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Chapter 1

Introduction

Pdf estimation is a very important task in many areas. For example, in
classification, we might estimate class densities to further obtain the a
posteriori probabilities of each class. Usually, the data density is not known
and all we have is and i.i.d. sample x,...,x; that came from a certain
density p(z). Parametric methods assume an apriori distribution for the
data and the parameters are estimated, for example, with maximum like-
lihood or Bayesian inference methods. These are higly restrictive methods
and solutions are not always obtainable [1]. Non-parametric methods are
more flexible, because they do not assume any distribution and the density
is mainly obtained from the data itself. Histograms, KNN, and kernel
(Parzen’s windows) based methods are well known non parametric density
estimates. The latter, being the most used one, suggests an estimate of the
form

plx) =

o~ =

ZKh(x—xi) (1.1)

where Kj(z — x;) is a smooth function designated kernel with property
| Ky(xz —2;)dx = 1; h is a parameter that controls the width of the window
and consequently the smoothness of the solution. Parzen’s method is assured
to converge to p(x) at a fast asymptotic rate given some conditions on h and
K, [1]. As we can see from (1.1), the Parzen estimate has a model with high
complexity: one kernel function for each data point and the free parameter h
(the width of the kernel) has to be set properly with, in principle, no apriori
knowledge. Also these methods suffer from curse of dimensionality when the
problem to be solved has a large input space. This is mostly because data



in higher dimensions is very sparse and largest neighborhoods are needed

(large h in Parzen’s estimate) to get sufficient counts or else the estimate
will be biased.

Here we study two different approaches of density estimation intended to
overcome the performance of usual methods in high dimensional problems.
The first one was proposed by Friedman et al. [3] and is based in the
projection pursuit methodology [4]. The second one, proposed by Vapnik et
al. |7, 8], uses the SVM methodology.



Chapter 2

Projection pursuit density
estimation

In 1974, Friedman et al. [4], proposed the method of projection pursuit
(PP). It uses the data to find low dimensional projections that provide the
most revealing views of the full-dimensional data. PP intends to discover
the nonlinear effects like clustering (existence of different classes) that are
not captured by the covariance structure. Ten years later, the method
of projection pursuit was used to extend the classical methods of density
estimation to the multidimensional cases with the only need of univariate
estimates [3]. In 1987, Friedman [2| proposed new algorithms and a new
statistical index to find the projection directions in order to improve the
original method. He designated this new methodology by Ezploratory pro-
jection pursuit (EPP) and a corresponding density estimation procedure
was developed and incorporated in the same paper [2]. The two density
estimation procedures were thought to be equivalent until the corrections
made by Zhu [9]. In his paper, Zhu [9] shows the non-equivalence of the two
procedures is proved and it is also shown that the density estimate model
of EPP is cumbersome. In this sense, it is here adopted the framework
proposed by the original projection pursuit density estimation procedure.



The projection pursuit density estimate is given by' [3]

pu(X) = po(x) fm (O - X) x € R?

1

where

e 1o is an initial estimate for the multivariate density
e 0, is a direction in RP (unit vector)

e f,, is an univariate function

Here, 6,,, - x = "7 | 0;;m; is a linear combination of the original variables,
thus obtaining a projection of each data point in the space spanned by 6,),.

The choice of the initial density pg is left to the user and his a prior:
knowledge of the data, but a common choice is the Gaussian density with
parameters (x and X) estimated from the sample. The procedure has to
estimate directions 6, and build f,,(6,, - x) (the latter designated by the
authors as augmenting functions). This is done in a recursive manner

Pm(X) = Pi1(X) frn (O - X) m=1,....M (2.1)

At each step m of the procedure a direction 6,, and corresponding f, (6, -x)
are estimated in order to maximize the goodness of fit of p,,(x).The measure
of goodness of fit used in [3] is the cross-entropy term of the Kulback-Leibler
distance

CE,, = /logpm(x)p(x)dx

It is easy to see from (2.1) that maximizing C'E,, is equivalent to maximize

Wi = /log fm(‘gm ’ X)p(X)dl‘
It can be shown [3] that for every fixed 0,,, W,, is maximized when

p O (O - X)

prg’fl(Qm - X) (22)

fm(em ’ X) =

"Where - means dot product



where p % and pf{il are estimates along the one-dimensional subspace spanned
by 6,, of the data marginal density and the current model marginal density,
respectively. Basically, we are dividing out the marginal of the current model
and replacing it with the one estimated from the data. If this is done in all
directions we probably get the true density [9]. Hence, we have to solve at
each step m the optimization procedure

max W = /log Jm (O - X)p(x)dz

s.t./pm(x)dx =1

In practice we only have and i.i.d. sample xi,...,x; and W,, has to be
estimated by the natural way

l
A 1
Wm = 7 ;logfm(em : Xi)

The above procedure is taken only for a few steps to obtain the directions
that achieve the best fit.

In order to find each optimal direction 6,,, we have to estimate the marginal
densities in (2.2). Recall that these are one dimensional densities. Friedman
et al. [3] proposal is to estimate p = by

1

- ) _
P Om - X) = 5

N
> (0 X —h <Oy Xi < Oy x+ D)
=1

where I(t) is the indicator function. Now, for the current model marginal
density pf{il the estimate is given by

N,
1 m
A Gm —
D1 (O - X) = T ;1(9m~x—h < Op - y; < Op-x+h)
where y1,...,yn,, is a Monte Carlo sample generated with density p,,_1(z).

Hence, we will get an estimate

76 X)_Nmzij\;](@m.x—hg@m.xiSQM.Xth)
o N Y IO X =B < 0,y < b x+ )




To stabilize the denominator, h is chosen to always include exactly alV,,
Monte Carlo observations [3], getting

~

N
1
ox) = x — h < o < )
fm (O - X) N El 10, x—h <0, %<0, -x+h)

Note that this is the proposal from Friedman et al. [3] and we can get
some modifications here. Instead of these histogram estimates we can use
traditional Parzen estimates (that we know of it’s good performance in one
dimensional cases) to get better one dimensional estimates

l
1 0, x—0,- %X
A9771, . — . m m 03
5% (6, ) thZK( )

Jm O -X—0,,-y;
~ O o m m j
1O %) = hZK( h )

where K is a kernel function with bandwidth h.

In practice all we need is to get the set of values {0,, - x;, fin (O, - Xi)}izl,...,l
and use an approximation of f,,(6,, - x) given by a cubic spline function [3].

2.1 The optimization procedure

Leaving, for now, possible restrictions to the optimization problem, we have
to

m Xz)
max W =7 Zlog 50

m Xz)

to obtain the direction 6,,. My proposal is to do it 1terat1vely like

1. set step j =1

2. having the estimate 67 of 0,

3. calculate the estimates ﬁegn and ﬁnejil (the latter using Monte Carlo
sampling or other equivalent sampling procedure)

4. calculate VAVm(%)
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5. update the projection direction in order to maximize Wm
% +al =altt (2.3)
6. set step j = j + 1 and get back to 2 if a stopping criterion is not

reached.

2.1.1 How to determine the updating vector o/,

At each step i we have to determine an updating vector o/, (2.3). For
example, we could use steepest ascent in the surface defined by W,,. In this

case we have
- 173
o), =nVIW7

where 7 controls the rate (speed) of convergence. We can write
1o - -
A . J .
W= 13 [log (0], ) — log 2 (5, )

and, thus, we have

e oW oW,
" 00, 00,

(670 x)) (o0 x))

l
1
- i j . - J R X
l Z DO (O - x;) Py (6 - x;)

From these equations we realize the need of estimating the derivatives of the
marginal densities. After having the densities themselves their derivatives
can be estimated using standard numerical tools like finite diferences.

2.2 The log likelihood ratio statistic

The density estimation procedure above doesn’t take account to the par-
ticular problem of estimating class densities from a set of samples. Of
course, if the patterns come with class information (with a target vector), we
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could estimate separately each class density using PPDE. However, Zhu and
Hastie [10] proposed an explicit method to estimate class densities based on
the log likelihood ratio statistic. The paper proposes a new index to find
discriminant directions (those that allow the distinction between classes).
It is shown that the method is capable to deal with more general problems
like xor, when the class centroids coincide, and perform better than Fisher’s
LDA; it is also shown that LDA is a special case of their method.

The generalized log-likelihood ratio statistic is given by

K
maxy, [T, [y, ec, 2E (0 - %;)
K
maka:p HkZ]. HXjGCk p 9(9 : X])

It can be shown that the criterion used in the LDA framework is a special
case of LR(6), when py(x) is taken or estimated by N(ug,>) for all k.
This means that LR(#) can handle with more general problems, where the
information is not simply contained in the class centroids. Equation (2.4) is
associated with the resolution of an hypotheses test of the form

LR(0) =log (2.4)

Hy @ pr=p2=...=pk
H, : at least one p, differs

For arbitrary class densities, the aim is to find directions # that maximize

Z Z log 57 (0 - x;) Z Z logp?(0 - x;) (2.5)

k=1 XJGC']c k=1 XJEC]C

where py is the MLE of p, and p is the MLE of p. It is important to note
that we only need to restrict our search to unit vectors, ||6|| =1 [9].

This index is incorporated and adapted in the PPDE methodology (substi-
tuting the cross-entropy term) to rule the search of projection directions,
giving explicit ways of estimating the class densities. In this case LR(6) is
given by

[Teei T cop P16 (%5) frnke (0 - )
[Tim Tl o 1)) fn (8- %)

(2.6)

0,, = argmaxglog
and the class models by

pMk Hfmk 9 X
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As this method doesn’t assume a parametric form for py, LR(6) has to be
maximized numerically. The proposal is to use Newton’s method (or quasi-
Newton) because we can obtain explicit expressions for the gradient and
Hessian matrix of LR(6). All that is needed is to have estimates for marginal
densities and corresponding derivatives. The author’s have used parametric
models and Locfit. We can use more flexible models by estimating the
univariate densities with kernel methods.

With straightforward calculations we can see that equation (2.6) simply
amounts to

O = argmazy Z Z log fimk(0 - x;) —log fim (0 - x;)] (2.7)

k=1Xj€Ck
where

(9)
p (0-x5)

fok(0-x;) = w’;—f
pmfl,k(e ’ XJ)
@0 ..
p\(0 - x;)

fm(Q-Xj) — @71
pmfl(QX])

We can also see that

DD log ful0-x5) =) log fn(6-x;) (2.8)

k=1 XjECk j=1

Hence, we can see that the procedure is very similar to PPDE, but here,
information about classes (that we have from the targets associated to each

pattern) is incorporated in (2.7). Note the cross entropy term in (2.7) and
(2.8).

To obtain more discriminat projections we need a procedure that avoids
finding already found directions. This can be achieved in two ways. First
using the usual orthogonalization procedure, i.e, ensuring that the actual
direction found #,, is othogonal to the previous ones, 6, k < m. However
this poses the problem of which metric to choose [10]. A preferred procedure
is the feature removal strategy of exploratory projection pursuit. This
transforms the data in a way that there is no class distinction in direction
O,y ie. pf = q Vk, while keeping unchanged all other directions. Hence,
the procedure can continue without the risk of finding any of the previous
directions.

13



2.2.1 Feature removal

The transformation applied to the data is defined as

/

x = h(x) = A" 't(Ax)

where A is an orthogonal rotation matrix such that

0-x
Z:AX:(A*X)

H(z;) = { Y(z) j=1

Zj ]>].

and t is given by

v(.) is a monotonic transformation that removes the distinction between
classes in direction 6. It is defined by

Y(z21) = QN (Fu(0 - x))

for each class k, and Q! is the cdf corresponding to the common density
function ¢ and F} is the marginal cdf of 6 - x for class k. Hence

X = h(x) = A~ ( @(E©-x) )

14



Chapter 3

Quasi-Newton method

To optimize a function F', Newton’s method uses the information of the
function’s curvature that is provided by the Hessian matrix H. Quasi-
Newton methods obtain an aproximation to H, without explicit calculations,
aliviating some computational effort.

We have

1

9k

g0k +5k) = g+ Hpsp + ...
—_—
9k+1
st (gks1 —g8) = s; Hysy (3.1)

where, g = VF(0;) and Hy, = V2F(6;), the Hessian matrix at 6. In quasi-
newton methods we have, at each iteration k, an approximation to Hj given
by By. The search direction py is then obtained from the linear system [5]

Bipr = —gx (3.2)

Usually, By = I (the identity matrix) and we need an updating formula for
B like
Biy1 = By + Uy

where U}, is a low rank update matrix. Define

S, = Orp1 — O = oy

Ye = Gk+1 — Gk

15



where «y, is the step length (in direction py) obtained from a line search
method. Based on (3.1), the required condition for By to approximate the
curvature of F' along sy is [5, 6]

Bk+1sk = Yk (33)

Equation (3.3) is known as quasi-newton condition. It is desirable that each
approximation B, has some additional properties encountered on Hessian
matrices, like symmetry and, in the case of strong minima, positive defi-
nitess. The Broyden one-parameter family of updates gives two-rank update
formulas for the approximate Hessian

_ BisksiBr |y

B? By,

ol = + Qbk: (sZBksk) wkwg

sT By.sy ylsy,
where ¢, € [0, 1]. From practical and some theoretical research, it is believed
that the most effective update is given when ¢, = 0, leading to the update
formula of Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Bisgst By uryl
By = By — b u

T T
s}, Bisy, Y Sk

If py, is obtained from (3.2) we have Bys, = —aggr and the BFGS formula
becomes

9r% | YkYi
T, T T
9Pk OkYy Dk
These Broyden family formulas guarantee that By, satisfies the quasi-
Newton condition (3.3) and is symmetric. To guarantee the hereditary
positive definitess property in the BFGS update, that is, if By is positive
definite then Bj.; is positive definite, the following condition has to be
satisfied [5, 6]

yls, >0

It is important to note that things can be simplified in the estimation
of py from (3.2). As By is positive definite, we can perform a Cholesky
factorization

By, = LyLi

Here, Lj is a lower triangular matrix and the search direction p; is simply
computed by forward and backward substitution.

Lyz = —g
Lipr = =z

16



It is also possible to derive update formulas for the Cholesky factors, i.e, the
Cholesky factors for By, can be obtained by an update to the ones of By.
This eliminates the need of determining a factorization at each step k.

Instead of computing the approximate Hessian matrix at each iteration, it is
possible to compute the approximate inverse Hessian, and avoid the problem
of solving (3.2) (see [5]). However, due to rounding errors this procedure can
loose the positive definitess in the Hessian approximations and the above
method is, thus, preferable.

3.1 The Algorithm

1. Input 6y, By and termination criteria

2. For any k, obtain the solution of the system Byp, = —g. This is done
taking the Cholesky factorization of By.

3. Compute a step size ay, (e.g. by line search on F(0) + axpy)) and set
Op+1 = Ok + cpy

4. Compute the updated matrix By using BFGS

grgr N UkyL

By = By +
gpe  aylps

5. If a termination criteria is not met, set £ = k£ + 1 and get back to 2.
Note that it is possible to avoid calculating the Cholesky factorization
of the updated approximate Hessian Bj,;. Just make an update of
the factors.

17



3.2 Support Vector Method for Multivariate
density estimation

In [7, 8|, Vapnik et al. propose a pdf estimation method based in the
SVM solution to inverse ill-posed problems. The SVM method has no free
parameters and finds a consistent and sparse solution.

The idea is to search a solution of the integral equation

/ p(t)dt = F(x) (3.5)
where, F'(z) is the probability distribution function. The procedure starts
from and i.i.d. sample x1,...,2; and a solution to (3.5) is found in a set
p(t, ) with a € A. In fact, we do not have F'(x) but we can use an estimate
given by the empirical distribution function Fj(x). We thus obtain a problem
of the form

Ap=F (3.6)

where A is a linear operator and F' will be substituted by F;. This is an
ill-posed problem. Note that it is known that F; — F' and the distribution
of the supremum error between F(z) and Fj(z) is given by the Kolmogorov-
Smirnov distribution |7, §].

Several methods to solve these kind of problems were proposed in the 1960s
and use theory of regularization. A functional €(p) is introduced (condi-
tions on §2(p) can be found in [7] page 235) in the problem to control the
smoothness of the final solution. This final solution, p;, will be a tradeoff
between Q(p) e ||Ap — F||. The SVM procedure, uses the method proposed
by Phillips

min Q(p) s.t. | Ap — Fi|| < ¢ >0, ¢—0 (3.7)
P

The first problem encountered is in the choice of ¢;. Morozov proposes the
residual method, where ¢, should be chosen to define a solution p; for which
the equality holds

1Ap = B[l = [|F(2) = Fi(2)]] = o (3-8)

where o; is the known accuracy of approximation of F'(x) by F(z). For pdf
estimation it is possible to get a good estimate of oy (......)

18



The integral equation (3.5) is solved in a set of functions belonging to a
Reproducing Kernel Hilbert Space (RKHS) and using the functional

Q(p) = Ipll% (3.9)

To define the RKHS we need

1. An Hilbert space H
2. A positive definite kernel K(z,vy)

3. An inner product (f, g)y with the reproducing property
(p(z), K(z,9))y = ply) Vp € H (3.10)

Recall that an Hilbert space is a complete inner product space.
In this case we define the Hilbert space of functions
f(z,c) = Zcngz(x) (3.11)
i=1
and the kernel .
K(z,y) = Z Aidi(x)9i(y) (3.12)
i=1

where \; and ¢;(z) are the eigenvalues and eigenfunctions of K (z,y). Finally,
with (3.11), (3.12) and the inner product given by

() Fland) = 30 5 (3.13)

we have defined the RKHS. The property that K(x,y) is positive definite
come from its expansion in eigenvalues and eigenfunctions. It is also easy to
show that the reproducing property (3.10) is present.

The aim is to solve the integral equation in a RKHS with a solution that
satisfies (3.8)

= 0] 1§Z§l

Fr) - / " ()t

—00

min Q(p) = (p,p)y s.t.

T=x;



The method searches for a solution of the form
l
p(t) = Bk, (x:,t) (3.15)
i=1
Hence, the problem can be written in the form [7]

l
minQp,p) = Y B, (xi,t) (3.16)
=1

s.t.

! x
F(z) - Zﬁj/ Ky (x;,t)dt
=1 I

r=x;

By Vapnik |7] we have in (3.16) an optimization problem closely related to
the SV regression problem with an ¢-insensitive zone, which can be solved
with the standard SVM technique. Mostly of the 5; will be zero and the x;
values corresponding to nonzero [3; are called support vectors. To obtain a
solution as a mixture of densities, we choose a kernel that is a density and
establish the constraints §; > 0 and Zi=1 G, = 1.

Vapnik call v, and admissible value if for this value there exists a solution
of the optimization problem (3.16), i.e, the solution satisfies (3.8). There
exists a non-empty admissible set Vin < v < Yimaz |7, 8]-

(..

To improve the performance of the estimation procedure in high dimensional
problems, the authors introduce a new type of kernel functions that change
their form upon the distance to their nearest neighbours. As every distribu-
tion function that has a density is continuous, they first start to introduce
a continuous empirical distribution function (recall that the usual one is
discontinuous) given by

+ %%:—16/2 x € [.Tk —Tk/2,$k+7'k/2)
T € [zg, xpy1) and @ & [z — T /2, T) + T1/2)
(3.17)
where x; is the k-th data point and 7, the distance between x; and it’s
nearest neighbour.

R = {

~|F e~

20



The final problem to be solved by the SVM approach is given by

l
minQ(p,p) = Y BifiM(w;, ;) (3.18)
i,7=1
l x
ot Fll(z:)—ZBj/ Llz,)dt]  —o  1<i<l
j=1 e

Bi>0 i=1,...,1
l

Y-

=1

with final solution given by

l

p(t) = BiL(x;,1) (3.19)

=1

Exact expressions for M(z;,x;) and L(z;,t) depending on K, can be seen
in [8]; in the appendix of the same reference we have analytic expressions
for different choices of K.

3.3 Questions and future work?

e In projection pursuit, how does the initial choice po(x) influences the
final result.

e If we separate the data in classes, we probably loose the clustering
structure. Will PPDE be a worthless method? Answer can be found
in [?].

e comparison of PPDE and SVM in simulated data

e comparison of PPDE and SVM for classification tasks, using simulated
and real data

e use variable kernel’s proposed by Vapnik in Parzen’s method

21
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