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1 Introduction 

During a long time there was a widespread belief that there could exist, in general, a 
better learning algorithm than any other one, a better optimization algorithm than any 
other one, and so on and so forth.  
 
 

In the artificial neural network 
area how many times haven't 
we heard claims that SVM's 
are, in general, better than 
MLP's? 

 
 
Since 1992 a whole series of theoretical results, pioneered by David Wolpert, shook 
down these beliefs. 
 
These results are known as no-free-lunch theorems or NFLT for short. In rough terms 
they say that  
 
Without prior knowledge of certain conditions satisfied by the problems 
they apply to all learning/search algorithms are equally good on average.  
 
In other words, no particular algorithm provides a "free lunch" in terms of 
outperforming all other ones, on average. 
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2 No Free Lunch for Pattern Classification 

2.1 The EBF Formalism 

The Extended Bayesian Formalism (EBF) is a general framework that allows one to 
analyze properties of learning algorithms, encompassing other frameworks: Bayesian, 
statistical physics (simulated annealing), PAC and VC formalisms. 
 
Henceforth random variables are denoted by capital letters; their instances by 
corresponding lower-case letters.  
 
Consider (we follow Wolpert DH, 1995): 
 
• An input and output spaces, X and Y. 

• Training set: )},{( ii yxd = , i = 1,…, n. (Sometimes it may be convenient to 
stress the membership of the ),( ii yx  pairs of d by writing: ))(),(( idid YX .) 

• A specific (discrete or continuous) input-output relationship f: yxffxyP ,),|( = . 
A deterministic relationship corresponds to a delta function. 

• H: the r.v. associated to a discrete set of hypothesis (set of parameters to be 
learned; e.g. {wi} in NN). 

• )|( dhP : Probability of algorithm producing h when trained with d.  
For deterministic algorithms )|( dhP  is a delta function; for stochastic 
algorithms can be a broad distribution. 

• C: the error (or cost or loss function) of the classifier. The generalization error 
function is the expectation value [ ]dfhCE ,,| . For instance, the average 
misclassification rate error might be [ ]=dfhCE ,,|  [ ]=fhCE ,|  

[ ]∑ −
x

xhxfxP ))(),((1)( δ . 

There are two aspects at the core of the NFLT for pattern classification: 

1. The Extended Bayesian Formalism (EBF). This is just the usual Bayesian 
formalism (use of the prior P(f) and likelihood P(d | f) in order to compute the 
posterior P(f | d)) with the addition of )|( dhP . Thus, EBF is the probabilistic 
description of the quadruple {H, F, D, C}. 

2. Use of the misclassification rate error function, Er, in two forms: 
 
C is independent of D:  
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 [ ]∑ −==

x
xHxFxPDHFErC ))(),((1)(),,( δ   ("i.i.d. error") 

C is dependent on D:  

[ ]

∑

∑

∉

∉
−

==

XDx

XDx

xP

xHxFxP

DHFErC
)(

))(),((1)(

),,(

δ

  ("off-training-set error") 

 
Reasons to evaluate off-training-set behavior of c: 
 
i. The only real interesting issue is off-training-set behavior. Behavior in the 

training set is provided by simple table look-up. 
 
ii. For either table look-up or test sets overlapping the training set, the upper bound 

on test set error shrinks as the training set grows. 
 
iii. Very often the process generating the training set is not the same as that of test 

sets. 

2.2 NFLT for Pattern Classification 

Theorem 1. [ ]dCE |  can be written as a (non-Euclidian) inner product between the 
distributions )|( dhP  and P(f | d): 
 

[ ] ∑=
fh

dfPdhPdfhErdCE
,

)|()|(),,(|  

 
The average generalization error given a certain d and taking into account all possible f 
and h depends on the "alignment" of P(h | d) with P(f | d). Unless one can prove that   
P(f | d) has a certain form one cannot prove how well P(h | d) is aligned with P(f | d) and 
therefore cannot prove anything concerning generalization performance. 
 
Let us now consider the expected off-training-set error of the kth learning algorithm, 
for a given target function, f, and fixed training-set d: 
 

[ ] ∑ ∑

∑

∉

∉
−

=
h

k

Dx

Dx
k dhP

xP

xhxfxP
dfCE )|(

)(

)))(),((1()(
,|

δ
 

 
Similar definitions for other averages. 
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Theorem (NFLT for classification): For any two learning algorithms, P1(h | d) and 
P2(h | d), the following are true independent of the sampling distribution P(x): 
 
i. Uniformly averaged over all target functions f, [ ] [ ]nfCEnfCE ,|,| 21 −  = 0. 
ii. For any fixed training set d, uniformly averaged over all target functions f, 

[ ] [ ]dfCEdfCE ,|,| 21 −  = 0. 
iii. Uniformly averaged over all P(f), [ ] [ ]nCEnCE || 21 −  = 0. 
iv. For any fixed training set d, uniformly averaged over all P(f), 

[ ] [ ]dCEdCE || 21 −  = 0. 
 
This formulation of the NFLT is in Wolpert DH, 1995 and 2001. The proofs are in Wolpert DH, 1992 and 
Wolpert DH, 1996. 
 
Interpretation: 
 
1. [ ] [ ]( ) 0)|(,|,|

||,
21 =−∑ ∑

=f ndd
fdPnfCEnfCE ; P(f) = 1/|F| 

 
On average terms (for all f) and if all target functions are equally likely, there are no 
"good" algorithms, P1(h | d), outperforming "bad" ones, P2(h | d), i.e. with 

[ ] [ ]nfCEnfCE ,|,| 21 < . 
 
2.  [ ] [ ]( ) 0,|,| 21 =−∑

f
dfCEdfCE ;   P(f) = 1/|F| 

 
Even if we fix d, then averaged over all target functions there is no algorithm yielding 
an off-training-set error lower that any other one. 
 
3. [ ] [ ]( ) 0)()|(,|,|

||,
21 =−∑ ∑

=f ndd
fPfdPnfCEnfCE  

 
The same as 1 holds when taking into account P(f) (i.e. for non-uniform target 
distributions). 
 

[ ] [ ]nCEnCE || 21 −  is the average over all priors: [ ] [ ]( )∑ −
f

fPnfCEnfCE )(,|,| 21  

 
4.  [ ] [ ]( ) 0)()|(,|,| 21 =−∑

f
fPfdPdfCEdfCE  

 
The same as 2 holds when taking into account P(f) (i.e. for non-uniform target 
distributions). 
 
Thus: 

Without prior knowledge of P(f | d) any algorithm performs on average as 
well as random guessing. 

However, learning algorithms can differ in that: 
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1. For particular non-uniform P(f), different algorithms have different data-

conditioned risk: [ ] )()|(,| fPfdPdfCEk . 
2. For some algorithms there is a distribution-conditioning quantity (e.g., f) for 

which that algorithm is optimal. 
3. For some pairs of algorithms (A, B) the NFLTs are met by having many cases 

where A is slightly worse than B, and a few where A beats B by a lot. 

2.3 Examples 

1. 
 (Forster MR, 1999) provides the following simple illustrative example: 
Consider an imaginary universe with 2 days and in each day one object which may be a 
sphere (S) or cube (C). 
There are 4 possible histories: (S,S), (S,C), (C,S), (C,C). 
We want a learning rule that predicts the object on the 2nd day based on the observation 
of the 1st day. There are 4 learning rules 
 
Rule #1 Predict the same object 
Rule #2 Predict a different object 
Rule #3 always predict sphere 
Rule #4 always predict cube 

 
Consider first the uniformity of the histories: P(S,S) = P(S,C) = P (C,S) = P (C,C)= ¼ 
The probability of correct prediction is then the same for all rules: ½. 
 
Now, consider "uniformity of nature": P(S,S) = P (C,C)= ½;  P(S,C) = P (C,S) = 0. 
The probabilities of correct prediction are: 1, 0, ½, ½ . For the rule #1 we have a perfect 
alignment of P(h | d) with P(f | d). 
 
2. 
Duda RO, Hart PE, Stork DG (2001) provide a simple Example and an illustration of 
the NFLT implications. 
 
The following examples are from (Wolpert DH, 1995). 
 
3. 
 
• Deterministic learning algorithm trained with a particular d. Risk of interest:    

E[C | d]. 
• Empirical misclassification error is s:  E[C | s, d] = E[C | d]. 
• s is low and VCD is low. 
 
Will E[C | d] be low (since VCD is low)? (Common interpretation of VC theorems.) 
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Theorem 2.iv provides no such assurance concerning off-training-set error. 
 
4. 
 
d is split into two parts, d1 and d2. Training is done in d1, and d2 is used as a "test set". 
 
The error function is applied to both d1 and d2 but there is no consideration of off-
training-set error. The NFLTs do not apply. 
 
5. 
 
The same as before but now we are interested in the off-training-set Er(f, h, d), where 
off-training-set means off all of d. The NFLTs apply: the behavior on d, including the 
behavior on d2, tells us nothing about c, on average. (If this were not the case, behavior 
on d could be used to select the best algorithm.) 
 
6. 
 
The same as before but now we define off-training-set as all those pairs (x, y) which are 
not in d1. Moreover, we take as d2 the remaining pairs of d that cannot be found in d1 (no 
overlap). If our definition of off-training-set is no overlap, we then take 
 

[ ] ∑ ∑

∑

∉

∉
−

=
h

k

dx

Dx
k dhP

xP

xhxfxP
dfCE )|(

)(

)))(),((1()(
,|

1

δ
 

That is, our error function runs over d2 and X – dX. In this case the NFLTs do not apply. 
Indeed the behavior on d2 tells us something about the likely c behavior (confidence 
interval). 

7. 
 
In certain situations the expected off-training-set error grows as the size of the training 
set increases, even if one uses the Bayes-optimal learning algorithm. 

2.4 The Bayesian and VC Frameworks 

The analysis of these and other two frameworks is given in (Wolpert DH, 1995). 

2.4.1 The Bayesian Framework 

In the light of the previous theorems and a specific theorem for this framework 
(Theorem 3 of Wolpert DH, 1995) the main conclusions are: 
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• Known distributions:  P(f) (prior), P(d | f) (likelihood). Computed distribution: 

P(f | d) (posterior; computed by Bayes' Theorem). 
 

• This framework is concerned with E(C | d). Given any particular form for Er(f, 
h, d) we uniquely specify E(C | d) for any particular algorithm P(h | d). We are 
also able to find the P(h | d) minimizing E(C | d) (the Bayes-optimal 
generalizer). 

 
• The Bayesian framework might appear to imply that in the absence of noise one 

should search for an h which agrees often with d. This is not the case. 
 

• Even if P(f) is larger for "simpler" f in many circumstances the optimal guess is 
not given by the simplest f consistent with the data. 

2.4.2 The VC framework 

• The VC framework is concerned with confidence intervals P(|c – s| > ε |  f, n) for 
variable ε. 

 
• The VC dimension characterizes the support (over all h's) of P(h | d). Many 

bounds on P(|c – s| > ε |  f, n) depend only on n, VCD and ε. 
 

• In the illustrative single-h case, where P(h | d) always guesses the same h, c does 
not vary in P(|c – s| > ε |  f, n); rather s does. 

 
• In the coin-tossing analogy the VC framework's distribution of interest is 

analogous to the coin-flipping distribution P(|c – s| > ε |  c, n). However, our 
interest is on P(|c – s| > ε |  s, n). 

 
• The behavior of P(|c – s| > ε |  s, n) for off-training-set error is not currently well 

understood. 

3 No Free Lunch for Cross-Validation 

An algorithm using cross-validation to choose amongst a pre-fixed set of algorithms is 
just a way of setting P(h | d). By the preceding NFLTs it's no better on average than any 
other algorithm. However, since cross-validation can only be viewed as setting P(h | d) 
when the set of generalizers is pre-fixed, NFLTs says nothing about cross-validation in 
general. 
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The following example (Zhu H, Rohwer R, 1996) is in fact discussed in (Wolpert, 
1995). 
 
Example of Zhu H, Rohwer R (1996): 
 
A dataset {xi} with n elements generated by a Gaussian distribution N(µ,1). Three 
estimators of µ: 
A: The optimal (ML, LSE) estimator: x  
B: A bad estimator: { }ixx max* =  
C: A cross-validation (CV) estimator: generate an extra element xn+1; if 

1
*

1 ++ −<− nn xxxx  take estimate A, otherwise take B. (  is the square norm.) 

 
The mean square errors we have obtained for a run with 105 samples and n = 16: 
 

A: 0.0625 B: 3.4037 C: 0.5695 
The value of A reproduces the theoretical mean squared error: 1/16 = 0.0625. 
 
The CV estimate is rather bad. Close analysis reveals that rarely B is preferred over A; 
but when it is preferred it is often for the wrong reason. For instance (Zhu H, Rohwer R, 
1996):  
"In 10000 samples about 30 are such that B is better than A. However, based on one 
extra point, C will prefer B for about 2000 cases. Among them, only about 15 samples 
are for the right reason, that B is genuinely better." 
 
Example of Goutte C (1997): 
 
A re-analysis of the previous example, including a stricter CV estimator: 
 
CLOO: A leave-one-out version of estimator C: consider the same n-sized dataset and 
calculate average distances (square norm) between an estimate (A or B) evaluated at n-1 
points and the remaining point. Choose the estimate with smaller distance. 
 
The mean square errors we obtained for a run with 105 samples and n = 16: 
 

A: 0.0625 B: 3.4037 C: 0.5695 CLOO: 0.0625 
 
Let kx denote the mean of the points excluding xk: 

)(
11 kkk

k
k xx

n
nxx

n
xxn

x −
−

=−⇒
−
−

= . 

 

For the A estimator CLOO computes: ∑
=

−







−
=

n

k
kA xx

nn
nCV

1

2
2

)(1
1
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For the B estimator one has to compute the maximum on n − 1 points. Let *
kx denote the 

maximum of the points excluding xk: }\max{*
kik xxx = . Now, *

kx  is equal to 

}max{*
ixx =  in n − 1 subsets and equal to }\max{ *** xxx i=  in the remaining subset 

(say, the nth subset). Therefore, for the B estimator CLOO computes: 
 

2***
1

1

2* )(1)( xx
n

xxCV
n

k
kB −+−= ∑

−

=
 

 

Using Huygens' formula: ( ) 2***2*
2

)(
1

11 xx
n

xxCV
n

nCV AB −
+

+−+





 −

=  

 
In order for CVB to be smaller than CVA, x* should have to be close to both x and x**, a 
very rare occurrence. 
 
Using 2-fold cross-validation instead of LOO will produce estimates worse than A (e.g., 
CCV2 = 0.0628). 
 
"We now know that there is "no free lunch" for cross-validation. However, the task of 
exhibiting an easily understandable, non-degenerate case where it fails has yet to be 
completed." 
 
Further Insight on Cross-Validation (Rivals I, Personnaz L, 1999) 
 
By analyzing the IMSE of LOO in the estimation of linear model parameter vectors, 
Rivals & Personnaz show that LOO estimates are biased, whereas statistical tests are 
based on unbiased estimates (when certain assumptions are met). As a consequence, 
although LOO is not subject to NFL criticism, it often performs rather poorly in model 
selection, worse than classic statistical tests (whenever these can be applied). 

4 No Free Lunch for Early Stopping 

The (only?) work of reference is Cataltepe Z et al. (1999). 
 
Let the training set be denoted as )},{( ii fD x= , i = 1,…, n; )( ii ff x=  
The model fitting the training data is: )( ig xv  with parameter vector v. 
The quadratic training error is: 
 

∑
=

−=
n

i
iiT fg

n
E

1

2))((1)( xv v  
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The generalization error of model v is: 
 

]))()(([)( 2xxv vx fgEE −=  
 
Now, consider vT to be the model corresponding to a local minimum of the training 
error ET. 
Assume stopping at δδ += )( TTEE v , 0≥δ  and the early stopping set of models: 
 

{ }δδ EE TT =∆+∆= )(: vvvW  
 

The mean generalization error at training set error level Eδ is: 
 

vvvv
Wv W ∆∆+∆= ∫ ∈∆

dEPEE Tmean )()()(
δ δδ  

 
Linear models ( ∑= )()( xxv iivg φ ): 
 
Lemma 1. When all (linear) models with training error Eδ are equally likely to be 
chosen as the early stopping solution, the mean generalization error is at least as much 
as the generalization error of the training error minimum: 
 

0)(),()()( ≥+= δβδβδ Tmean EEE v  
 
Theorem 1.When all models with the same training error are equally likely to be 
chosen as the early stopping solution, the mean generalization error is an increasing 
function of the early stopping training error: 
 

For )()(,0 2121 δδδδ EEEE meanmean <<< . 

 
 
Non-linear models: 
 
Similar results hold when considering an adequate location of the training error 
minimum and a neighborhood from it. Let v* denote a minimum of the generalization 
error. 
 
Theorem 2. Assume: 

)/1(* nOT =− vv , )/1(,0 nO=≥ δδ , and )/1()( 5.1nOEE TT ++= δδ v  
 

When all models with training error Eδ are equally likely to be chosen as the early 
stopping solution, their mean generalization error is: 
 

0)(),/1()()()( 5.1 ≥++= δβδβδ nOEEE Tmean v  
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Early stopping as a regularization method: 
 
When performing early stopping based on either weight-decay or validation set 
minimum error, models with small weights are favored; i.e., )( vW ∆δP  is not uniform. 

Thus, early stopping may be beneficial (if )( vW ∆δP  agrees with the probability of the 
target function). 
 
Cataltepe Z et al. (1999) performed experiments for linear models showing that early 
stopping with weight decay is beneficial. 

5 No Free Lunch for Search 

5.1 Optimization Problems 

Let us consider the optimization problem: searching an extreme of a cost function f. 
 

f: X → Y  (F ≡ {f}) 
 
How search algorithms work: 
 

• Given m points mm YXyx )(),( ×∈  extrapolate to a new, hopefully better 
(lower/higher) cost point, Xx ∈́ : a search strategy. 

 
• Extrapolation can either be deterministic (e.g., branch-and-bound) or 

stochastic (e.g., genetic algorithm). 
 
Example 
Feature selection with a monotonic criterion, J (e.g. Anova distance). We want the 
highest possible J for an "optimal" feature subset B of a feature set D. 
 

X = P(D); Y = ℜJ; 
 

Cost function:    f : P(D) → ℜJ 
                         B    → J(B) 
  
Example of branch-and-bound 
Search an optimal 2-feature subset, B, with J(B), out of a 5-feature set D = {x1, x2, x3, x4, 
x5}. 
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x1 (0.8) x2 (0.765)

x2 (0.76) x4 (0.775)

x5 (0.77)x4 (0.768) x5 (0.76)

x3x3 (0.78) x4

x4 x5 x5

Level 1

Level 2

Level 3

Start

x3 x4 x5  
 
Strategy 
 

1. Take m = 1; B = D; 
2. Repeat until m = 3 (branch) 

Find out which subset B − {xi}, with 5−m features has the best (highest) 
criterion. B ← opt(B − {xi}). 

  Jcurr = J(opt(B − {xi})) is the current bound. 
3. While (∃ non-followed paths with J < Jcurr) 

  Backtrack. 
  
 
Example of genetic algorithm 
 
A feature subset is a string of 0s and 1s (selected features): chromosome B. 
Each chromosome has a fitness J(B).  
 
Strategy 
 

1. Select an initial population G = {B} with m chromosomes. 
2. While stopping criterion not verified (e.g. there is no B in G with J(B) > ∆) 

• Select chromosomes for reproduction with probability ∝ J(B). 
• Apply crossover (e.g. swap parts of parent strings) with probability PX. 
• Apply mutation (e.g. invert a gene) with probability PM. 
• Update G with the offspring. 

  
 
Note that exhaustive search is not a search strategy. It's table lookup. 

5.2 NFLT for Search 

Let us now analyze the search process in general. 
(We follow Wolpert DH, Macready WG, 1995) 
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• For simplicity take X and Y to be finite. 

• Define miDiyixd mm ,...,1,)}(),({ =∈≡  a set of m distinct search points and 
associated costs. Often the ordering is according to the time the points are 
visited. 

• Let cr represent the histogram of cost values that an algorithm, a, obtains on a 
particular cost function f. Note that cr  is a vector of length |Y| and provides a 
measure of algorithmic performance. 

 
 
Example 
 
X = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
Y = {0, 1, 2, 3} 
 
Imagine we had to search the minimum of: 
 

xi 1 2 3 4 5 6 7 8 9 

yi=f(xi) 2 2 1 0 1 2 1 2 3 
 

0

1

2

3

4

1 2 3 4 5 6 7 8 9

X

Y

 
There are 49=YX = 6561 such functions. 
 
Consider the deterministic algorithms: 
 
a1 ("go forward"):  start at x1 and progress to xi+1 until finding the first local 

minimum. 
a2 ("go backward"):  start at x9 and progress to xi−1 until finding the first local 

minimum. 
a3 ("binary search"): start at xlow = x1 and xup = x9; at each step progress to the middle of 

[xlow, xup] and select the half interval with lower costs for the next 
step. 

 



18 

We then have for m = 6 the following d6 paths: 
 

a1  a2  a3 

xi yi  xi yi  xi yi 
Next 

interval
1 2  9 3  1 2  
2 2  8 2  9 3 [1,9] 
3 1  7 1  5 1 [1,5] 
4 0  6 2  3 1 [3,5] 
5 1  7 1  4 0 [3,4] 
4 0  6 1  4 0  

 
Now consider the stochastic algorithms: 
 
a4 ("random choice with replacement"): at each step make a random choice of which 

point to visits. At the end the minimum value with non null visits 
is selected. 

a5 ("random choice without replacement"): as before, with the only difference that after 
step 2 each point with higher cost is removed. 

 
For m = 6 the following d6 paths are possible outcomes: 
 

a4  a5  

xi yi  xi yi 
Points 

removed 
7 1  2 2  
5 1  7 1 2 
1 2  5 1  
8 2  9 3 9 
5 1  2 2 2 
6 2  4 0  

 
The histograms are: 

0

1

2

3

4

0 1 2 3

a1
a2
a3
a4
a5

y i
 

  
We now consider the probability that a histogram cr  will be obtained under m distinct 
cost evaluations of algorithm a on f: ),,|( amfcP r . All algorithms use the same amount 
of information: m cost evaluations (search points). 
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Theorem (NFLT for search): For any pair of algorithms, a1 and a2, 
 

∑∑ =
ff

amfcPamfcP ),,|(),,|( 21
rr .   (1) 

 
),,|( amfcP r  is independent of a when we average over all cost functions. 

 
 The proof in (Wolpert DH, Macready WG, 1995) is first given for deterministic algorithms without 
backtrack. Later the proof is extended for algorithms with backtrack or of stochastic search. 
 
Consequences of this Theorem and other related Theorems: 
 
• The expected histogram, and therefore the expected performance, 

[ ] ∑= c amfcPcamfcE r
rvr ),,|(,,| , is on average the same for all algorithms. 

• After m cost evaluations of an algorithm, if a1 has better performance over a2 in 
some subset of F, a2 must outperform a1 in the remaining subset. 

"There can be no search algorithm that outperforms all others on all problems." 

• Note that: 

)(),,|(),|(),,|(),|( fPamfcPamfPamfcPamcP
ff
∑∑ ==

rrr    (2) 

since f is independent of m and a.  

If we know nothing about f, all f¸ are equally likely: XYfP /1)( = . Then, by 
the Theorem: 

∑=
f

X amfcPYamcP ),,|()/1(),|( rr  

is independent of a. 

• Equation (2) can be seen as a dot product in F-space of ),,|(,, amfcPv mac
r

=  
and )( fPp =

r . Any knowledge on the cost function goes into the prior pr . Given 
a certain c and m the optimal algorithm is the one with largest projection onto pr . 

• Let us consider a meta-search algorithm that by observing how well two 
competing search algorithms have done so far (in m steps) for a fixed cost 
function f decides which algorithm to use further. The NFL Theorem for this 
scenario tells us that on average such meta-search algorithms behave equally: 
observing how well an algorithm has done so far tells us nothing about how well 
it will do if we continue to use it in the same f. 
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5.3 A Simple Explanation 

Ho YC and Pepyne DL (2002) provide a "Simple Explanation" of the NFLT for search, 
based on the properties of fundamental matrices, F-matrices, such as: 
 

 f0 f1 f2 f3 f4 f5 f6 f7 
x0 y0 y1 y0 y1 y0 y1 y0 y1 
x1 y0 y0 y1 y1 y0 y0 y1 y1 
x2 y0 y0 y0 y0 y1 y1 y1 y1 

 
for |X| = 3 and |Y| = 2. 
 
 

• For a fundamental matrix the row sums (averages) are equal. 
• The sub-matrix obtained by eliminating row i and all columns j such that Fij ≠ y 

is an F-matrix. 
 
For instance, the sub-matrix obtained by eliminating row 0 and all columns such that 
fj(x0) ≠ y0: 
 

 f0 f2 f4 f6 
x1 y0 y1 y0 y1 
x2 y0 y0 y1 y1 

 
The NFLT follows by considering the F-matrix whose rows are strategies, whose 
columns are all possible optimization problems and whose f(x) are performance of 
strategy x on problem f (after m steps). 
 

 f0 f1 f2 f3 f4 f5 f6 f7 
a0 c0 c1 c0 c1 c0 c1 c0 c1 
a1 c0 c0 c1 c1 c0 c0 c1 c1 
… … … … … … … … … 
an c0 c0 c0 c0 c1 c1 c1 c1 

 
c0 could mean "bad" and c1 "good". 
 

• Averaged over all problems (columns of F) all strategies (row averages) are 
equal. 

5.4 Further Results 

Whereas Wolpert and Macready (1997) demonstrate NFL for the class of all functions, 
Schumacher et al. (2001) show that NFL still holds iff the class of functions F is closed 
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under permutation (a permutation of a function simply permutes the y values for the 
same x values). 
 
The NFL does not hold for: 
 

• For some classes of extremely simple functions (Droste, Jansen and Wegener, 
1999). 

• When the class of functions concern functions having less than the maximum 
number of local minima or functions having less than the maximal possible 
steepness (Igel C, Toussaint M, 2001). 

• For sets with bounded description length. 
• P(f) is a decreasing function of f's description length. 

 

6 NFL Abuse 

Besides erroneous interpretations of NFL results, one should be aware of more serious 
non-innocent abuses. See, for instance, (Shallit J, 2002). 
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