Neural Network Interest Group

Titulo/Title:
Empirical Study of MLP in Classification

Autor(es)/Author(s):
Luis M. Silva

Relatorio Técnico/Technical Report No. 2 /2004

FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Titulo/Title:
Empirical Study of MLP in Classification

Autor(es)/Author(s):

Luis M. Silva

Relatorio Técnico/Technical Report No. 2 /2004

Publicado por/Published by: NNIG. http://paginas.fe.up.pt/~nnig/

A\ 2} ©INEB: FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

RETUKD 0 ERGERHARS BOMEDCA

Contents

1 The perceptron
1.1 Introduction
1.2 Representational ability of perceptrons
1.3 Perceptron learningo

1.3.1
1.3.2
1.3.3

Percetron training rule
Gradient descent: the deltarule
Stochastic version of gradient descent

1.4 Some experiments

1.4.1
1.4.2

Boolean functions: AND and OR
Two Gaussian populations

Multilayer Perceptron

2.1 Introduction
2.2 Back-propagation algorithm
2.3 Some issues about BP learning

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6
2.3.7
2.3.8

Representational ability of MLP’s
Convergence and local minima
Initial weight values
Learning Rate
Training Mode
Activation function
Target encoding L.
Pre-processing of input data

2.4 Multi-class classification problem
2.5 Generalization L
2.6 Estimating misclassification error: cross-validation

Chapter 1

The perceptron

1.1 Introduction

The perceptron is the most simple type of ANN and is based in a single
unit or neuron. The working operation of the perceptron is based on the
model proposed by McCulloch and Pitts: it takes a vector of real-valued
inputs, produces a linear combination, followed by a binary decision. More

precisely, with inputs x1, ..., x4 we have the output o(xy,. .., z4)
1 if wo+ L w;x; >0
o(xy,...,xq) = f 0 23—1 (1.1)
-1 if wo+ > wr; <0

where each w; € R, ¢ = 1,2...,d, determines the contribution of input x;
to the output of the perceptron and w, € R is designated as bias. These
constants are designated as weights'. If we take o = 1 and define the

extended input vector

X = [1,x1,...,xd]T

and the weight vector

W = [wo,wl, e ,wd]T
the perceptron output can be written as

0(171, s ,33'd> = ()0(8)

where s = wlx and ¢ is the Heaviside function
- 1 if s>0
SO(S)_{—lz'fsgo

IFor now on wq will be designated as weight also unless it is explicitly said.

The function ¢, responsible for the binary decision, is designated the activa-
tion function of the perceptron. As we will see later, it’s usual (and prefer-
able) in more complex problems to use a monotonically increasing function
to make a continuous and differentiable transition between the saturated
parts (where p(s) = 1 or ¢(s) = —1). Also, it is usual to use a mapping
into the interval [0, 1].

The perceptron can be represented graphically as an oriented graph like
in Figure

FIGURA

1.2 Representational ability of perceptrons

Considering a perceptron with Heaviside’s activation function with output
given by (1.1), it is easily seen that it defines a hyperplane decision surface
in the d-dimensional space of examples (input data) with equation w’x =
0. This decision surface defines a binary classification rule for a two class
problem where an example belongs to one class if it lies in one side of the
hyperplane (for example, it outputs 1 for examples of class 1) and the other
class if it lies in the other side (outputs -1 for examples of class 2). Of
course, a zero misclassification error objective is only achieved with linearly
separable sets of examples, i.e, those where the two classes are completely
separated by a hyperplane. For example, the perceptron can represent many
boolean functions like AND (see Figure 1.1(a)) or OR (assuming 1 is true
and -1 is false) and their negations. However, boolean functions like XOR
cannot be represented by a perceptron because they do not correspond to a
set of linearly separable examples (see Figure 1.1(b))

Nevertheless, the ability to represent the simplier boolean functions is
important because every boolean function can be represented by some net-
work of perceptrons only two levels deep (multilayer perceptron with a single
hidden layer) (Mitchell,Bishop).

1.3 Perceptron learning

1.3.1 Percetron training rule

The idea beyind the perceptron learning is to find an optimal weight vector
w that causes the network to output the correct class for each training
example. A simple algorithm used to adjust the perceptron weights is the

perceptron training rule that revises the weight w; according to

w; = w; + Aw; (1'2)
Aw; = n(t—o)x;

Here ¢ is the target or true response (class) of the actual training example,
o is the output of the perceptron (1 or -1) and 7 is a positive constant called
learning rate. The latter controls the rate of change of the weights at each
step. Note that the weight adjustments are only made when ¢ # o and in this
case we have an adjustment proportional to the corresponding input. This
simple procedure is proven to converge (Haykin,Bishop) in a finite number
of iterations, provided the training examples are linearly separated.

1.3.2 Gradient descent: the delta rule

The perceptron training rule is not assured to converge in the case where the
two classes are not linearly separable. To overcome this problem, another
training rule called delta rule is used to achieve the best fit approximation
to the input-output mapping of the training examples. So, although no
hyperplane exists that completely separates the two classes (with 100% cor-
rect classification), the delta rule converges to a hyperplane that minimizes
some measure of training error (different from misclassification error?). The
derivation of the delta rule can be seen using the simple linear unit (where
the activation function is not applied to the linear combination) for which
the output o is given by

o(zy,...,1q) = W'X
The measure of training error used is half the sum of the mean square error
between the desired target and the output of the linear unit for each training

example
N

E(w) = (tn — 0p)* (1.3)

DO | =

n=1
where N is the total number of training examples, ¢,, is the desired target
for nth example and o,, the corresponding output of the linear unit. F(w)
defines an error surface in the m + 1-dimensional real space where m is the
number of weights (including bias). The idea is to find the weight vector
w that minimizes E(w). Starting with an initial arbitrary weight vector,

2Indeed, it is not guaranteed that we are minimizing the misclassification error.

the delta rule uses the gradient descent search to adjust the weights in the
direction that produces the steepest descent along the error surface (towards
the minimum). We know from calculus that the gradient vector of a vector-
valued real function f specifies the direction of increase in f. Hence, the
gradient vector of E(w)

[O0E 9E 9B

| Owy Owy T dwy,

VE(w) (1.4)
points to the direction of increasing error, so —VE(w) gives the direction
of steepest decrease in E. Therefore, the delta rule becomes

w = w+Aw (1.5)
Aw = —nVE(w)

or, more specifically

N

Aw; = =) (tn = 0n) (—in) (1.6)

N

n=1

where x;, is the input of training example n associated with w;. This proce-
dure is proven to converge at least to a local minimum of the error surface,
whether the training examples are linearly separable or not, provided that n
is small. The learning rate n controls the amount of change in each weight.
If n is too large, the algorithm may overpass the minimum and convergence
may not be achieved; if 7 is too small, convergence may be too slow. Figure
1.2 can give intuiton to what can happen depending on the learning rate.
We can see that for a large n (dashdot red line), the learning process speed
is very high, so high that it can pass over the minimum many times. The
convergence (this is different from learning speed) is not assured in this case.
Otherwise, if 7 is small the learning speed is smaller but it is more probable
for the algorithm to reach the minimum (dashed black line).

1.3.3 Stochastic version of gradient descent

Gradient descent search is a very important learning rule because it serves
as basis for the Back-propagation algorithm used to train multilayer per-
ceptrons. However, there are several practical problems in it’s application:

it ° + 1 it + o]
osf- 1 osl-]
o 1 o]
05| 1 05|]
b ° o , St o +]

45 T =5 v os i is 45 T =5 v os i is

Figure 1.1: Graphical representation of patterns from a) AND and b) XOR

Learning convergence
T T T T T T

— true error

M ~ nlarge
— - nsmall

Figure 1.2: Different behaviours of algorithm’s convergence, depending on the value of
7.

if the error surface has many local minima, it is not assured convergence
to the global minimum and the convergence for a local minimum can be
slow. There is a modification of the gradient descent rule intended to avoid
those problems. Instead of making weight updates after a pass of all train-
ing examples by the linear unit (see equation (1.6)), the stochastic gradient
descent rule updates each weight after a pass of each training example. This
corresponds simply to consider a new error function for each example

Eo(w) = % (b — 0n)? (1.7)

and changing the update formula to
w; = w; + 1 (t, — 0p) Ty, (1.8)

where ¢, and o,, are the target and unit output for example n and x;, is
the input associated with w;. This procedure gives a reasonable approxi-
mation to the true gradient descent search and if 7 is sufficiently small this
approximation can be arbitrarily close (Mitchell).

As we will see later, this is designated as the sequential mode of training
(each example at a time) whereas the former (true gradient descent) is des-
ignated as the batch mode (update weights after obtaining the sum of the
error of all training examples).

Notice that, the derivation of the gradient descent rule (delta rule) was
based on the linear unit, mostly because the perceptron has a non-differentiable
activation function, needed in equation (1.5). The delta rule is used in the
derivation of the Back-propagation algorithm, but there, the activation func-
tion of each unit is differentiable.

1.4 Some experiments

This section is dedicated to some experiments made with the perceptron.
Each experiment tries to compare the number of iterations needed for con-
vergence varying the initial weigth vector ([0,0,0], [-0.1,0.1,—0.1] and
[—2,3,—7]) and learning rate n (0.1, 0.5 and 1). Experiments for boolean
functions and two Gaussian populations are presented.

1.4.1 Boolean functions: AND and OR

The first experiment was applied to the boolean functions AND and OR.
The results are given in Table 1.1. As we can see these are two simple

10

AND n=01 n=05 n=1]0R n=01 n=05 n=1
0,0,0] 2 2 2 2 2 2
[0.1,0.1,—-0.1] 2 2 2 1 1 1
[—2,3,—7] 19 5 2 21 6 3

Table 1.1: Number of iterations needed for the perceptron to converge varying the
initial weight vector and 7 for the case of boolean AND and OR.

examples (the two classes are well separated) of use of the perceptron. We
see that the use of small initial weight values implies a reduction in number
of iterations needed to convergence. Using large initial weight values like
[—2,3,—7] caused a great increase in number of iterations needed, except
when the learning rate n was large too. Of course, if we start far from the
optimum value, a large 7 can rapidly take the process to convergence, as
we can see from the last line of Table 1.1. Figure 1.3 show an example of a
decision line obtained for these examples.

(a) (b)

Figure 1.3: Graphical representation of patterns from a) AND and b) OR with a decision
line corresponding to n = 0.1 and initial weight vector [—0.1,0.1,—0.1]

1.4.2 Two Gaussian populations

The next experiments applied the perceptron to two bivariate Gaussian pop-
ulations (Gaussianl and Gaussian2) to obtain a decision line. Figure 1.4
shows graphical representations of the patterns for each population includ-
ing a final solution to the problem.

11

Figure 1.4: Graphical representation of patterns from Gaussian populations a) Gaus-
sianl and b) Gaussian2 with a decision line corresponding to 7 = 0.1 and initial weight
vector corresponding to the minimum number of iterations (see Tables 1.2 and 1.3)

The experiments were conducted as before and results are given in Tables
1.2 and 1.3. Below the number of iterations we present the final weight
values in the form [wy, wy, ws]. Table 1.2 presents the results for population

n=0.1 n=20.5 n=1
[0,0,0] 48 48 48
[88.6,—13, —31.8] [443,—65.2, —159] [886, —130.4, —318.1]
[—0.1,0.1, —0.1] 16 16 16
[33.9,-8.9,—6.4] [169.9, —45.1,—31.6] [339.9, —90.3, —63]
[—2,3, 7] 31 47 47

[55.8,—9.8,—17.5] [418,—68.1,—139.9] [836,—136.8, —282.6]

Table 1.2: Number of iterations needed for the perceptron to converge (below is pre-
sented the final weight vector) varying the initial weight vector and 7 for the case of
Gaussianl.

Gaussianl. We can see that n doesn’t affect the results except for the case of
larger initial weight values. The best results are obtained with small initial
values, different from zero, were only 16 iterations were needed. Results from
population Gaussian2 are similar to the previous except that there isn’t a
great difference between the different conditions. The number of iterations
are close, but again, with small initial weight values we need less passes of the
algorithm. It is obvious (and expected) that in Gaussian2 more iterations
would be needed, because the separability of the two classes is less evident
and more difficult to obtain.

12

n=20.1 n=20.5 n=1

[0,0,0] 63 63 63
[32.2,-23.3,15.6] [161,—116.5,77.9] [322, —233, 155.7]

[—0.1,0.1, —0.1] 69 69 69
[34.1,—25.1,16] [170.9,—125.9,80.6] [341.9, —252, 161.3]

[—2,3,—7] 71 76 76
[33.6,—24.6,15.8] [181,—134.6,85.1] [368, —273, 171.5]

Table 1.3: Number of iterations needed for the perceptron to converge (below is pre-
sented the final weight vector) varying the initial weight vector and 7 for the case of
Gaussian2.

There is an interesting thing that the previous Tables show. The final
weight vector for n = 0.5 is a multiple of the final weight vector for n = 0.1
(indeed, we have the proportion 0.5/0.1 = 5). This can be explained by
the fact that the adjustments made to the weight vector are simply to sum
or subtract the inputs multiplied by 7 (see equation 1.8), and so, 7 is only
a re-scaling factor. This happens in almost of the cases, except for the
combination (n = 0.1,[—2,3,—7]) which is very strange. We can also see
that with this combination, the number of iterations differ from the other.

13

14

Chapter 2

Multilayer Perceptron

2.1 Introduction

Multilayer perceptrons (MLP) are natural extensions of the single perceptron
to network architectures with more than one layer of units or neurons. This
networks consist of an input layer constituted by a set of sensory units or
source nodes (input variables), one or more hidden layers (with one or more
neurons) and an output layer with one or more neurons. The network is
used in a simple manner: each pattern is propagated in a forward direction
on a layer-by-layer basis.

MLP’s are trained with the back-propagation learning algorithm. This
algorithm consists in two passes through the network. The first, in a forward
direction, propagates a pattern from the input to the output layer, producing
the actual response of the network, that is usually different from the desired
response (target) for that pattern. This produces an error signal that is
then propagated backward through the network and the network weights
are adjusted in accordance with an error-correction rule (based on the error
signal obtained), in a way that the actual response become closer to the
desired response. This is the second pass.

Figure ref shows the architectural graph of a MLP with one hidden layer
and an output layer. It is presented the model of a fully connected network
where each neuron is connected to all the neurons in the previous layer
(or input nodes in case of the first hidden layer). The left to right arrow
direction shows the way every pattern is propagated through to obtain the
network’s actual response.

In the forward pass, each neuron in the network behaves like the single
perceptron. The only difference is the smooth nonlinear activation function

15

applied to the linear combination. A well known and used form of nonlin-
earity is the sigmoidal nonlinearity which the logistic function is an example

1

= — > () 2.1
14 eas “ (21)

p(s)
Another example is the hiperbolic tangent function

efs —e=hs

©(s) = atanh(fs) = a,>0 (2.2)

efs + e s
Each hidden neuron or output neuron is designed to perform two com-
putations

1. Apply the nonlinear activation function to the linear combination ob-
tained from the inputs to that neuron and weights connected to it.
This is the forward pass.

2. Compute an estimate of the gradient vector (in terms of local gradients
of the error surface with respect to the weights connected to the inputs
of that neuron) used to make weight adjustment. This is needed for
the backward pass.

2.2 Back-propagation algorithm

Let us consider x,, = (Z1n, ..., Tan) as the nth d-dimensional training exam-
ple with target vector t, = (tin,...,tmn), N the total number of training
patterns and o,, = (01, . .., 0 is the corresponding output of the network

for x,,. Of course, ¢ = m is the network’s number of output neurons. The
back-propagation (BP) algorithm used for training MLP’s is based in an
error-correction learning rule. This learning rule is based in an estimate of
the Mean Square Error (MSE) given by

1 N
oy = > E, (2.3)
n=1
where
1 C
E, =3 e, (2.4)
j=1

16

and e;, = (tj, — 0;n), the error signal. For now on, the subscript n will be
dropped except for FE,. The BP algorithm applies a correction Awj; to the
corresponding weight based on the delta rule

oE,

ji

(2.5)

where 7 is the learning rate of the BP algorithm and wj; is the weight
connecting neuron j to neuron ¢ in the previous layer. The minus sign in
(2.5) is used to force the search on the weight space to be in gradient descent
(looking for lower values of E,,). Using the chain rule

ok, 8En%% v,
6wji N (963' (9y] ij (9UJJ'Z'

and some analytic manipulations we can see that

oF, ,
= —6€i¥; (vj)yi

8wji

Taking

0; = ej¢p;(v5)
it is easily seen that

Awj; = no;y; (2.6)
where 6; is the local gradient at output neuron j. This is the way to compute
the changes for the weights connected to each output neuron. For weights wj;
when j is an hidden neuron we have the problem of computing e; because
there is no direct measure of error at that point. This problem is solved

by back-propagating through the network the error obtained in the output
layer. The local gradient for an hidden neuron j can be written as

5. — _O9En0y;
/ (9y] ij
oE,

= —8—%%(%‘)

Using again the chain rule of calculus and some straightforward calculations,
we can derive the expression of the local gradient of an hidden neuron j

8 =5 (0;) > Srw;
k

!Recall from the previous chapter.

17

where ¢y, is the local gradient of neuron k in the next layer and wy; is the
connecting weight between neuron j and neuron k.

In the derivation of the expressions for the local gradients J; we saw that
they depend on <p;-(.), the first derivative of the activation function ¢;(.).
Here we will consider that every unit has the same activation function, so
©;(.) = ¢(.) V. The activation functions considered (logistic and hyperbolic
tangent) are both continuosly differentiable. For the logistic function we
have
/ ae Y
o (v;) = 1+ e’o‘”ﬂ')Q

As y; = ¢(vj) we may write

/

¢ (v;) = ay; (1 —yj)

hence, for an output neuron j (where we can write y; = 0;)
0; = a(t; —o5) 05 (1 —05)

In the case of an hidden neuron we have

0= ay; (1—y;) > Sy
k

For the hyperbolic tangent function we have

/

£ (1) =2 (0 —) (ot)

and for a neuron j in the output layer

B
0 = o (t; O]) (a Oj) (a+05)
and for an hidden neuron
0; = é(a—y’) (@ +y;)) Sk
J a J J - J

As we can see, it is possible to compute the local gradients without knowing
an explicit expression for the activation function.

18

2.3 Some issues about BP learning

2.3.1 Representational ability of MLP’s

As we have seen in the previous chapter, MLP’s with just one hidden layer
are capable of representing every boolean function (Mitchell). The power
of feedforward MLP’s is in two other results. The first one states that
every bounded continuous function can be approximated with arbitrarily
small error by a network with two layers of sigmoid units (Mitchell, Bishop).
This is a very important result because in classification we have in general
continuous decision boundaries and, hence, we only need to restrict ourselves
to networks with only one hidden layer. Of course, the number of hidden
neurons depend on the complexity of the decision boundary. The more
general result states that any function can be approximated to arbitrary
accuracy by a network with three layers.

2.3.2 Convergence and local minima

The back-propagation algorithm is a powerfull algorithm capable of imple-
ment an approximation to gradient descent search through the space of
possible network weights. However, because the error surface may contain
several local minima, backpropagation is only assured to converge to a local
minimum of E. Fortunately, in practice, having a minimum with respect
to some weight doesn’t mean that it is also for the other weights and so,
gradient descent can proceed. In the next sections we discuss some cautions
that can avoid local minima.

2.3.3 Initial weight values

Initialization is an important issue of MLP training. A suitable choice for
the initial conditions can be of extreme importance, leading to a good final
solution and also to an improvement in the learning speed. Usually, the
initial weight values are taken randomly from a certain distribution with
a prespecified mean and standard deviation. Taking small initial weight
values causes BP to operate on a very flat area around the origin which is a
saddle point (Haykin, Bishop). Otherwise, large initial values could leave the
neurons into saturation. We should take for initial weights (including bias),
values from a zero-mean uniform (Haykin) or sphericall Gaussian (Bishop)
distribution with variance chosen to make the standard deviaton of v; lie at

19

the transition between linear and saturated parts of the activation function.
This amounts to choose ¢, = m~'/2, where o, is the standard deviaton of
the weight distribution and m is the number of connections of a neuron.

In practical cases it is usually used an heuristic method to generate the
initial weight values: random generation from an uniform distribution in
some interval of the type [—a,a] (usually a = 0.1).

2.3.4 Learning Rate

The learning rate parameter 7 controls the rate of convergence (or diver-
gence, in some cases) of the BP algorithm. A smaller n causes smaller
weight changes as we can see from (2.5). This causes the trajectory in the
weight space smoother and closer to the one computed by the method of
steepest descent. Of course in this case we have a slower rate of learning.
On the contrary, if 7 is large, weight changes will be greater and the speed of
learning will be increased. The problem is that if 7 is too large the network
may become unstable and convergence isn’t guaranteed as we have seen in
the previous chapter (see Figure 1.2). Several methods to choose appropri-
ately the value of n are discussed in the literature, including versions of BP
with adaptive learning rate. The latter reduces 7 at each iteration (epoch) to
ensure convergence. Others use different learning rates for different weights.
Empiricaly it is known that 7 should be chosen small and in the interval
[0,1]. A typical choice is n = 0.1 (Haykin).

It is possible to increase the learning rate without having convergence
problems. This is done by modifying the delta rule to a generalized form by
adding a momentum term

Awj; = ozAw?[l + 100inYin (2.7)

where o > 0 is the momentum constant. This is not studied in this report.

2.3.5 Training Mode

There are also some issues concerning the network’s training mode. The
first one is randomization of the training set. This procedure allows a ran-
dom presentation of the patterns to the network, preventing some cycling
behaviours (like presenting all patterns of class 1, then all patterns of class 2,
etc.) that tend to speed down the algorithm or biasing the weights estimates.
This randomization tends to make the search in weight space stochastic over
the learning cycles (Haykin).

20

Second one is the way training itself is done. We have two methods

1. Sequential mode.

In this procedure (also referred as on-line, pattern or stochastic mode)
weight updating is performed after each pattern is presented to the
network: a pattern is chosen randomly and is forward propagated
through the network; an error signal is obtained and back propagated
to perform the weight updating. Then, another pattern is presented
and so on untill one epoch is completed. Note that the above derivation
of BP was based in the sequential mode of training.

2. Batch mode.
In this procedure, weight updating is done after one epoch of training
examples is presented to the network. This requires minor changes in
the weight update expressions. Here

N c
Eq = % d) e, (2.8)

n=1 j=1

and the adjustment applied to w;; becomes (dropping n)

i al Oe;
Aw;; = —— .ni 2.9
wj N ;e] dw;; (2.9)
where gzj]’: can be computed as before.

The question that arises at this moment is: which method to choose?

In this report the sequential mode is preferred. The reasons are described
below.

Advantages sequential mode (Haykin,Bishop)

e requires less storage for each weight

e possibility of escaping from local minima because of the stochastic
search in weight space

e prevents problems with training set redundancy (if it is the case)
e popular and simple to implement algorithm

Advantages batch mode (Haykin)

21

e casier to establish theoretical conditions for convergence
e provides an accurate estimate of the gradient vector

e casier to parallelize

2.3.6 Activation function

As we saw earlier, MLP training with back-propagation uses nonlinear sig-
moidal activation functions. Two examples were given: the logistic function
and hyperbolic tangent function. Which of them is the best? By (Haykin),
it is preferable an antisymmetric activation function (i.e, odd function) be-
cause, in general, the learning process is faster. This is the case of the
hyperbolic tangent function

o(v) = atanh(5v)
Suitable values for constants o and are (LeCun 1989,1993)

a = 1.7159
5 = 2/3

The reason for choosing an antisymmetric function is that the output of each
neuron is permitted to assume both positive and negative values in intervals
of the type [—a, a]. In the case of the logistic function, the output is restricted
to [0, 1], introducing a source of systematic bias for those neurons beyond
the first hidden layer (Haykin).

On the other hand, sigmoid logistic activation functions provide at net-
work’s output an approximation to posterior probabilities of each class as
we will see in a next section. This provides a classification rule based on the
Bayes rule.

2.3.7 Target encoding

The target value of each pattern must be within the range of the activation
function (otherwise we could have a large MSE value). It is also recom-
mended (Haykin) an offset by some amount ¢ of the form

tjzl—eortj:()—i—e

for the case of the logistic function. This prevents saturation of neurons and
can speed up the learning process.

22

2.3.8 Pre-processing of input data

Also important in a practical point of view is the normalization of the train-
ing set (Le Cun, 1993) suggests some normalization procedures applied in
this order

1. mean removal of each input variable
2. the input variables should be uncorrelated (using PCA for example)

3. covariance equalization of the decorrelated variables (allowing an ap-
proximately equal learning speed of each weight)

A typical procedure for normalizing the input data is to standardize each
input variable

Si
where z; is the pre-processed variable, Z; and s; is the mean and standard
deviation respectively of input variable x;.

2.4 Multi-class classification problem

For a M class (M > 3) classification task, the network built needs, in theory,
a total of M output neurons to represent all possible classification decisions.
Using binary target values (for each output neuron with logistic activation
function), each class is represented by a vector of the form

0

i (2.10)

| 0
where the only 1 appears at position k. In this way, the above vector is
associated with a pattern from class k& (k = 1,2,..., M). We may, thus,
associate the output of a MLP trained with BP to an asymptotic approxi-
mation of the underlying a posterior: class probabilities. Indeed, by the work
of (White, 1989a; Richard and Lippmann, 1991) the conditional expectation
of the desired response vector, given pattern x, equals the a posteriori class
probability (see Haykin for more details).

23

So, if the training size is large enough and BP doesn’t converge to a
local minimum, we can use the MLP output as an approximation of the
a posteriori class probabilities. This gives hints on a decision rule for this
general problem based in the usual Bayes rule

pattern x belongs to class & if oy (x) > 0;(x) Vj # k

where 0;(.) is the jth output of the network.

In practice, if we use the offset strategy suggested in previous sections
the outputs are no longer exactly the a posterior: class probabilities but a
mapping to the closed interval [¢, 1 — €] in a way that P (class k|x) = 0 is
mapped to an output € and P (class k|x) = 1 onto 1 — €.

2.5 Generalization

One of the objectives of classification tasks is to build a classifier not only
for the training set (used to build the classifier) but also to unseen patterns
(drawn from the same population of the training set) of a test set. This
is known as generalization. The neural network learning process may be
viewed as a curve-fitting problem, where the aim is to approximate the
input-output mapping (in a mean square sense) of the underlying training
distribution. One of the problems encountered is the possible overfitting of
the training data due to an excessive training. This causes the network to
learn too much the training patterns (and usually, the natural noise that
exists is also modeled) loosing ability to predict new unseen patterns with
different (but similar) input signals. The final product is a non smooth input-
output mapping extremely adapted to the training set. Thus, the idea is to
search a model that is a tradeoff between smoothness (which implies better
generalization capability) and approximation of the input-output mapping
according to a certain criterion (in this case MSE).

This poses the problem: when do we stop the training procedure (i.e,
number of iterations or epochs)? A standard tool usually used to overcome
this issue is to consider a validation subset of patterns that are not used to
train the network. The procedure can be as follows: at each epoch, after
weight adjustments, evaluate the validation subset with the actual model to
compute MSE for test patterns. We will probably get something like Figure
2.1. Then we should choose the number of epochs that made the MSE of
validation set minimum.

24

2.6 Estimating misclassification error: cross-
validation

The final task of a classification problem is to access an estimate of the
misclassification error of the chosen model. Recall that the objective is to
classify a pattern in one of M classes. To reach to a final model we used
an error measure that is differentiable: the mean square error. Note that
this measure is different from misclassification. Indeed, a pattern can be
correctly classified, but can contribute to MSE.

In order to obtain an accurate estimate of misclassification error, we use a
standard statistical tool known as cross-validation. The total set of available
patterns is divided in k subsets. Then we use subset 1 for test set and the
model is built with the other k& — 1. The misclassification error (according
to the Bayes rule) is obtained for test set. Then, subset 2 is used as test set
and the model built with £ — 1 and so on & times. At the end, we use the
mean of the k errors obtained as an estimate of the misclassification error.

The question of which value should we choose for k& then arises. Using
k = N where N is the number of training patterns we get a special case
of cross-validation known as leave-one-out. In this case, cross-validation
is approximately unbiased for the true prediction error, but can have high
variance because the N training sets are very similar. Also, it is more
computational expensive because we have to build N models. If k is small
we can overestimate the true prediction error. In practice, it is usually used
k = 10 as a compromise between bias and variance.

EEEEE

Figure 2.1: Training and validation errors used to choose the number of training epochs.

25

