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1 Inverse Problems 

Direct Problem: u = Az 

input output

cause effect

process

model

z ?A

 
 
Inverse Problem: uAz 1−=  

input output

cause effect

process

model

u? A

 
 
 
A can be a function, a functional or an operator (see Appendix). 
Note that strictly speaking there is no distinction between direct and inverse problems. 
(Historically, inverse problems appear after the direct problems.) 
 

Example 1.1 

Multiplying two numbers is a direct problem. Factoring a number into two numbers is 
the corresponding inverse problem. 

Example 1.2 
Finding out where a projectile fired by a canon falls, given the angular position and 
muzzle velocity is the direct problem. Finding out which angular position, θ, and 
velocity, v, are possible so that the projectile falls at a certain point (the range R) is the 
inverse problem.  
If θ and v are free to vary there are infinitely many solutions. If v is fixed there is a 
unique solution given by: 

θθ 2sin)(
2

g
vR =  

Example 1.3 
The computation of a centroid function given a density function, say in [0, 1], is a direct 
problem whose unique solution is: 

∫
∫

= u

u
o

dzzf

dzzzf
uC

0
)(

)(
)(  

 



6 

Even a function not physically realizable, such as 3/1)( −= zzf has a well-defined C(u). 
Moreover, the solution is stable: 
Suppose {fn} is a sequence of densities converging uniformly to f: 
 

[ ] 0)()(lim1,0 =−∈∀
∞→

zfzfz n
n

 

 
The sequence of centroids { })(uCn  will then converge to C(u) , for each u∈]0,1]. 
The inverse problem is that of determining a density function given the centroid 
function. The solution: 

)()()( zAzBzf =  , 
 

where
)(

)(')(
zCz

zCzB
−

=  and ∫=
z duuBzA

1
)(exp)( , is the mass of the density function, is 

not unique and is not guaranteed to be stable. For instance, C(u) = u/2 is the centroid 
function of f(z) = 1. Now, take for n = 3,4,5,… 
 

21
2

)( n
n u

n
uuC +=  

 
The uniform convergence of { })(uCn  holds true: 
 

01)()(
2

∞→
→=−

n
n

n u
n

uCuC  

 
Now let us compute the solutions with the mass :1)( =zA  
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It is now easily seen that ∞→

∞→n
nf )1(  and hence {fn} does not converge to f. 

--------------- 
 
The bottom line is: Inverse problems are generally harder to solve than direct problems, 
often with no unique and no stable solutions. 
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2 Supervised Learning Problems 

A supervised learning machine observes n pairs (x1, t1), …, (xn, tn) i.i.d. with joint 
distribution P(x, t) = P(x)P(t | x) and issues an appropriate function from a set of 
functions {y = g(x)}1 hopefully minimizing the risk functional: 
 

∫= ),())(,())(( txdPxgtLxgR  
 
L(.) is the loss function measuring how well the machine performs (imitates the 
supervisor) for a given pair (xi, yi).  
 

))(( xgR  is the mathematical expectation of ))(,( xgtL . 
 
The learning problem is the problem of finding an adequate function from a given set. 
We frequently deal with a parametrized set: 
 

{yw = g(x; w)} 
 
The adequacy is assessed by minimizing a risk functional: 
 

Find g such that RdFgLAg ∫ =≡ min)( . 
 

The supervised learning problem is an inverse problem. 

2.1 Pattern recognition (data classification) problem 

The t (target) values are discrete values (labels). 
 
The loss function for this setting is an indicator function: 
 

  




≠
=

=
ty
ty

ytL
w

w
w if1

if0
),(  

 
With this loss function: ∫ == )error(),());(,()( )(w

w PxtdPwxytLwR  
 

)error()(min )(w
opt

w
PwR =  

 

                                                 
1 For convenience we omit a possible dependency of g on t. 



8 

2.2 Regression problem 

The t values are continuous values and there are stochastic dependencies between x and 
t describable by P(t | x). 
 
We are not interested in determining (estimating) P(t | x). Only on the conditional 
mathematical expectation, the so-called regression function: 
 

[ ] ∫== )|(|E)( xtdPtXTxr  
 
The machine issues f(x,α) ∈{f(x,α)}. 
If  ∫ ∞<),(2 xtdPt   and  ∫ ∞<),()(2 xtdPxr  (bounded second moments), the 
minimum of 
 

∫ −= ),());(()( 2 xtdPwxftwR , 
 

if it exists, can be proved to be attained at r(x) provided r(x) ∈{f(x;w)}; otherwise is 
attained at the function closest to r(x) in the metric L2. 
(See tutorial MLE, MSE et alia; see Vapnik, 1998.) 

2.3 Density estimation problem 

On the basis of empirical data x1,…, xl, find a function p(x; w0) ∈ { p(x; w)} such that 
 

dx
xdPwxp )();( 0 =  

Consider the functional 
 

∫∫ −=−= dxwxpwxpxdPwxpwR );(ln);()();(ln)( 0  
 
It can be shown that: 
 

1. The minimum of this functional (if it exists) is attained at the functions that may 
differ from p(x;w0) only on a set of zero measure. 

2. The Bretagnolle-Huber inequality holds: 
 

{ })()(exp12);();( 00 wRwRdxwxpwxp −−≤−∫  
 
To the previous risk functional one can add the constant  
 

∫ dxwxpwxp );(ln);( 00  
 
and minimize the following risk functional: 
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∫−= dx
wxp
wxpwxpwR

);(
);(ln);()(

0
0

* , 

the Kullback-Leibler divergence. 

3 Well-Posed and Ill-Posed Problems 

3.1 Definitions 

Consider the solution )(1 uRuAz == −  to an "initial" data u. Assume z∈F and u∈U 
with metrics ),( 21 zzFρ  and ),( 21 uuUρ . 
The solution is said to be stable if: 

 
ερεδρεδε ≤⇒≤>∃>∀ ),()(),(,0)(,0 2121 zzuu FU  

 
with FuRzuRzUuu ∈==∈ )(),(,, 221121 . Note that this definition of stability is 
less strict than the previous one. 
 
Definition: The problem of determining the solution z in the space F from the initial 
data u in the space U is said to be well-posed (in the Hadamard sense) on the pair of 
metric spaces (F, U) if: 
 

1. Existence. There is a solution: FuRzUu ∈=∃∈∀ )(,  
2. Uniqueness. The solution is unique. 
3. Continuity (or stability). The problem is stable in the spaces (F, U). 

 
Problems that do not satisfy any of the above conditions (that is, at least one of the 
above requirements is violated) are said to be ill-posed. Problems that satisfy 1 and 2, 
but do not satisfy 3 are said to be ill-conditioned. 

3.2 Examples of Ill-Posed Problems 

3.2.1 The Projectile Problem 
The Example 1.2 problem with fixed v is well-posed. We have: 

θθ 2sin)(
2

g
vR =  with [ ]2/,0,)( πθθ ∈ℜ∈ +R  

Denoting gv /2=α : 
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||2||sin2)sin()cos(2 2121212121 θθαθθαθθθθα −<−≤−+=− RR  

 
Therefore 0>∀ε  we choose αεεδ 2)( = . 
Since the problem has a unique solution and is stable it is then well-posed. 
 

3.2.2 The Centroid Problem 
The centroid problem of Example 2.2 is ill-posed. The solution is not unique and is 
often not stable. 
 

3.2.3 An ML Density-Estimation Problem 
Consider the following density estimation problem. We are given l  points x1,…,xl, of an 
unknown distribution that we want to model by the Gaussian mixture2: 
 

( )










−+









 −
−=

2
exp

22
1

2
exp

22
1),,(

2

2

2 xaxaxp
πσπσ

σ  

 
Let the mean of the first distribution be set at one of the l  points, say x1. The problem is 
to determine σ by a maximum likelihood (ML) procedure. That is, determine σ such 
that: 

( )∑
=

==
l

i
i xaxpL

1
1,,ln)( σσ  is maximized 

However: 

constln
22
1ln

22
1ln)(

2

2/2
−−=








+








> ∑

=

− σ
ππσ

σ
l

i

ixeL  

 
But the maximum of L(σ) always occurs at σ  = 0 and the ML method does not provide 
a solution. The problem is ill-posed. 
 

3.2.4 The Convolution Problem 
Consider the Fredholm equation/operator of type I, with continuous kernel K(x, s) in  
[a, b]2: 
 

∫ =≡=
b
a

xudsszsxKuAz )()(),(  

 
The Fredholm operator is linear, 
 

( ) )()()()(),( xGxFdttgtfxtKb
a

+=+∫ , 

 

                                                 
2 This example is based on a similar one in (Vapnik, 2000) 
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and continuous functions z(s) in [a, b] are mapped onto continuous functions u(x) in    
[a, b]. A special case of this operator is the convolution operator: 
 

∫
∞

∞−

−≡⊗= dssfsxKxfxKxg )()()()()(  

 
The inverse problem is the one of finding the function z which convoluted with the 
kernel K yields the function u: uAz 1−=  (e.g., deconvolution). Unfortunately the 
inverse problem is ill-posed (see the Appendix on the continuity of A-1). 
We illustrate with the special case: 
 

∫ =
1
0

)()(),( xudsszsxK  with continuous kernel and x, s ∈ [0,1]. 

 
Take the continuous function uω(x): 
 

dsssxKxu )(sin),()( 1
0

ωω ∫=      with the property     0)(
∞→

→
ω

ω xu  

 
Now consider the integral equation: 
 

∫ +=
1
0

* )()()(),( xuxudsszsxK ω  

 
Since the equation is linear, the solution is 
 

)sin()()(* sszsz ω+=  
 
But this solution is unstable. For sufficiently large ω, u(x) and u(x) + uω(x) differ in the 
Euclidian norm by: 
 

2/1
1
0

21
0

)(sin),(












∫ ∫ dsssxK ω , 

 
which for sufficiently large ω can be made arbitrarily small. However, in the Chebychev 
norm: 

[ ]
1)()(max),( *

1,0
21 =−= szszzzFρ  

 
If we use the Euclidian norm for ρF the solution is also unstable. 
 
 
A graphical illustration: 
 
The Fredholm equation is the convolution with the [0,1] rectangular window. 
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Function z(s) is also the [0,1] rectangular window. 
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Fig. 3.1. Convolution (black) of a rectangular function with superimposed sinusoid 
(blue), defined in [0,1] using the rectangular kernel [0,1]: a) ω = 0; b) ω = 10; c) ω = 
20; d) ω = 200. The jagged contour is due to the finite resolution. 
 
 

3.2.5 The Derivative Estimation Problem 
The problem of estimating derivatives is also ill-posed in general. 
 
The problem is formulated as follows: given the measurements of a smooth function 
F(x) at n points in [0,1] find an estimate of the derivative f(x) of F(x) at x. 
 
The solution corresponds to solving the Volterra integral: 
 

∫ −=
x FxFdttf
0

)0()()(  

or equivalently, the Fredholm integral: 
 

∫ −=−
1
0

)0()()()( FxFdttftxθ  with 


 >

=
otherwise0

0if1
)(

u
uθ  
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Special case: F(x) is a monotonically increasing function satisfying F(0) = 0; F(1) = 1: 
density estimation. 
We have seen already that the Fredholm problem is ill-posed in general. 
 

3.2.6 The Fourier Series Problem 
Consider the (inverse) problem of determining the coefficients of a Fourier series: 
 

∑
∞

=
=

0
1 cos)(

n
n ntatf  

 
Suppose that instead of an we compute c0 = a0 and cn = an + ε for n ≥ 1. We get: 

∑
∞

=
=

0
2 cos)(

n
n ntctf . Now, in the l2 metric the difference of the coefficients 

6/1)( 2
2/1

1
2

2/1

0

2 πεε =








=








− ∑∑
∞

=

∞

= nn
nn

n
ac  

 
can be made as small as we wish, whereas the difference 
 

|cos1||)()(|
1

12 ∑
∞

=
=−

n
nt

n
tftf ε  

is arbitrarily large. 
However, if we take the difference between functions in the L2 metric the problem is 
well-posed (Parseval's theorem). 
Therefore, we have here an illustration that a problem may be well-posed using some 
metrics and ill-posed using other metrics. 
 

3.2.7 The Linear Equation System Problem 
Consider A to be a non-singular square matrix. The inverse problem corresponding to 
solving the system of linear equations uAz 1−= is ill-conditioned whenever the matrix A 
condition number 1)( −= AAAk  is large, where ||A|| is a matrix norm with 

submultiplicative property ( BAAB ≤ ), e.g. induced vector p-norms (see 
Appendix). 
 
Consider the system: 









=
















067.0
168.0

266.0333.0
667.0835.0

2

1

z
z

 

 
The exact solution is:      z1 = 1;   z2 = 1 
If u2 is perturbed so that u2 = 0.066 the exact solution is: z1 = −666; z2 = 834 
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Why does this happen? 
 
First note that a11 / a21 = 2.507508 ≈ a12 / a22 = 2.507519, that is, both lines are 
practically collinear. 
For collinear lines a small perturbation can yield a large deviation of the results. 
 

original solution

 

perturbed solution

Fig. 3.2. Original and perturbed solutions with almost collinear lines. 

 
Next, notice that the eigenvalues of A are (MATLAB computed): 
 
  λmax = 1.10100090826446 
  λmin = −0.00000090826446 
 
Therefore, λmin is practically zero. In other words, the matrix data defines only one 
direction instead of two. This is precisely the collinearity issue. 
 
The condition number of A using 2-norm (see Appendix) is: 
 

min,

max,)(
A

AAk
λ

λ
=  = 1.2×106 

 
A perturbation on u is amplified as: 
 

u
u

Ak
z
z ∆

<
∆

)(~  

 
Using 2-norm and the values of the example, we get: 
 

22 067.0168.0

001.0

+
=

∆

u
u

= 0.00553  ≈
∆

<
∆

u
u

Ak
z
z

)(~ 6635 

 
Let us now perturb matrix A as follows: 
 









266.03329.0
666.0835.0

 



  

15 

 
The exact solution for the unperturbed u is:   z1 = 0.1656;  z2 = 0.04465 
 
If the matrix coefficients are perturbed to produce the system uzAA =∆+ )( , we have: 
 

A
A

Ak
z
z ∆

<
∆

)(~  

 

Now, we have: =⇒







=∆ ∆ max,00001.0

001.00
AA λ  0.316×10−3 

 

1.1
10316.0102.1)(

3
6

−×
×=

∆

A
A

Ak = 273 

 

3.2.8 The Normal Equation System Problem 
We now consider u = Az as a linear model of order p (p − 1 predictors plus an 
independent term), where z is a p×1 matrix of the predictor values and u is a n×1 matrix 
of observations, with p ≤ n. 
The linear regression problem corresponds to: 
 

ε+= Azu ,    with npAA ≡  
 

The inverse problem is solved in the least-squares sense by solving the system of 
normal equations3: 

uAAzA '' =  
 
A'A is now a square matrix n×n and the system can then be solved as: 
 

( ) uAuAAAz *1 '' == − , where A* is the pseudo-inverse of matrix A. 
 
The ill-conditioning of the regression problem can be assessed using the condition 
number of A'A, as was done in the previous example. As an illustration, let us take: 
 



























=

25.661
25.251
25.041
25.031
25.221
25.611

63A ; 



























=

25.12
25.7
25.4
25.3
25.4
25.7

u  

                                                 
3 It is a well-known fact that the normal equations yield an MSE solution, which for the linear model and 
proper assumptions of the errors ε, corresponds to the regression function of 2.2. 
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There is no multicollinearity. The solution is: z = [ 0 1 1]'. 
 
If we perturb u, for instance u3 = 12.2, the solution is: z = [ 0.0297  0.9929  0.9955]'. 
 
If we add a new predictor that is a linear combination of existing ones we will get zero 
eigenvalues; i.e., the matrix is singular. Instead, let us add a linear combination with 
noise (0.5A2 + 0.2 A3 + N(0,0.1)): 



























=

41.425.661
82.225.251
00.225.041
63.125.031
47.125.221
86.125.611

63A  

 
The eigenvalues are: 0.027, 0.888, 29.250, 194.888. Therefore, the condition number is 
k(A) = 194.888/0.027 = 7218. 
 
The solutions for the unperturbed and perturbed u are: z = [ 0 1 1 0]' and z = [ 0.0292  
1.0435  1.0186  -0.1032]'. 
 
As the prediction order p grows the conditioning issue becomes more serious. The 
following figure shows averages (in 10000 experiments) of the condition number of 
noise (N(0,1)) matrices n×p. Note that the ill-conditioning always increases with p, 
although for the same p it decreases with n. 

 

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

p 

k(A) 

n = 20 

n = 50 
n = 100 

n = 200 

 
Fig. 3.3. Average (in 10000 experiments) condition number of noise (N(0,1)) matrices 
n×p. Note that the ill-conditioning increases with p, and for the same p decreases with n. 

 
Let us consider solving the following regression problem. A machine with unknown 
polynomial response function is fed with the x values of Fig.3.2. The corresponding y 
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values are obtained with a certain amount of noise. Two noise situations are shown in 
Fig.3.2a and 3.2b. Identify the system. 
 
 
 

a -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-12
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6

b -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-12
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0

2

4

6

Fig. 3.4.  A set of 21 points (circles) with 9th order polynomial fits (dotted blue lines). In 
both cases the x values are the same; only the y values correspond to different noise 
values from the same distribution. 

 
Assume we choose p = 9. We get the fits shown in Fig. 3.2. A small variation of the 
noise produces large variations of the polynomial fits (in both cases the R2 is high): 
 
 
Polynomial 
coefficients a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

Figure 7.17a 3.21 −0.93 0.31 8.51 −3.27 −9.27 −0.47 3.05 0.94 0.03 

Figure 7.17b 3.72 −1.21 −6.98 20.87 19.98 −30.92 −31.57 6.18 12.48 2.96 

 
 
Therefore, ill-conditioning means that a large dataset (in the example, many predictors) 
may contain a very small amount of useful information. 
 

3.2.9 The Mapping Reconstruction Problem 
 
We are given n observations (x1, t1), …, (xn, tn) of an unknown mapping f : X  → T  and 
want to find the function f.  
 
As in the previous problem we may try to find a solution in the least-square sense, by 
minimizing 

∑
=

−
n

i
ii xft

1

2)(  
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The difference now is that there is no assumption of linearity of f and no assumptions on 
the distribution of the errors )( ii xft − . 
 
The mapping reconstruction can be attempted with a neural network (NN) with weights 
w: 

∑
=

−=
n

i
iwiw

w
xftE

1

2)(min  

 
This is a discrete version of the supervised learning problem using the square norm as 
loss function. As a matter of fact, assuming ),( txp  is the joint pdf of (X,T), we have for 
the finite discrete dataset: 
 

∑ −−=
i

ii ttxx
n

txp )()(1),( δδ  

Therefore: 

w
i

iiww E
n

dxdtttxxxft
n

xfR 1)()()(1))(( 2 =−−−= ∫∫ ∑ δδ  

 
In terms of the formalism Az = u, the direct mapping problem can be cast as: 
 

fw(x) = t ,     with A = I, z = fw(x) 
 

The inverse problem – the mapping reconstruction problem – is then cast as: 
 

Find fw(x) such as )(1 xfttA w≡=−  
 
In other words, ∀t one can reconstruct the mapping using a domain point. Maybe there 
is more than one such point. Here, we are more interested in the possibility of ill-
conditioning, as in the case of the normal equations. 

3.3 Problems Well-Posed in Tikhonov's Sense 

Definition: The problem of solving Az = u is well-posed (correct) in Tikhonov's sense 
on the set M ⊂ F if: 
 

• The solution of Az = u exists for each u ∈ AM = N and belongs to M. 
• The solution belonging to M is unique for any u ∈ N. 
• The solutions belonging to M are stable (with respect to u ∈ N) 

 
Therefore, correctness in Tikhonov's sense corresponds to a restriction of Hadamard's 
correctness to subsets of solutions: M ⊂ F. 
 
Lemma: If A is a continuous one-to-one operator defined on a compact set M ⊂ F, then 
the inverse operator A-1 is continuous on the set N = AM (for the proof see Tikhonov 
AN, Arsenin VY, 1977 or Vapnik V, 1998). 
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This lemma provides the so-called selection method of solving ill-posed problems: 
narrow the solution set to a compact set. 
 

Example 3.1 

Consider again Example 3.4 and suppose that { )(sz } is compact. However, 

{ )sin()()(* sszsz ω+= } is not compact since M = {sinω s} is not compact: no 
subsequence of M converges to a function of M. 
 
Now, suppose that we had M = {αsinωt}, ω = constant, M is compact and the problem 
is well-posed. 
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Fig. 3.5. Two close convolutions as in Example 3.4, but now with M = {αsinωt}  and 
ω = 10: a) α = 1; a) α = 0.9. 

4 The Regularization Method 

There are two categories of regularization methods aiming at converting an ill-posed 
problem into a well-posed one: 
 

1. Regularization by data correction 
2. Regularization by operator correction 

 
The first category of methods convert Az  = u into Az  = f(u), so that continuity 
conditions hold. The problem of course is to find an appropriate smoothing f(u). In the 
following we consider the second category of methods. 
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4.1 The Regularizing Operator 

The regularization method is one of the methods of dealing with ill-posed problems, 
applicable even when the set F of all possible solutions is not compact (genuinely ill-
posed problems). 
 
The regularization method provides an approximate solution for a perturbation δ of the 
exact right-hand member uT. Let us denote by δu the perturbed right-hand member: 
 

δρ δ ≤),( TU uu  
 
Since the problem is ill-posed, the solution is not δδ uAz 1−= . However, it may be 
possible to find an operator ),( δuR  providing a value ),( δδδ uRz =  that is as close as 
we wish of the exact solution zT with AzT = uT. 
 
Definition: An operator ),( δuR  is said to be a regularizing operator for the equation 
Az = u in a neighborhood of uT if 
 

1. There exists a positive number 1δ  such that ),( δuR  is defined for every δ in   
[0, δ1] and every δu  in U such that 

δρ δ ≤),( TU uu  
 

2. For every ε > 0 there exists a 100 ),( δεδδ ≤= Tu such that 
 

ερδδρ δδ ≤⇒≤≤ ),(),( 0 TFTU zzuu  
 

where ),( δδδ uRz = . 
 
 

uT

δ

uδ

zT

ε
zδ=R(uδ,δ)δ0δ1

R(u,δ) is defined here This is where the perturbed solutions lie 
Fig. 4.1. The regularizing operator is such that for any deviation ε of the exact 
solution one can find a neighborhood of uT such that any δ-perturbed solution does 
not deviate more than ε from the exact solution. 

 
It is often convenient to write the regularizing operator as ),( αuR depending on a 
regularizing parameter α(δ). 
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The approximate solution ))(,( δαδα uRz = is called the regularized solution. 
This method of constructing approximate solutions is called regularization method. 

4.2 The Stabilizing Functional 

The problem of building a regularizing operator may not be an easy task. The so-called 
variational principle uses the concept of stabilizing functional in order to achieve this 
task. 
 
Definition: Let )(zΩ denote a continuous nonnegative functional defined on a subset F1 
of F that is everywhere dense in F. Suppose that: 
 

1. zT belongs to the domain of definition of )(zΩ . 
2. For every d > 0, the set of elements z of F1 for which dz ≤Ω )( is a compact 

subset of F1. 
 
The functional )(zΩ is then called a stabilizing functional. 
 
It can be shown (see Tikhonov AN, Arsenin VY, 1977) that the following method is a 
regularizing method (proposed by Tikhonov in 1963): 
 

1. Consider: { }δρ δδ ≤≡ ),(; uAzzQ U  
2. Take only those elements of Qδ where )(zΩ is defined: 1,1 FQF ∩≡ δδ  
3. Minimize )(zΩ  in F1,δ 

 
Using further results (see details in Tikhonov AN, Arsenin VY, 1977) and imposing 
some mild conditions on )(zΩ (quasimonotonicity4), the regularized solution is obtained 
by solving the following constrained extremum problem 
 

Determine min )(zΩ on F1 subject to δρ δ =),( uAzU  
 

This constrained extremum problem is solved with the Lagrange multipliers method by 
minimizing the following smoothing functional: 
 

)(),(),( 2 zuAzuzM U Ω+= αρ δδ
α  

 
The solution of this problem, zα, can be seen as ),( αδα uRz = , that is 

min ),( δ
α uzM produces stable solutions . The regularizing parameter α can be chosen 

based on the discrepancy δρ δα =),( uAzU . 

                                                 
4 Ω(z) is quasimonotonic if for every z outside infimum values one can always find in any neighborhood 
of z an element z1 such that Ω(z1) < Ω(z). 
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4.3 Examples of stabilizing functionals 

 

Example 4.1 
F is the space of continuous functions z(x) on the interval [a, b] with the C-metric: 
 

[ ]
)()(sup),( 21

,
21 xzxzzz

bax
F −=

∈
ρ  

Tikhonov stabilizer of order p: 
 

dx
dx

zdxqz
b

a

p

r
r

r

r

2

0
)()( ∫ ∑

=










=Ω  

 
where 0)( ≥xqr  for r = 0, 1, …, p − 1 and 0)( >xq p . For instance, a Tikhonov 
stabilizer of order 1 is: 
 

dx
dx
dzxqxzxqz

b

a
∫



















+=Ω

2

1
2

0 )()()()(  

 
The functions qr(x) can be constants, for instance: 
 

2
2

)( Dzdx
dx
dzz

b

a
=






=Ω ∫  

 
where D is a linear differential operator. 

 

Example 4.2 

Suppose F and U are Hilbert spaces and that A is a continuous operator from F into U. 
Let F1 denote a Hilbert subspace of F with a norm such that, for every d > 0, the set of 
elements z of F1 for which ||z|| ≤ d is compact. In this case we can take for the stabilizer 
the functional: 

2)( zz =Ω  
 
As a special case, assume: 22 ),( uAzuAzU −=ρ . 

The minimization of the regularizer 22),( zuAzuzM αα +−=  corresponds to 
equating to zero its derivative (in order to z); that is: 
 

0)(* =+− zuAzA α  ⇒ uAzAzA ** =+α  
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where A* is the adjoint operator5 of A. 
Now, A*u can be written as a series: 
 

∑
∞

=
=

1

*

n
nncuA ϕ  

 
where ϕn are the eigenfunctions with eigenvalues λn. If we seek a solution in the form 
 

∑
∞

=
=

1n
nnbz ϕ  

 
we just have to compute the coefficients as 

 

αλ +
=

n

n
n

c
b  

4.4 Tikhonov's Regularization is a Nutshell 

We illustrate with the mapping reconstruction problem. 
Tikhonov's regularization based on the variational principle involves: 
 

1. The standard error term ( ),(2 uAzE Us ρ= ) 
 

∑ −= 2)( iis txfE  
 

2. The regularizing term ( )(zΩ ) 
2DfEr =  

 
3. The minimization of the total error 

 
rst EEE α+=   (α > 0) 

 
Comments: 
 

1. The linear differential operator imposes (obviously) some smoothing condition 
(therefore, model complexity) to the admissible mapping f. The same applies to 
other types of stabilizing functionals. 

2. The exact form of the stabilizing functional is problem-dependent; i.e., it 
depends on prior information we may have on the problem. 

                                                 
5 A* is the adjoint operator of A if <Ax, y> = <x, A*y> for all x, y ∈ F 
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3. The regularizing term Er can be interpreted as a model complexity-penalty. 

4. The amount of complexity penalization is tuned with α, the regularization 
parameter.   

α = 0: no penalization. 

α = ∞: the smoothness constraint specifies the solution (the data are unreliable). 

Usually α is chosen experimentally (see figure). Theoretical results on the 
choice of α (see literature) are not easily applied in practice. 

5. Regularization can be viewed as providing a practical solution to the bias-
variance dilemma. 

 
Error

α

Es
Er

Et

α∗  
Fig. 4.2. Regularization error terms. 

5 Regularized Solutions of Some Problems 

5.1 Regularized Training of NN 

5.1.1 Weight Decay 
Weight decay is inspired on the stabilizing functional 2DfEr = . Assume, for 
instance, a linear perceptron: 
 

∑=
i

iii xwxf )(  

 
The discrete version of a possible stabilizing functional is then: 
 

∑∑ =







=Ω

i
i

i i
w

dx
dfz 2

2

)(  
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When minimizing the total error the penalizing function "encourages" the weights to be 
small, and therefore "encourages" less complex functions.  
 
For quadratic error functions it can be shown that weights along principal directions 
with λj >> α, the weights remain practically unchanged; for λj << α, the weights become 
neglectable. 
 

5.1.2 Early Stopping 
There is no theory of early stopping. 
 
Qualitatively early stopping often works because training first progresses along the 
main principal components (e.g., maximum gradient descent) and progresses on less 
important components. Halting the training before reaching a minimum corresponds to 
limiting the network complexity. 

5.1.3 Training with Noise 
Training with noise with zero mean and uncorrelated between different inputs can be 
shown to add the following term to the error formula presented in 2.2: 
 

dtdxxtp
x
f

i i
),(

2

∑∫∫ 







∂
∂

=Ω  

 
This is a Tikhonov stabilizing functional. 
 
The derivation assumes sufficiently small noise so that the Taylor series expansion may 
neglect higher than second-order terms, as well as a neglectable contribution of the 
second-order term near the minimum. 
 
If cross-entropy is used as cost function a similar conclusion is derived. 
 
For details see (Bishop C, 1995b). 

5.2 Ridge Regression 

We are in the conditions of Example 4.2 and use as stabilizer uuu '2 = . That is, we try 
to minimize 

( ) ( ) uuuAzuAzuuAzE ''22 αα +−−=+−=  
 

Taking the derivatives equal to zero we get 
 

( ) uAIAAz '' 1−+= α  



26 

 
That is we add a penalization term to the diagonal of A'A, α, known as the ridge factor. 
 
The ridge factor can be chosen based on: 

• The error curves (see Fig. 4.2 and following example) 
• The so-called ridge traces (evolution of aij with α) 
• Cross- validation 

 
We now present the influence of the ridge factor using the very simple dataset shown in 
Fig, 5.1 with a fitted first-order and a second-order model. 
 
In Fig. 5.1a the ridge factor is zero; therefore, the parabola passes exactly at the 3 
points, is tightly attached to the "training set" and unable to generalise. The z vector is in 
this case [0   3.5   −1.5]'. 
The remaining pictures of Fig. 5.1 show what happens with a regularizer. 
Fig. 5.2 shows for r ∈ [0, 2] the Sum of Squares Error curve together with the curve of 
the following error: 

 

( )∑ −= 2ˆˆSSE(L) iLi uu , 
 

where the iû  are the predicted values (second-order model) and the iLû are the predicted 
values of the linear model, which is the preferred model in this case. Note the ridge 
aspect of this curve. The minimum of SSE(L) (L from Linear) occurs at α = 0.6, where 
the SSE curve starts to saturate. 
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Fig. 5.1. Fitting a second-order model to a very simple dataset (3 points represented by 
solid circles) with ridge factor: a) 0; b) 0.6; c) 1; d) 50. 
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Fig. 5.2.  SSE (solid line) and SSE(L) (dotted line) curves for the ridge regression 
solutions of Fig. 5.1 dataset (the ridge factor is denoted r). 
 
 
Fig. 5.3 and following table show the ridge regression solution for the polynomial 
dataset of Example 3.8. 
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Fig. 5.3. Ridge regresion solutions for diferent noise values and α = 1. 

 
Polynom. coeffs Fig. 5.3a Fig 5.3b 

a0 2.9557 3.0914 
a1 0.6229 0.9740 
a2 -0.4268 -0.5294 
a3 0.7946 0.5240 
a4 -0.5544 -0.4400 
a5 0.3571 0.2263 
a6 -0.1701 -0.2073 
a7 -0.3214 -0.1868 
a8 0.0802 0.0952 
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a9 0.0678 0.0515 

5.3 Parzen Window Estimate as a Regularized Density 
Estimate 

By using appropriate distance metrics and regularizing functions one can obtain the 
classic nonparametric density estimators: Parzen window estimator; projective 
estimator; spline estimator, etc. 
In the following we only consider the Parzen window estimator. 
 
Let us consider the above regularization functional with 
 

1. ∫
∞
∞−

−= dxxFxFFF ll
2

2 ))()((),(ρ  

 

2. dzdxxfxzKfW ∫ ∫
∞
∞−

∞
∞− 





 −=

2
)()()(  

 
Then the estimators fl that minimize the regularized functional ),( ll FfRγ are Parzen 
window estimators: 
 

∑
=

−=
l

i
ill xxG

l
xf

1
)(1)( γ  

 
with6: ))(()( 1 ωγγ ll gxG −=F  

 
)()(1

1)( 2 ωωωγ
ωγ

−+
=

kk
g

l
l  

 ))(()( xKk F=ω  
 
If the density has a finite support the Parzen window estimator has a bias. (The estimate 
needs corrections for the ending points of the finite support.) 
 
Vapnik (2000) compares and discusses the similarity between Parzen window 
estimation and SVM estimation of a density function. 

 

                                                 
6 F denotes the Fourier transform operator 
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6 Appendix 

6.1 Function, Functional, Operator 

Let M and N be two sets of elements connected by a functional dependence: 
 

Ff
NAMNMA

→
=→ )(:

 

 
• M and N are sets of numbers: A is a function 

• M = {f(t)} and N is a set of numbers: A is a functional 
 

Example: ∫−= dttftfH )(log)( ); A = H(f) 
 

• M = {f(t)} and N = {F(x)}: A is an operator 
 

Example: ∫ −=⊗= dttftxKtftKxF x )()()()()( ;  ⊗= KA  
 

6.2 Matrix Norms and Perturbation Formulas 

A matrix norm, ||A|| must obey: 
 

1. ||A|| ≥ 0 and  ||A|| = 0 iff  A = 0 
2. ||αA|| =  |α| ||A|| 
3. ||A + B|| ≤ ||A|| + ||B|| for matrices of the same size 
4. ||AB|| ≤ ||A||.||B|| for conformable matrices 

 
A family of matrix norms satisfying the above conditions is the family induced vector p-
norms: 

p
pxp AxA

1
max

=
=  

 
• Matrix 1-norm: ∑==

= i
ij

jx
aAxA maxmax 111

1 , the largest absolute column sum 

• Matrix ∞-norm: ∑== ∞=∞
∞

j
ij

ix
aAxA maxmax

1
, the largest absolute row sum 
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• Matrix 2-norm: max,212
2 max A

x
AxA λ==

=
. When A is nonsingular 

min,
2

1 1

A

A
λ

=−  (λ are eigenvalues) 

 
Suppose the Ax = b systems is perturbed by adding ∆A and ∆b. The following results 
can be proved for sufficiently small ∆A: 
 

• 
( )

AA

xAbA
x

∆−

∆+∆
≤∆

−

−

1

1

1
 

• For ∆b = 0: 
A
A

Ak
x
x ∆

<
∆

)(~  

• For ∆A = 0: 
b
b

Ak
x
x ∆

<
∆

)(~  

 
where k(A), the condition number of A, is defined as: 
 

AAAk 1)( −= , 

which for the 2-norm is: 

min,

max,)(
A

AAk
λ

λ
=  

 
The above results are based on the following result: ( ) 1111 −−−− −≈+ BAAABA  

6.3 Completely Continuous Operator and the Fredholm 
Integral 

A linear operator A, defined in a linear normed space E1, with range in a linear normed 
space E2, is completely continuous if each infinite bounded sequence in E1: 
 

cffff ii ≤,...,...,, 21  
 
is mapped into a sequence 
 

,...,...,, 21 iAfAfAf  
 
such that a convergent subsequence can be extracted from it (is a compact set). 
 

• If E1 contains bounded noncompact sets the inverse operator A-1 need not be 
continuous (proof in e.g. Vapnik, 1998). 
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• When the kernel K(t,x) is continuous in [a, b]2, the Fredholm integral is a 
completely continuous operator (proof in e.g. Kolmogorov and Fomin, 1970). 

• Therefore the Fredholm integral need not be continuous. 
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