 

Using Bernstein inequality we obtain the following sample complexity bound from 3.2 by 
using ε/2 instead of ε: 

                                






−+−
≥

δε
εφφφδε

CRRRn nnn
L

2
ln3/))(1())(1)((24),( 2

***
 .  3.5 

  
Application to Perceptrons 
 
We consider perceptrons with weight vectors (including bias) represented with b bits. 
Thus, each weight can have 2b values and |C | ≤ 2b(d+1). 
Theorem 3.2 

Let C be the class of perceptrons with d + 1 weights represented with b bits. Let 
C→

∞

=U 1
:

n
nZL  be such that for any n and Dn L picks up the perceptron )(*

nn DL=φ such 

that   )(ˆmin)(ˆ * φφ
φ nnn RR

C∈
= . 

Then L is a learning algorithm for C, with sample complexity 

                                                         













++≥

δε
δε 2ln2ln)1(ln2),( 2 dbnL .  3.6 

Proof: 
Direct application of Corolary 3.2. 
  
 
One can obtain a more general result for the class of perceptrons with d + 1 integer weights 
represented in [−k, k]: 

                                                              






 +
≥

+

δε
δε

1

2
)12(2ln2),(

d

L
kn .      3.7 

Result 3.6 is then the special case for )12(log2 += kb . 

Theorem 3.3 (*) 

Let C be the class of perceptrons with d + 1 integer weights represented in [−k, k]. Then, 
for any P, ε and δ, the following bound for the sample complexity holds: 

                             





−+−

≥
δε

εφφφδε ),(2ln3/))(1())(1)((24),( 2

*** dkNRRRn nnn
L .  3.8 

Proof: 
Based on the previous Theorems and C. Felgueiras result.  
 
 



Learning Bounds 15 

a
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

error

n

Hoefding
Bernstein

b
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

2000

4000

6000

8000

10000

12000

error

Hoefding
Bernstein

 
Figure 3.2. Sample complexity for d = 2 and δ = 0.05: a) ε = 0.05, k = 4; b) ε = 0.05, k = 16. 
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Figure 3.3. Sample complexity for several values of R(φ) with d = 2 and δ = 0.05: a) R(φ) = 0.1, k = 2; b) 
R(φ) = 0.4, k = 4. 

 

4 Vapnik-Chervonenkis Theory 

Vapnik Chervonenkis (VC) Theory concerns the consistency of the ERM principle (not the 
Bayes error consistency) for a given class of functions (finite or infinite). 
The empirical error is: 

{ } )(1)(ˆ
1

)( i

n

i
tn ii

I
n

R xx∑
=

≠= φφ 8 

The rule empirically selected is ( ))(ˆinfarg* φφ φ nn RC∈= . 

One expects that the true error, )( *
nR φ , is near the optimal error, )(inf φφ RC∈ , for the given 

class of functions. 

                                                 
8 VC Theory texts often make explicit the parametrization of the classifier class, using a parameter vector     
α ∈ Α. The empirical and true errors (risks) are then denoted Remp(αn) and R(αn). We will keep the previous 
notation, with the understanding that: )()(ˆ *

nempnn RR αφ ≡ , )()( *
nn RR αφ ≡ , )(inf)(inf αφ

αφ
RR

Α∈∈
≡

C
.  
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VC Theory allows us to bound )( *
nR φ  − )(inf φφ RC∈  independently of the data distribution 

and with a convergence rate that only depends on the structure of C (which can either be 
finite or infinite).  
However, )(inf φφ RC∈  may be far away of the Bayes error (see Figure 4.1)… 

)( *
nR φ  − R* = ( )( *

nR φ  − )(inf φ
φ

R
C∈

) + ( )(inf φ
φ

R
C∈

− R*) 

)( *
nR φ  − )(inf φ

φ
R

C∈
:  Estimation error (can be controlled with a learning algorithm; often 

small) 
)(inf φ

φ
R

C∈
− R*: Approximation error (cannot be controlled; often larger than the 

estimation error) 
 

C

picked rule
)( *

nR φ

R*

)(inf φ
φ

R
C∈

estimation error

approximation error

 
Figure 4.1 

 
|C | small:  When the cardinality of C is small we can expect a small estimation error 

(compare with the discrete weight perceptron class), but the approximation 
error will probably be very large. 

|C | large:   As we enlarge C we expect to reach a better approximation to the Bayes 
error, but the estimation error will probably be very large (due to the 
richness of class C). 

 

Assuming C the class of all (!) decision functions, we may then expect to find a classifier in 
C with zero empirical error; however, this classifier may have arbitrary large errors outside 
Dn. An example is: 
 



 ==

=
otherwise0

,,1,if
)(* nit ii

n
Kxx

xφ  

 
We obtain the overfitting behaviour: the too large class C overfits the data. VC Theory 
stipulates precise conditions on C  in order to avoid this.  
We have two choices: 
 

1. Select C such that )(inf φφ RC∈ is near R*. This corresponds to the Bayes error 
consistency issue. It can be shown for several classification rules that Bayes error 
consistency is assured as far as C grows with n in a certain way (e.g., k-NN). 

2. Assume that C is fixed and minimize the estimation error )( *
nR φ  − )(inf φφ RC∈ . 

This is the approach we take. 
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4.1 Growth Function 

4.1.1 Definitions 

Definition 4.1 

Let A represent a collection of measurable sets (class) defined on Xn. For (x1,…,xn) ∈ Xn ⊆ 
(ℜd)n  we define the diversity of the collection A on the sample { x1,…,xn}, and we will 
represent it by NA(x1,…,xn), as the number of different sets in {{ x1,…,xn }∩ A; A ∈ A}: 
 

                                                       NA(x1,…,xn n) = |{{ x1,…,xn }∩ A; A ∈ A}|. 4.1 

 
Notes:  

• Some authors call concept class to the collection A.  
• The original formulation in SLT (see e.g.,Vapnik,1998) is in terms of Zn, where Z is 

the problem space (see SLT-I Tutorial, section 4). However, for classification 
problems both formulations are equivalent (see Note in page 21). 

 

Example 4.1 

Consider the class of semi-closed rectangles A = {]a, b]×]c, d]} such that  a − b and c − d 
are less than w. 
For the point configurations of Figure 4.2 we have: 
a) NA ({x1, x2, x3}) = | {∅, {x1}, {x2}, {x3}, { x1, x3}, {x2, x3}} | = 6 
b) NA ({x1, x2, x3}) = | {∅, {x1}, {x2}, {x3}, {x2, x3}} | = 5 
 
 

a)   

x1 x2

x3

w

 b)   

x1 x2 x3w

 
Figure 4.2 

  
Definition 4.2 

The n-th shatter coefficient of A is 
 

                                                      ),,(max)( 1
),,( 1

n
X

NnS
n

n

xx
xx

K
K

AA
∈

=   4.2 

  
Example 4.2 
Class A of Example 4.1 shatters any 3-point set in the equilateral triangle configuration of 
Figure 4.2a) when || x1−x2|| < w 
On the other hand, the class Q = {]−∞, b]×] −∞, d]} (see Figure 4.3) doesn't shatter any 3-
point set. We have maxNQ ({x1, x2, x3}) = 5. 
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x1 x2

x3

 
Figure 4.3 

Notes: 
• SA(n) is the maximum number of different subsets of n points that can be picked out 

by the collection A. It measures the richness of class A.  

• An alternative formulation considers a function class F consisting of binary 
functions X → {0,1}. To F we associate a concept class CF = {C f, f∈F}, where C f = 
{x∈X; f(x) = 1}. This functional definition is equivalent to the set definition, since 
one can always take the indicator function of the subsets; in other words, one can 
always think in terms of the subsets induced in X by the function class F. 

• Clearly SA(n) ≤ 2n. If NA(x1,…,xn) = 2n for some (x1,…,xn) ∈ Xn we say that A 
shatters {x1,…,xn}. 

• If |A| is finite, then clearly SA(n) ≤ |A| for all n, and SA(n) = |A| for sufficiently large 
n. Therefore, SA(n) can be considered a refinement of the cardinality notion 
applicable to classes of infinite sets. 

• Some authors call growth function to SA(n). Keeping with Vapnik original 
definition we will use: 

 
Definition 4.3 

GA(n) = ln SA(n) is called the growth function of the concept class A. 
  
Example 4.3 

Let L be the collection of the left half-lines ]−∞, x], x ∈ ℜ. 
Then sL(2) = 3. As a matter of fact, given any set { z1, z2;  z1< z2, zi ∈ ℜ}, L only produces 
the three intersections in {∅,  {z1}, {z1, z2} }, instead of the maximum 4 intersections. As a 
matter of fact, it is easy to see L only shatters 1-point sets and: 
 

( ) ( )nnnnS 101)( +=+=L . 
  
Example 4.4 

If I is the class of all intervals in ℜ, then 

( ) ( ) ( )nnn
n

k

nnknnS 210
1

1
2

)1()1(1)( ++=+
+

=+−+= ∑
=

I  

(Proof in Devroye et al., 1996)  
 
Example 4.5 

Let H = {]−∞, x]; x ∈ ℜ } ∪ {[y, +∞[; y ∈ ℜ } be the collection of half-lines.  
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Then SH(2) = 4 and SH(3) = 6 (see Example 4.1 of SLT-I). H shatters any 2-point set and it 
can be shown that: 

SH(n) = 2n 
  
Example 4.6 

Let P  = H ∪ {[x1,x2]; x1< x2, x1,x2 ∈ℜ} be the collection of half-lines and closed line 
intervals. (In Example 4.3 of SLT-I this collection was induced by a family of parabolic 
classifiers.) 
Then SP(3) = 8. P shatters any 3-point set. (see page 22 of SLT-I) and it can be shown that: 
 

SP(n) = n2 – n + 2 
 
Comment 
SP(n) is related to counting the number of bitonic sequences. These are binary sequences 
that have at most two transitions (0 → 1 or 1 → 0). 
  
Definition 4.4 

Let A be a concept class with | A | ≥ 2. The largest k for which SA(k) = 2k, is denoted VCDA 
and called Vapnik-Chervonenkis dimension (or simply, VC-dimension) of the class A. If, 
for every n, SA(n) = 2n, then by definition VCDA = ∞. A class A such that VCDA < ∞ is 
called a VC class. 
  
Example 4.7 

Example 4.3: VCDL =1. Example 4.5: VCDH  = 2. Example 4.6: VCDP = 3. 
  
 
Note that: 

a) In order to prove that l is a VCD lower bound we only need to show that there is at 
least one l-sized dataset that can be shattered. 

b) In order to prove that u is a VCD upper bound we need to show that all u-sized 
datasets cannot be shattered. 

 

4.1.2 Growth Function Properties 

How fast grows SA(n)? The interesting thing is that no matter which concept class A we 
consider it can be shown that SA(n) grows only ploynomially with n, instead of 
exponentially. 
 
For two nonnegative integers n, d with n ≥ d consider the function Φ(n,d) computing the 
number of possible subsets of an n-element set with at most d elements: 
 

                                                                     ( )∑
=

=Φ
d

i

n
idn

0

),(  4.3 
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Lemma 4.1 

The function Φ satisfies 
                                              Φ(n,d) = Φ(n −1, d) + Φ(n −1, d −1).  4.4 
Proof: 
Based on ( ) ( ) ( )1

1
1 −

−
− += n

i
n
i

n
i  

  
Lemma 4.2 

The function Φ satisfies 

                                                            ( )∑
=







≤≤=Φ

d

i

dd
n
i d

en
d
ndn

0 !
2),( .  4.5 

The first inequality is established by double induction on n and d, as follows: 
 
Case d = 1 
Then Φ(n,d) = n + 1 ≤ 2n for all n ≥ 1. Hence the inequality holds. 
 
Case n = d 
Then Φ(n,d) = 2d. But, by the binomial expansion: 
 

11

11
112

−−









−
=








−
+≤

dd

d
d

d
 

 
Now suppose that the inequality is verified for d −1 with (n = d −1): 
 

( )
)!1(

)1(221,1
1

1

−
−

≤=−−Φ
−

−

d
ddn

d
d  

Combining these two inequalities: 
 

!
2

)!1(
2

)!1(
)1(2

1
2

111

d
d

d
d

d
d

d
d dddd

d =
−

=
−

−








−
≤

−−−

 

 
This establishes the inductive step for n = d > 1. 
 
Case n > d > 1.  
From the previous Lemma we have: 
 

)!1(
)1(2

!
)1(2),(

1

−
−

+
−

≤Φ
−

d
n

d
ndn

dd

 

Thus, we have to show that: 

!
2

)!1(
)1(2

!
)1(2

1

d
n

d
n

d
n ddd

≤
−

−
+

− −

 

Multiplying both sides by d!/2: 
 

d
ddddd

nn
dnnndnndn 








−
+≤

−
+⇒≤−−+⇒≤−+− −−

1
11

1
1)1)(1()1()1( 11  
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The last inequality follows from the binomial expansion. 
The second inequality is proved using Stirling's approximation.: 
 

dd eddd −≥ π2!  
  
Theorem 4.1 (Vapnik-Chervonenkis, 1971; Sauer-Shelah, 1972) 

Suppose that VCDA = h < ∞. Then, for each n ≥ h and all sequences x1,…,xn, we have 
 
                                                                          SA(n) ≤ Φ(n, h).  4.6 

 
The proof can be found e.g in Sontag (1999). 
  
Thus SA(n) grows polynomially with n. 
 
Theorem 4.2 (Vapnik, 1974) 

Any growth function either satisfies  
G(n) = n ln2 if n ≤ h 

or is bounded by: 

                                                  ( ) 





 +≤








≤ ∑

= h
nhnG

h

i

n
i ln1ln)(

0

      if n > h,                                  4.7 

where h is the VC-dimension. 
The proof is based on the previous Theorem 4.1. The structure of the growth function is 
shown in Figure 4.2. 
  
 

n

G(n)
n ln2

h

h(ln(n/h)+1)

n

 
Figure 4.4 For n > h, G(n) is bounded by a logarithmic function with coefficient h. It cannot be, for example, 
G(n) = n .The quantity h, separating the two different behaviors of the growth function, is the Vapnik-
Chervonenkis dimension. 

 
Example 4.8 

Let X  be an arbitrary set, e.g., X = {a, b, c, d, e} (the elements could be any points on a d-
dimensional space). Let A represent the set of subsets of X, which have at most h elements. 
For the example of X, we have for h = 3: A = {∅, {a}, {b}, …, {a, b}, …, {a, b, c}, …}. 
Finally, assume we had a family of functions defined on A, Q(x, A), A∈A, such that: 
 





−∈
∈

=
AXx
Ax

AxQ
0
1

),(  
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Then, h
nxxN 2),,(max 1 =K  if n ≤ h. For instance, for the previous example of X and h, 

one can obtain any dichotomy of a subset with 1, 2 or 3 elements. 
On the other hand, ( )∑ == h

i
n
inzzN 01 ),,(max K  , if n > h. For the previous example of X 

and h, one can only obtain the dichotomies that correspond to subsets with 1, 2 or 3 
elements, which correspond to the combinations in the formula. Thus, formula 4.6 is a tight 
bound.  
   

4.1.3 VC-Dimension of Some Classes 

1.  

( ) ( )∑∑
==

+=≤≤
A

AA
A

A

VCD

i

VCDiVCD
i

VCD

i

n
i nnnS

00
)1()(     because    

)!(!
!

)!(!
!

ihi
nh

ini
n i

−
≤

−
 

Thus:  
VCDA finite: 

A
A

VCDnnS )1()( +≤   

VCDA = ∞: SA(n) = 2n         (Note that ( ) n
n

i

n
i 2

0

=∑
=

). 
 

2. For n > 2VCDA: 

( ) 1)(
0

+≤







≤≤ ∑

=

A

A
A

A
A

VCD
VCDVCD

i

n
i n

VCD
ennS      

In particular, for VCDA  > 2, we have A
A

VCDnnS ≤)(  
 
3. Boolean Combinations 
 

i. A = A1 ∪ A2   ⇒   SA(n) ≤ SA1( n) + SA2(n) 

ii. A = {A1 ∪ A2; A1∈ A1, A2∈ A2}   ⇒   SA(n) ≤ SA1(n) SA2(n) 

iii. Given A let { }AA ∈= AA; . Then, )()( nSnS AA =  

iv. A = {A1 ∩ A2; A1∈ A1, A2∈ A2}   ⇒   SA(n) ≤ SA1(n)SA2(n) 

4. 
If A = { ]−∞,x1] ×]−∞,x2]× …× ]−∞,xd] }, then VCDA = d. 
If A is the class of all rectangles in ℜd, then VA = 2d. 
 
5. 
If A is the class of all convex polygons in ℜ2, then VCDA = ∞. 
 
6. 
VCD = 0 implies that the class has only one function. 
 
Results on Boolean combinations can be found with 
 
 
 



Learning Bounds 23 

Lemma 4.3 

Let F1,…,Fk represent k classes of classifiers and b:{0,1}k → {0,1} a fixed Boolean 
function. Consider the following new class of classifiers: 
 

{ },...,kifffbb iikk 1(.));(.),...,(),...,( 11 =∈== ,FFFB  
Then 
                                                         { }

i
VCDekkVCD

ki FB ,...,12 max)(log2
=

< .  4.8 

Proof: 
Assume that S ⊆ X is shattered by B, with |S| = n, and consider the restrictions: 
 

k
SkSSi SS }1,0{:...};1,0{: ||1| →××=→ FFFF  

 

Now, the mapping F → B is onto, since to any k-tuple of functions (f1, …, fk) corresponds a 
Boolean composition ob  (f1, …, fk). Therefore: 
 

∏=≤
i

iFFB  

Let ∞<=
i

VCDhi F (otherwise there is nothing to prove). By Lemma 4.2, 
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i
i h

en

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
≤F  

Thus, with iki hh ,..,1max == , 
kh

h
en







≤B  

As S is shattered by B, we have 

)(log2log2 22 ekdkn
h
enke

h
en

h
en kh

n <⇒





≤⇒






≤  

This last result follows from the calculus argument: m ≤ qlog2(m) ⇒ m < 2qlog2(q), when 
q > 4 and m ≥ 1, which is certainly true in our case. 
  

4.1.4 Growth Function of Perceptrons with Linear Thresholds 

Theorem 4.3 (Cover, 1965) 

Let     








ℜ∈= ∑
=

d

i
iii aa

1
;ψG  

be the linear space of functions spanned by a set of d fixed functions ψi, i =1,…,d: ℜk → 
ℜ. Define Ψ(x) = (ψ1(x), …, ψd(x)) (a point in ℜd) and assume that every r-element subset 
of n points {Ψ(x1), …, Ψ(xn)} is linearly independent (equivalently, the n points are in 
general posotion). Then, the n-th shatter coefficient of the class of sets A = {{x; g(x) ≥ 0}; 
g∈G} is: 

                                                                   ( )∑
−

=

−=
1

0

12)(
d

i

n
inSG .  4.9 
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This result shows that VCDG = d. As a matter of fact, using the previous formula, we have 
SG(d) = 2d and SG(d + 1) = 2.2d – 2 < 2d+1. 
Corolary 4.1 

Let A be the class of half-spaces in ℜd, of the form {x; a x − b ≥ 0}. Then VCDA = d +1 
and  

( ) 2)1(22)(
0

1 +−≤= ∑
=

− d
d

i

n
i nnS A  

The proof is based on Theorem 4.3 by choosing ii x=ψ for 1≤ i ≤ d and 11 =+dψ   
  
Corolary 4.2 
The number of linearly separable dichotomies of n points in general position or (regularly 
distributed 9) in dℜ , is: 
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We may also write: 

                                                                        ( )∑
=

−=
d

i

n
idnD

0

12),( .  4.10 

with the convention ( ) 0=a
b  if b > a. As a matter of fact, we then obtain for n < d + 1: 
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Figure 4.5 

Other results can be obtained along theselines (10). 

                                                 
9 A set of n points is regularly distributed or in general position in dℜ if no d+1 points lie on a linear variety 
of dℜ . Equivalently, as we did in Theorem 4.4, every r-element subset of the vectors defined by the n points, 
r ≤ d,  is linearly independent. 
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Corolary 4.3 

Let H be the class of functions implemented by a simple perceptron with d real inputs and 
hard-limiting activation function.We have: 
 

),()( dnDnS =H . 
Therefore, VCDH  = d + 1. 
  
Corolaries 4.1 and 4.3 didn't take into account the "general position" restriction of 
Theorem 4.4. We now show that this restriction is not relevant, since if it is not verified it 
can only decrease the number of dichotomies. We will show it for the perceptron. 
 
Consider the set of dichotomies implemented by a perceptron H in a set D = { x1, …, xn}, 
represented as the restriction of H to D: 
 

},...,{ 1| kD ff=H  
 

Each fi represents a dichotomy: fi: D → {0,1}. We don't know the value of k = |H |D|. 
 
Now, consider a set of perceptron weights  {(wj, w0)} that correspond to each fj in H |D, i.e. 
 


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ij
w

f
x'w

x  

 
The distance of any point xi to the hyperplane represented by (wj, w0) is given by: 
 

||||/0 jjijji w wx'w +=∆  
 

Now, some of these distances can be zero; but let us consider: 
 

{ }0,1;min 00 ≠+≤≤+= jijjijj wniw x'wx'wδ , 
 
and jj δδ min= . If we replace w0j by 2/00 δ+=′ jj ww , we obtain a new set of 

parameters {(wj, jw0′ )}, corresponding to the same dichotomies (wj'xi + w0j ≥ 0 ⇒ wj'xi + 

w0j + δ/2 ≥ 0), with the additional separation property that 02/0 >≥′+ δjij wx'w  for all i 

and j (therefore, all distances are ≠ 0). 
 
If there are points that are not in general position, let us perturb these points in a small ball 
around them, by a distance less than: 
 

)2/( wδ  with jj
w wmax=  
 

This perturbation will create a new distribution of points D~ , such that: DD ~|| HH ≤ . Now, 
the set of n-tuples of points in ℜd that are not in general position has Lebesgue measure 

                                                                                                                                                    
10 The following can also be proved: Let A be the class of all closed balls in ℜd. Then, VCDA ≤ d +2. 
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zero; therefore, one will always find an n-tuple lying inside the balls that is in general 
position. Thus, one always has ),(| dnDH D ≤ . 
 

f1

f3

x1

x2

x3

 
Figura 4.1 

Theorem 4.4 (Baum and Haussler, 1989) 

Let C(k) be the NN class with h hidden nodes and thresholds as activation functions. Then: 
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Hence: ))12((log)242( 2)( ++++≤ hhdehhdV kC
. 

Sharper bounds are obtained with: 
Theorem 4.5 (Baum and Haussler, 1989) 

Let H be the class of functions computed by a feed-forward linear threshold network with a 
total of w weights and thresholds, and k computation units. Then, for n ≥ w we have 

                                                                              
w

w
enknS 





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≤)(H , 4.12 

and hence VCDH < 2wlog2(2k/ln2). 
  
In order to find the VC dimension notice that if n > wlog2(enk/w), then 2n > SH(n) ⇒ VCDH 
< n. An inequality in the Appendix shows the stated bound. 
 
This formula yields pessimistic upper bounds. Example for d = 2: 
 
h 1 2 3 4 5 6
VCDmax 10 57 92 131 173 217
 
We know that for h=1,2 the true values are 3 and 6. 
 

Theorem 4.6 (Sakurai, 1993) 

Let H be the class of functions computed by a two-layer feed-forward linear threshold 
network, fully connected, with a total of w weights and thresholds, h computation units in 
the first layer and d ≥ 3 inputs, such that h ≤ 2d/2 – 2. Then 
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4
log
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8 22
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Note that w = dh + 2h + 1.  
The constraint on h can be written as: d ≥ 2(log2h+2). 
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Example 4.9 

VCD bounds for two layers MLP with d = 10 (setting VCDmin≥1) 
 
h 1 2 3 4 5 6
VCDmax 34 156 261 377 502 633
VCDmin  1 1 1 1 2 4
 
   
Definition 4.5 

Let H be a class of {0,1}-valued functions defined on X, and F a class of real-valued 
functions defined on ℜd×X. H is a k-combination of sgn(F) if there is a boolean function g: 
{0,1}k → {0,1} and functions f1,…,fk in F such that for all h in H there is a parameter 
vector a∈ℜd satisfying 
 

))),(sgn(,)),,((sgn()( 1 xx afafgxh kK=  ∀ x∈X 
 

A function f in F is continuous in its parameters (continuous in its p derivatives, Cp) if ∀ 
x∈X f(.,x) is continuous (respectively, Cp). 
 
Definition 4.6 

A set {f1,…,fk} of differentiable functions mapping from ℜd to ℜ is said to have regular 
zero-set intersections if, for all nonempty subsets {i1,…,il} ⊆ {1,…,k}, the Jacobian of 

),,(
1 lii ff K has rank l at every point a of the solution set 

{ }0)()(;
1

===ℜ∈ afafa
lii

d L  
  
 
This definition forbids degenerate intersections of the zero-sets of the functions, i.e., they 
must have "true" intersections 
 
Definition 4.7 

Let G be a set of real-valued functions defined on ℜd. We say that G has solution set 
components bound B if for any 1 ≤ k ≤ d and any {f1,…,fk} ⊆ G that has regular zero-set 
intersections, we have 
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where CC denotes the number of connected components of a set. 
  
Example 4.10 

Figure 4.5a shows straight lines in ℜ2, as could be obtained by a simple perceptron; i.e., in 
this case we have: 
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and the set {(x1,x2)∈ℜ; fi(x1,x2) = 0} is a straight line. Thus, we obtain 1 connected 
component for either k = 1 or k = 2. Hence, B = 1. (Notice that the intersection is always 
empty for k > d regular zero-set intersections.) 
In Figure 4.5b the zero-sets of the functions are parabolas. f1 and f3 have no regular 
intersections. For k=1 we have 1 CC; for k=2 we have 2 CC. Hence B=2. 
 

a

f1

f2
 b

f1

f2

f3

 
Figure 4.6 

  
Theorem 4.7 

Suppose that F is a class of real-valued functions defined on ℜd×X, and H is a k-
combination of sgn(F). If F is closed under addition of constants11, has solution set 
components bound B, and the functions in F are Cd in their parameters, then 
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for n ≥ d/k. 
  
This theorem is useful for deriving results for other types of activation functions (e.g. 
sigmoids). 
For the perceptron (a 1-combination of sgn(F) with B=1) one obtains: 
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larger than the correct value by ( )1
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Theorem 4.8 (Goldberg and Jerrum, 1993) 

Suppose that F is a class of real-valued functions defined on ℜd×X, so that, for all x∈X and 
f ∈F the function f(a,x) is a polynomial on  ℜd of degree no more than l. Suppose that H is 
a k-combination of sgn(F). Then if n ≥ d/k 

d

d
enklnS 


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

≤

22)(H  

and hence VCDH ≤ 2dlog2(12kl). 
  
 
 

                                                 
11 ℜ∈∀∈+⇒∈ ccff ,FF  
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4.1.5 Growth Function of Perceptrons with Sigmoids 

Theorem 4.9 

Suppose σ:ℜ→ℜ satisfies limx→∞ σ (x) =1 and limx→−∞ σ (x) =0. Let N be a feed-forward 
linear threshold network and N' a network with the same structure as N but with the 
threshold activation functions replaced by σ in all non-output neurons. Suppose that S is 
any finite set of inputs. Then, any function computable by N on S is also computed by N' 
and VCDN'' ≥ VCDN. 
  
Lemma 4.4 

The class F = {x → sgn(sin(ax); x ∈ N, a ∈ℜ+} has VCD = ∞. 
Proof: 
Is based on showing that for any d ∈ N  and a set of points xi = 2i-1, i = 1,…,d, one can 
always shatter this set with functions of F. 

  
With this Lemma one can prove: 
 
Theorem 4.10 (Anthony and Bartlett) 

Define 
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1)(
23 xecx

e
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=σ  

for c > 0. Then σ(x) is analytic (continuous derivatives), and for sufficiently small c > 0, 
we have 





<>
><

==
−∞→∞→ 00

00)(;0)(lim;1)(lim 2

2

x
x

dx
xdxx

xx

σσσ  

 
Let N be a two-layer network with one real input, two first-layer neurons using σ(x), and 
one output neuron with threshold function, such that the set of functions of N is 
 

{ }ℜ∈++→= 211022110 ,,,,));()(sgn( aawwxxawxawwxN σσH  
Then ∞=

N
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Figure 4.7 
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Theorem 4.11 (Bartlett, Maiorov and Meir, 1998) 

Suppose σ:ℜ→ℜ satisfies limx→∞ σ (x) =1 and limx→−∞ σ (x) = 0 and is differentiable at 
some point α0, with σ'(α0)≠0. For any k ≥ 1 and w ≥ 10k − 14, there is a feed-forward 
network with l layers and a total of w parameters, where every computation unit but the 
output has activation function σ, the output being a linear threshold unit, and for which the 
set H of functions computed by the network has 
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22
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Theorem 4.12 (Karpinsky and Macintyre, 1997) 

Let H be the set of functions computed by a feed-forward network with w parameters and k 
computatipn units, in which each computation unit other than the output unit has the 
standard sigmoid activation function (the output unit being a linear threshold unit. Then 
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2
2 wkwkwkVCDH +≤  

  
Example 4.11 

VCD bounds for two layers with d=10 and sigmoid 
 
h 1 2 3 4 5 6
VCDmax     1044    15512  43686   98910   195435    350913
VCDmin     5    12    18      24   30       36
 
  

4.2 Learning Bounds for Infinite Classes of Classifiers 

4.2.1 Upper Bounds 

Theorem 4.13 (Vapnik and Chervonenkis, 1971) 

Suppose C ={φ} is a class of classifiers defined on a set X. Then, for n > 0 and 1 > ε  > 0, 
 

                                                  ( ) 8/2

)2(4)(ˆ)( εεφφ n
Cn enSRRP −≤≥−   4.14

 
The proof is based on the Glivenko-Cantelli Theorem.

 

  
Corolary 4.4 

Suppose C has finite VC-dimension h = VCDC ≥ 1 and L is the ERM algorithm. Then L is a 
learning algorithm for C and if n ≥ h/2, we have: 
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The proof is based on the previous Theorem and Lemma 3.1. Thus,  
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Sharper bounds are obtained with the folowing theorem. 
  
Theorem 4.14 (Vapnik and Chervonenkis, 1998) 

Suppose C ={φ} is a class of classifiers defined on a set X. Then, for n > 0 and 1 > ε  > 0, 
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The proof is based on the Glivenko-Cantelli Theorem.
 

  
 
Formula 4.6 establishes a bound of two-sided uniform convergence; formula 4.7 
establishes a bound of relative uniform convergence. 
 

Corolary 4.5 

Using 4.6 and Lemma 4.2 ( ( ) ( )2/)()(sup)(inf)( * εφφεφφ φφ >−=>− ∈∈ rRPRRP nn CC ) we 
have 
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and 
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Formula 4.7 can be rewritten as 
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where G(2n) ≤ )/2ln(1( hnh +  is the growth function for 2n and VC-dimension h. (The 
slightly tighter combinatorial bound leads to computational problems for large n.) 
Note that 4.7 holds for any φ ∈ C; therefore it also holds for *

nφ , the ERM function. 
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Let )(infarg0 φφ φ RC∈= . The additive Chernoff bound allows us to state that with 
probability at least 1-δ the following inequality holds true: 
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Using this result together with formula 4.9, one can conclude that with probability at least 
1-2δ  the following inequality holds true: 
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The result 4.11 is obtained by solving 4.9 in terms of )(ˆ *
nnR φ  and using the bound on 

G(2n). In order to obtain bounds in terms of )( *
nR φ  we use: 

 

Theorem 4.15 (*) 

Let C be a class of classifiers with VC dimension h. Then for any P, n and δ the following 
holds: 
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Equivalently, the ERM algorithm is a learning algorithm with estimation error ε(n,δ,h). 
 
Proof: 
From 4.9 we have for the ERM classifier *

nφ and any given δ: 
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Using 4.11 and expressing the probability in terms of δ we obtain the above result. 
               
Example 4.12 

VCD = 3, δ = 0.05 
ε 0.01 0.02 0.03 0.04 0.05 

4.15 30030392 6842177 2867969 1544189 954006 
4.23 (R = 0.1)  312722 72344 30613 16599 10312 
4.23 (R = 0.25) 676236 155819 65772 35596 22082 
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4.2.2 Lower Bounds 

Theorem 4.16 (Devroye and Lugosi, 1995) 

Let C be a class of classifiers with VC-dimension V ≥ 2 and such that 
] ]4/1,0)(inf ∈= ∈ φφ RR C . Then, for any classifier φn based upon Dn, and any ε ≤ R  
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n

Z
eRRP /4 2

4
1))((sup εεφ −≥≥− .  4.25 

  
The theorem applies to any φn (not only the ERM-based φn). 
 
From 4.16 we obtain the bound: 
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Theorem 4.17 (Simon, 1996) 

Suppose C is a class of classifiers with VC-dimension h. For any learning algorithm L the 
sample complexity nL(ε,δ) satisfies 

2320
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for all 0 < ε, δ < 1/64. Furthermore, if C contains at least two functions, we have 
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for all 0 < ε < 1 and 0 < δ < 1/64. 
  
Example 4.13 

VCD = 3, δ = 0.05 
 

ε 0.01 0.02 0.0.3 0.04 0.05 
4.26 10214 2552 1134 636 406 
4.25 (R = 0.1) 402 101 45 25 16 
4.25 (R = 0.25) 1006 251 112 63 40 
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5 Restricted Learning Model 

5.1 Basic Definitions 

In the restricted learning model we have the values of t defined in terms of the values of x, 
i.e., there is a "correct" classification of any x ∈ X represented by some target function 
t(x). Therefore, there is only one probability distribution µ(A) defined on X (instead of Z as 
before) and R* = 0. 
 
Definitions: 
Concept:   C = { x ∈ X ; t(x) = 1} 
 

Concept class:   nonempty {C} ⊆ 2X 

 
Training sample corresponding to t:  

{ } n
nnn ZttD ∈= ))(,(,)),(,( 11 xxxx K . 

 
Hypothesis (classifier):  YXh →:  
 
Class of hypotheses:   

{ }YXh →= :H ;   t ∈ H 
Error of a hypothesis, h: 
    ( ) ( ))()()()(),()( XtXhPxtxhPthRhR ∆≡≠== µµ  
 
Definition 5.1 
Given { }YXh →= :H  a learning algorithm L for H. is a function  

{ } H→
∞

=
U

1

:
n

nDL  

 

such that given ε, δ ∈ ]0, 1[, there is an integer n0(ε, δ) such that for n ≥ n0(ε, δ) and every 
training sample Dn (as above), then hn = L(Dn) satisfies 
 

( ) δε −>≤ 1)( nhRP  
 

for any probability distribution µ on X. 
  
The restricted model is a special case of the general model, since given t ∈ H and a 
distibution µ on X, there is a corresponding distribution P on Z. As a matter of fact, for any 
measurable subset A ⊆ ℜd: 
 

P((x, t(x)); x ∈A;) = µ(A) 
P((x, y); x ∈A, y ≠ t(x)) = 0 

 

Furthermore, ),()( thRhRP µ= . Thus the restricted model corresponds to considering only 
a subset of all distributions on Z. 
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Theorem 5.1 (Vapnik-Chervonenkis, 1974) 

Assume |C | < ∞ and )(min φ
φ

R
C∈

 = 0. Then, for every ε > 0, 

                                             ( ) εεφ n
n eRP −≤> C)( *   and   [ ]

n
R n

Cln1
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In this case the ERM principle converges to )(min φ

φ
R

C∈
 = 0 with n of O(1/ε, 1/δ). 

Definition 5.2 

A learning algorithm for the restricted model is said to be PAC (Probably Approximately 
Correct) if it satisfies the following conditions: ε, δ ∈ ]0, ½ ]; the learning algorithm time 
(thus n0(ε, δ)) is polynomial in d, 1/ε, 1/δ and size(c), where size(c) is the number of 
parameters needed to represent a concept. 
  

5.2 Consistent Learning 

A consistent learning algorithm for the restricted model is one that outputs a hypothesis 
that perfectly fits the training data: 

)()(, iini xtxhDx =∈∀  
As far as we use consistent learning, we can relax the condition |C | < ∞ in Theorem 3.1, as 
shown in 
Theorem 5.2 

Assume a consistent learning algorithm L that outputs h = L(Dn). Then, the sample 
complexity is: 
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Figure 5.1. Bounds for d = 2, δ = 0.05, k = 8 in logarithmic scale: a) R(φ) = 0.4; b) R(φ) = 0. 
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5.3 Learning Bounds 

Theorem 5.3 (Blumer et al., 1989) 

Let C  be a class of classifiers. Suppose that infφ ∈C R(φ) = 0 (i.e., the Bayes classifier is in 
C). Let *

nφ denote the classifier that minimizes the empirical error, with R*= 0. Then: 
 

                                                         ( ) 2/* 2)2(2)( εεφ n
Cn nSRP −≤> .  5.3 

  
Theorem 5.4 (Blumer et al., 1989) 
Let C be a class of concepts and H a hypothesis space. Then: 
 

i. C is PAC-learnable iff VCDC is finite. 
 

ii. If VCDC is finite, then: 
 

(a) For 0 < ε < 1 and sample size at least 
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εεδε
13log

8
,2log4max 22
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nu , 5.4 

any consistent algorithm is of PAC learning for C. 
 

(b) For 0 < ε < ½ and sample size less than 

                                        ( )( )( )







+−−






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= δδε
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ε 121,1ln1max CDVCnl ,  5.5 

no learning algorithm, for any hypothesis space H, is of PAC learning for C. 
 
A sharper upper bound is obtained with: 
Theorem 5.5 (Shawe-Taylor et al., 1993) 

( ) εεφ n
Cn nSRP −≤> 2)(2)( 2*  

Thus:                                            
2ln

)2/ln())/ln(1(),(
2

n
hnhn δδε −+

≥ .  5.6 

where h is the VC-dimension. 
  
Example 5.1 

VCD = 3, δ = 0.05 
 

ε 0.05 0.1 0.15 0.2 0.25 
5.4 3851 1685 1030 723 547 
5.7 1346 604 375 267 204 

  
 
 



Learning Bounds 37 

Theorem 5.6 (Devroye e Lugosi, 1995) 

Let C be a class of classifiers with VC-dimension V ≥ 2. Suppose that infφ ∈C R(φ) = 0 (i.e., 
the Bayes classifier is in C). Let *

nφ denote the classifier that minimizes the empirical error, 
with R*= 0. Then for any classifier based on Dn, with n ≥ V – 1 and for any ε ≤ ¼  

                                             )41/(4
2/)1(

),( 1
21)(sup εεε

π
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
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n e
V

ne
Ve
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yx

.  5.7 

Furthermore, if 15 ≤ n  and  n ≤ (V – 1)/(12ε) 

10
1)(sup

),(
≥≥

ℵ∈
εnRP

yx
 

  
Example 5.2 

VCD = 3, δ = 0.05 
 

ε 0.01 0.02 0.0.3 0.04 0.05 

5.5 297 147 97 72 57 
  

6 Appendix 

6.1 The Glivenko-Cantelli Theorem 

Let z1, …, zn be i.i.d. real-valued r.v. with distribution function F(z) = P(z1 ≤ z). Denote the 
empirical distribution function by 

∑
=

≤=
n

i
zn i

I
n

zF
1

1)( z  

Then 
32/2

)1(8)()(sup εε n
n

z
enzFzFP −
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




 >−  

and, in particular, by the Borel-Cantelli lemma, 
0)()(suplim =−

ℜ∈∞→
zFzF n

zn
 with probability one. 

  
This theorem states a.s. convergence of the empirical distribution to the true one and is 
sometimes referred to as the fundamental theorem of mathematical statistics. 

6.2 Useful Formulas 

6.2.1 Markov's inequality 

If a r.v. x is almost surely nonnegative, then 
[ ] 0)( >∀

Ε
≤≥ a

a
aP x

x  

To see this, notice that [ ] [ ] )()(| aaPaPa ≥≥≥≥Ε≥Ε xxxxx  
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6.2.2 Logarithms 

2lnx < x 
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Suppose q > 4, m ≥ 1. Then 
 

m ≥ 2q log2(q) ⇒ m > q log2(m) 
 
Equivalently, 
 

m ≤ qlog2(m) ⇒ m < 2qlog2(q) 
 
For any α, x > 0 

lnx ≤ αx – lnα – 1  
with equality only if  αx = 1. 
 

6.2.3 Binomial Formulas 

Newton binomial formula:  ( ) i
p

i

p
i

p xx ∑
=

=+
0

)1(  

( ) p
p

i

p
i 2

0

=∑
=

   

( ) ( ) ( )∑∑∑
−

=

−

=

−

=

+=
1

0

1

0

1

0

h

i

n
i

h

i

n
i

h

i

n
i  ( porque ( ) ( ) ( )11 −− += n

i
n
i

n
i  ) 

 

( ) hn
h
en

h
n hhh

i

n
i >∀






≤








<∑

= !
2

0

 

( ) hnhnh
h

i

n
i 2,1

0

>∀∀+≤∑
=

; ( ) hnhnh
h

i

n
i 2,2

0

>∀>∀≤∑
=

 



Learning Bounds 39 

6.2.4 Exponentials 
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Euler's inequality: 
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6.2.5 Stirling Formula 
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