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1 Nonparametric Density Estimators 

1.1 Estimability of Functionals 

The first question to be addressed is whether or not a given functional q(F), where F 
belongs to a family of distributions F, is estimable based on a sequence of i.i.d. random 
variables X1,…, Xn. 
Reference [15] defines estimability in the following way: q(F) is estimable with n 
observations if there exists a statistic δ( X1,…, Xn) such that 
 

( )[ ] )(,...,1 FqXXE nF =δ  
 
Therefore, estimability means the existence of unbiased estimators. 
Reference [15] explains the necessary and sufficient conditions of estimability for a 
convex family1 of distribution functions and presents examples of estimable and non-
estimable functionals. Here are some of them: 
 
Examples of estimable functionals: 

• The variance: )()( 2 FFq σ= . 
• q(F) = F(x0) for some fixed x0 ∈ ℜ. 
• ∫ℜ= )()exp()( 0 dxFxitFq  

 
Examples of non-estimable functionals: 

• q(F) = f(x0) for some fixed x0 ∈ ℜ. 
• The regression function of Y on X: ∫∫=

RR
dyyxfdyyxyfFq ),(/),()(  

• The conditional density of Y given x: ∫=
R

dyyxfyxfFq ),(/),()(  

 
Although unbiased estimators do not exist in general for f, it is possible to define 
sequences of density estimators, nf̂ , asymptotically unbiased: 
 

)(])(ˆ[lim xfxfE nF
n

=
∞→

 

1.2 Histogram-Based Density Estimator 

We are given a random sample {x1,…, xk, …, xn}observations of i.i.d. r.v. from an 
unknown absolutely continuous pdf. 
 
We restrict ourselves to the univariate case. 

                                                 
1 F is a convex family if for every F,G∈F and 0 ≤ α  ≤ 1, αF + (1-α)G∈F. 
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If the unknown pdf, g(x), has an infinite support we content ourselves with estimating 
the truncated density 

[ ]




 ∈= ∫

otherwise
baxdttgxgxf

b
a

0
,)(/)()(  

 
Let us partition the interval by a = t0 < t1 < …< ti < … < tm = b. (We use "ti" for no 
confusion with the xk.) 
 
Let us denote:  

Ti = [ti, ti+1[;  

i
n
k iTkxi TtIq ∈= ∑ = ∈ ,1  (# cases falling in Ti); 

iii ttTl −= +1)( . 
 
Histogram: 
 

[ ]







∉
=
∈
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Histogram-based density estimator: 
 

[ ]







∉
=
∈

= −

bat
btTltp
TtTltp

tf m

ii

H

,0
)(/)(

)(/)(
)(ˆ

1  
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1×0.2 + 0.5×0.2 + 2×0.2 + 0.75×0.4 =1 

 
Rationale: The variable qi is a multinomial r.v. Thus, nqi /  estimates ∫ iT

dttf )( . If f is 

absolutely continuous and Ti is small, then )()( itftf ≈  for iTt ∈ . Hence, 
))(/( ii Tlnq ×  estimates f(t). 

Properties (for details, see [9]): 
 

• Let us assume an estimator based on assigning quantities ci to the Ti intervals. 
Among all such estimators Hf̂  uniquely maximizes the likelihood L(c0,…, cm-1). 

• Theorem: Suppose that f is bounded and has continuous derivatives up to order 
three except at the endpoints of [a,b]. Suppose equal spacing, ti+1 − ti = 2h(n) ≡ 
2hn. Then, if n → ∞ and hn → 0 such that nhn → ∞, for x ∈[a,b] 

 

( ) ( ) 0)()(ˆ)(ˆ 2
→



 −= xfxfExfMSE HH  

i.e., Hf̂ is a consistent estimator for f(x). 
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• The proof of the above Theorem leads to the results2 

 

( ) )()/1(´)´´(
362

´)(´)(ˆ 52
4

n
n

n
H hOnOxf

h
nh

xfxfMSE +++=  

and 

( ) )()/1(´)´(2´)()(ˆ 322
nn

n
H hOnOhxf

nh
xfxfMSE +++≤ , 

 
is based on a Taylor series development around the midpoint x´ of the interval 
containing x and uses the well-known result3: 
 

( ) ´))(ˆ(´))(ˆ(´)(´)(ˆ 22
xfVarxfBiasxfxfE HHH +=



 −  

• From the formula of ( ))(ˆ xfMSE H  one may select 
( )

3/1
3/1

2´)´(4
´)( −












= n

xf
xfhn  to 

obtain convergence throughout the kth interval of order n-2/3. 
 

• The integrated mean square error is minimized by selecting 
 

( )
3/1

3/1

2)´(4
1 −












=

∫
n

dxxf
hn  

to obtain 

( ) ( ) 





 ++



≤= −∫∫ 33/2

3/1
2 1)´(

2
13)(ˆ

nH h
n

OndxxfIMSExfMSE  

1.3 Rosenblatt's Kernel Estimator 

Rosenblatt's estimator (introduced in 1956) is an extension of the histogram-based 
estimator: 
 

] ]
n

nn
n nh

hxhx
xf

2
,inpointssample#

)(ˆ +−
= ,

 
i.e., we shift the interval such as to center it 
at x. 0 1

0.25

hn=0.2; 2nhn=0.25

 
 
                                                 
2 Note that )(ˆ xf H is a r.v. (dependent on {X1,…, Xk, …, Xn}); f(x) is a constant. 
3 Therefore a convergence in the MSE sense is equivalent to a convergence of the mean 

( ffE H
∞→

→
n

]ˆ[ ) together with a convergence of the variance towards zero ( 0]ˆar[
n ∞→
→HfV ). 
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The estimate can also be written as: 
 

n

nnnn
n h

hxFhxF
xf

2
)()(

)(ˆ −−+
=  

 
where Fn(x) is the empirical distribution (also called empirical measure in the previous 
tutorial). 
 

∑
=

∈=
n

i
AiXn I

n
A

1

1)(µ , A ⊂ ℜ 

 
For A = ]-∞, x], )()( xFA nn =µ  0 10.2 0.4 0.6 0.8

Fn(x)

 
 
The shifted histogram estimator of Rosenblatt can be represented as: 
 

∑
=








 −
=

n

i n

i

n
n h

xx
w

hn
xf

1

11)(ˆ  

 

where 


 <

=
otherwise

u
uw

0
1||2/1

)(  is the kernel (rectangular). 

 
Properties (for details, see [9]): 
 

• In the same conditions as above: 
 

( ) )1()´´(
362

)()(ˆ 42
4

n
n

n

n
H h

nh
oxf

h
nh

xfxfMSE +++=  

 
• One may minimize the first two terms in the above formula, 

selecting
( )

5/1
5/1

2)´´(2
)(9 −












= n

xf
xfhn  to obtain an MSE of order n-4/5. Therefore 

the MSE of Rosenblatt's estimator decreases faster than the fixed grid histogram 
estimator (order of n-2/3). 

• The integrated mean square error is minimized by selecting 

( )
5/1

5/1

2)´´(2
9 −












=

∫
n

dxxf
hn ,  yielding 5/4~ −nIMSE . 
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1.4 Parzen Window Estimator 

The Parzen window estimator is a generalization of the shifted-histogram estimator, 
introduced by Parzen in 1962 [1]: 
 

∑
=








 −
=

n

i n

i

n
n h

xx
K

hn
xf

1

11)(ˆ , 

 
where K(x), the kernel function, is any Borel function4 satisfying: 
 
i. Boundedness: ∞<

ℜ
Ksup  

ii. K ∈ L1: ∫ ∞<K  

iii. Decreasing faster than 1/x: 0)(lim =∞→ xxKx  

iv. ∫ = 1K . 
 
The Parzen window estimator can also be written as a convolution of the window with 
the (derivative of the) empirical distribution: 
 

( )∫∫ −=






 −
= )()(1)(ˆ ydFyxKydF

h
yxK

h
xf nnhn

nn
n , 

 

where 







=

nn
nh h

xK
h

xK 1)( .  The positive constants hn are the bandwidths. Note that 

∫ ∫= KK nh .  

 
Convolutions enjoy a series of properties given in Appendix. Particularly note the 
smoothing imposed by convolutions with a large class of kernels (Fourier Transform 
property). For a large class of kernels )(ˆ xfn  is a blurred, smoothed, version of f(x). 
 
In the following we often use, for simplicity reasons, the notation h, Kh and fn instead of 
hn, nhK and nf̂ , respectively. 

 
A central role in the consistency of this estimator is played by the following: 
 
Lemma (Bochner, 1960): Let K be a Borel function satisfying i, ii and iii. Let g ∈ L1 
and 

( ) gKdyygyxKxg hhn ⊗=−= ∫ )()(  
 

 If hn is a sequence of positive constants having 0lim =∞→ hn  the following holds (at 
every continuity point of g): 
                                                 
4 A Borel function is a measurable function. A continuous function is a Borel function. 
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∫=∞→ dyyKxgxgnn )()()(lim  

• 
In [2] (Devroye, 2001) this Lemma is stated as an equivalent Theorem, stating: 
 

0lim
0

=−⊗∫ ∫
→

KgKg h
h

 

 
Sometimes the Parzen window estimator is written as 
 

∑
=








 −
=

n

i

i
n h

Xx
K

nh
xf

1

1)(  

to stress the fact that fn(x) is a r.v. 
The r derivative of f(x) is estimated by [6] 

∑
=

+ 






 −
=

n

i

ir
r

r
n h

Xx
K

nh
xf

1

)(
1

)( 1)( . 

 
Properties (for details see [1], [2], [9], [11], [14-16]): 
 

• If K is an even function we have: 
 

xn =µ ; ∫+= dxxKxhsn )(2222σ  
 

The proofs are in [9]. 

• The estimate is unbiased: [ ] )()(lim xfxfE nn =∞→ . A direct corollary of the 
above Lemma. The proof is in Appendix. 

• If in addition to 0lim =∞→ hn  the bandwidths satisfy  nhn → ∞ (they decrease 
less than 1/n) the estimate verifies: 

 
[ ] ∫=∞→ dyyKxfxfnh nn )()()(Vlim 2  

 

For a Gaussian kernel: [ ]
πnh

xfxfnn 2
)()(Vlim =∞→  

• From the two preceding results follows that the estimate is consistent: 
 

( ) 0)( →xfMSE n . 
 

• The consistent estimate, for a density having r derivatives, verifies: 
 

( ) 2)(222 )()()(~)( xfkhdyyK
nh

xfxfMSE r
r

r
n

n
n +∫

∞

∞−

, 

 
where kr is the characteristic exponent of the Fourier transform of K(x), that we 
denote k(u), defined as: 
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









 −
=

→ ru
r

u

ukk )(1lim
0

 

For the Gaussian kernel: 
 

2/22/2
)(

2
1)( ux eukexK −− =⇔=
π

 

)(
2

1
!

)2/(1)( 4
2

1

2
uOu

i
uuk

i

i
+−=

−
+= ∑

∞

=
 

 
Thus: kr = ½, for r = 2. 
 
Any even kernel having x2K(x) ∈ L1 has a nonzero finite kr for r = 2. 
 

• The optimal MSE is given by: 
 

( )
)12/(2)(

)12/(2
2 )()(

2
)()12(~)(

+
+∞

∞− 











+ ∫
rrr

r

rr

nopt xfkdyyK
nr
xfrxfMSE  

 
Thus, the decrease of the MSE is of order )12/(2 +− rrn . Therefore, for symmetric 
x2K(x) ∈ L1 kernels the decrease obtainable is of order n−4/5 as good as for the 
shifted histogram. 
 

• The optimal integrated mean square error of the consistent estimate in the above 
conditions is obtained for: 

)()()12/(1 fKnh r
n βα+−=  

with 

( )

)12/(1

2

2

!/)(2

)(
)(

+
















=

∫
∫

r

r rdyyKyr

dyyK
Kα  

)12/(12)( )()(
+−





= ∫

r
r dyyffβ  

 
For symmetric x2K(x) ∈ L1 kernels we have: 
 

)()(5/1 fKnhn βα−=  
with 

( )

5/1

22

2

)(

)(
)(
















=

∫
∫

dyyKy

dyyK
Kα  

[ ] 5/12)´´()(
−

∫= dyyffβ  
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Some values for α(K): 
 

K  α(K) 

K(y) = 1/2 |y| ≤ 1 1.3510 

K(y) = 1 - |y| |y| ≤ 1 1.8882 

( )221
16
15)( yyK −=  |y| ≤ 1 2.0362 

2/2

2
1)( yeyK −=
π

|y| < ∞ 0.7764 

 
The difficulty lies in the fact that β(f) is generally unknown. One could consider 
iteratively improving an estimate of β(f). 

For the Gaussian density with standard deviation σ, we have: 
 

5/152 06.13637.1)(212.0)´´( −− ≈⇒≈⇒≈∫ nhfdyyf n σσβσ  
 
Some values of optimal h100 using a Gaussian kernel: 
 

Density β(f) h100 
N(0,1) 1.3637 0.42 

.5N(-1.5,1)+.5N(1.5,1) 1.6177 0.50 
t5 1.0029 0.31 

F10,10 0.4853 0.15 
 
Quoting reference [9]: "kernel estimators are not in general robust against poor 
choices of hn". 

Reference [11] mentions the use of 5/179.0 −= Rnhn , where R is the interquartile 
range, for skew distributions. 
 

• The optimal IMSE for symmetric x2K(x) ∈ L1 kernels is given by: 
 

5/41 )()(
4
5 −−= nfKCIMSE β  

The quantity C(K) is minimized for the Epanechnikov kernel: 
 







≤≤−





 −=

otherwise

tttKe
0

55
5
11

54
3

)(
2
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Reference [11] indicates the efficiencies (IMSE or C(k) ratios) of other kernels 
compared to Ke. The efficiency of the Gaussian kernel is ≈ 0.9512. 
 

• The errors of the consistent estimate are asymptotically normal: 
 

[ ]
[ ] )(

)(
)()(

lim 1,0 cNc
xf

xfExf
P

n

nn
n

=








≤
−

∞→ σ
 

 
• By the bounded difference inequality: 

 

[ ]( ) ( )22 2/
2 ∫−

≤≥−−−∫ ∫
Knt

nn etffEffP  
 

• Schuster's Lemma [6]: If f and its r+1 derivatives are bounded and if {εn} is a 
sequence of positive numbers such that hn = o(εn), then there exist positive 
constants C1 and C2 such that 

 
{ } )exp(sup 222

21
)()( +−≤>− r

nnn
rr

n hnCCffP εε  

 
for sufficiently large n. 

 
• Suppose that one of the Xi changes value while the other n-1 data points remain 

fixed. Let *
nf denote the new perturbed estimate. Then: ∫ ∫≤− K

n
ff nn

2*  

(Parzen window estimates are stable). See proof in Appendix. 

• The Parzen window estimator is a regularized estimate of the density ([3]). 

2 Entropy Estimation Based on Parzen Windows 

2.1 Plug-in Estimates 

We only consider the Shannon functional: ∫−= dxxfxffH )(ln)()( . 
 
Plug-in estimates [5] are based on using a density estimate fn obtained from the data.  
There are four types of plug-in estimators: 
 

• Integral estimator 
• Resubstitution estimator 
• Splitting data estimator 
• Cross-validation estimator 
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We'll only consider the first two: 
 

1. Integral estimator: ∫−=
nA nnn dxxfxffH )(ln)()(  

 
This estimator requires numerical integration. An typically excludes tail values of the 
distribution.  
 
Theorem (strong consistency; Dmitriev and Tarasenko, 1973: [6]): Assume that a 
function M exists such that 

xxM
yfxy

∀≤
≤

)(
)(

1sup  

If 4/1)( −= nnh and An = [-kn, kn] with )( 10/11 nMkn
−= , then Hn(f) converges to H(f) 

a.s. 
 

2. Resubstitution estimator: ∑
=

−=
n

i
inn Xf

n
fH

1
)(ln1)(  

 
(This estimator seems to have been first proposed by I.A. Ahmad and P-E Lin in 1976; 
[8].) 
 
Properties for discrete distributions [7]: 
 

• The resubstitution estimate is strongly universally consistent (also 
consistent in L2). 

• [ ] HH n ≤E ; [ ] nnH n /lnV 2≤  

• [ ]{ } nn
nn eHHP

2ln2/2
2E εε −≤>−  

• There is no universal convergence rate of HH n − . In other words, the 
convergence of Hn to H can be arbitrarily slow. 

 
For continuous distributions [8], [12]: 
 

• L1 consistency [8]: If ∞→nnh as ∞→n , [ ] ∞<∫ ff 2ln , f' is continuous and 

sup| f' | < ∞, ∫ ∞<duuKu )(||  then [ ] 0E
∞→

→−
n

n HH . 

• L2 consistency [8]: If, in addition, ( ) ∞<∫ )()(/)(' 2 xfxfxf  (finite Fisher 

information number) then 0]E[ 2

∞→
→−

n
n HH   

 
Refernce [8] states that the above conditions are mild and are satisfied by the following 
distributions: Gamma distribution with α = 1 and β = 0 or α > 2 and β > 0; Weibull 
distribution with parameters α > 0 and β > 2; normal distribution. 
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• Almost sure consistency: HH
n

n
∞→

→ a.s., under certain mild conditions stated in 

[13] (the multivariate case is studied). 

• Reference [13] presents upper bounds for the moments of HH n − . The 
formulas are complex, dependent on the support limits (stated above as [a, b]; 
denoted [-Kn, Kn] in [13], since they vary with n) and applicable only when 

{ } 0);(inf)( >≤= uxxfuϕ  (analogous for the multivariate case). Therefore, 
their formulas do not apply to densities with restricted support.  
Here is the formula for the first order moment (univariate case): 
 

[ ] 11
3

2/1
2

22
21

1 /ln)1()(ln)1()
2
1exp()1()()0( −−− ++−+








+≤− ρϕεϕε nnnnnn

n
nn KKcKnchnccK

nh
KHHE  

3 Appendix 

3.1 Asymptotic Notation 

• ))(()( xgOxf = if there are constants c, x0 > 0 such that 

0,)()( xxxgcxf ≥∀≤ . In other words, an O(g(x)) term (an asymptotic upper 

bound; "order of g(x)") deviates in absolute value less than )(xgc  after a given 
x0. 

• ))(()( xgoxf = if 0)(/)(lim =∞→ xgxfx . In other words, an o(g(x)) term 
converges to zero faster than g(x). 

• ))(()( xgoxf =  implies ))(()( xgOxf = , but not vice-versa. 
• )(~)( xgxf  if 1)(/)(lim =∞→ xgxfx  ("f goes asymptotically to g"). 
• ))(()( xgxf Θ= if ))(()( xgOxf =  and ))(()( xfOxg =  ("asymptotic tight 

bound"). 
 
Examples: 
 

• sinx = O(1) 
• xsinx = O(x). However, xsinx ≠ o(x). 

• )(
2

1 3
2

xOxxe x +++=  

• ∫ = )( 43 xOdxkx  
• x = o(x2). Also x = O(x2). 
• In the calculation of ( )´)(ˆ xfMSE H  for the histogram-based density estimator, the 

expression of the variance is: 
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










++−= )(´)´´(

6
´)(2´)(

2
1´))(ˆ( 3

2
2

n
n

n
n

H hOxf
h

xfhxf
nh

xfVar  

Hence: 












++−+= )(´)´´(

6
´)(2

2
1

2
´)(´))(ˆ( 22

n
n

n
H hOxf

h
xf

nnh
xfxfVar , 

since )(/)( 23
nnn hOhhO = . Moreover, since 0→nh , we have: 







=












++−

n
OhOxf

h
xf

n n
n 1)(´)´´(
6

´)(2
2
1 22  

Finally: 







+=

n
O

nh
xfxfVar

n
H

1
2

´)(´))(ˆ(  

 
Link: http://en.wikipedia.org/wiki/Big_O_notation 

3.2 Convolution properties 

• fggf ⊗=⊗  
• hgfhgf ⊗⊗=⊗⊗ )()(  
• KgKfKgf ⊗+⊗=⊗+ )(  
• ( ) ℜ∈⊗=⊗ aKfaKaf ,)(  

• 
dx
dgfg

dx
dfgf

dx
d

⊗=⊗=⊗ )(  

• ( ) ),()( KFgFKgF ×=⊗  F ≡ Fourier transform 
• ∫∫ ∫ ×≤⊗ KfKf   (Young's inequality) 

• ∫ ∫ ∫ −≤⊗−⊗ gfKKgKf  (convolution lowers total variation; the 
proof is based on Young's inequality) 

3.3 Proof of the convergence of E[fn] to f 

We have: 

[ ] [ ] ∫
∞

∞−

−=−= dyyfyxKXxKExfE hhn )()()()(  

 
Applying Bochner's Lemma (if the respective conditions are satisfied): 
 

[ ] ∫
∞

∞−∞→
== )()()()(lim xfdyyKxfxfE n

n
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The original justification ([10]) for this result ran like this: Consider: 
 

n

nnnn
n h

hxFhxF
xf

2
)()(

)(ˆ −−+
=  where 

n
xxFn

≤
=

pointssample#)(  

 
Partition the real line into three intervals: ]−∞, x1], ] x1, x2], ]x2, +∞[. Denote: 
 

)(1);()();( 2312211 xFYxFxFYxFY nnnn −=−==  
 

Fn(x)

x1 x2

Fn(x1) = 0.5
Fn(x2) = 0.7

y1 = 0.5 
y2 = 0.2 
y3 = 0.3 

 
Then, (nY1, nY2, nY3) is a trinomial r.v. with probabilities (F(x1), F(x2) - F(x1), 1 -F(x2)). 
Thus, we have E[Fn(x)] = F(x). 

3.4 Proof of the Result on the Perturbed Density Estimate 

Assume w.l.o.g. that is the value of X1 that changes. We have: 
 

( ) ( )( ) ( ) ( )( )'
11

'
11

* 11 xxKxxK
n

xxKxxK
n

ff hhhhnn −+−≤−−−=−  

Therefore: 

( ) ( )( ) ∫∫∫ =−+−≤− K
n

dxxxKxxK
n

ff hhnn
21 '

11
*  

If ∫ = 1K : 
n

ff nn
2* ≤−∫  
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