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Chapter 1

1.1 Minimizing error entropy

Consider the two-class problem where a given pattern x = (x1, . . . , xd)
t is

to be classified in one of two classes, C-1 or C1. The linear discriminant is

y =

{
1

∑d
i=1wixi + w0 ≥ 0

−1
∑d

i=1wixi + w0 < 0
, (1.1)

where wi, i = 0, . . . , d are real parameters. Geometrically, the decision
surface, given by wtx + w0 (where wt = (w1, . . . , wd)) is an hyperplane.
A well known learning machine that implements this discriminant is the
linear perceptron with Heaviside (threshold) activation function. We now
study the data classification problem in light of the EEM principle. More
precisely, we question if the solution (hyperplane) obtained by minimization
of the error entropy corresponds to the optimal solution in the sense of
minimum probability of error. The output Y in (1.1) and the true target
T (class membership) can be viewed as discrete random variables with a
given probability distribution. Thus we define the error random variable E
by computing the difference of these variables

E = T − Y.

Obviously E is discrete and takes value in the {−2, 0, 2} set with proba-
bilities P (E = −2) = P-1, the probability of misclassifying a pattern from
class C-1, P (E = 2) = P1, the probability of misclassifying a pattern from
class C1 and P (E = 0) = 1 − P-1 − P1, the probability of making a correct
classification. The error entropy is then

HE = − [P-1 log(P-1) + P1 log(P1) + (1− P-1 − P1) log(1− P-1 − P1)] .
(1.2)
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We now define, w.l.o.g., the following decision rule

x belongs to C1 if

d∑
i=1

wixi + w0 ≥ 0 ⇐⇒ wtx + w0 ≥ 0.

Hence, we compute

P-1 = P (Y = 1, T = −1) = P (wtx+ w0 ≥ 0, T = −1) = q(1− Fz|-1(0)),
(1.3)

P1 = P (Y = −1, T = 1) = P (wtx + w0 ≤ 0, T = 1) = pFz|1(0), (1.4)

where Fz|t(0) = P (z ≤ 0|T = t) for t ∈ {−1, 1}; in other words, Fz|t(0)
is the conditional distribution value at the origin of the univariate random
variable z = wtx+ w0. We proceed considering two cases:

1. Classes with univariate distribution. Here, d = 1 and we may write

wx+ w0 ≥ 0 ⇐⇒ x ≥ −w0

w
. (1.5)

Surely, w �= 0. Without loss of generality, we assume that class C1 is
at the right of class C-1. Hence, we may also consider w = 1 and the
decision rule becomes

x belongs to C1 if x ≥ −w0

This is the Stoller split already studied [ref].

2. Classes with bivariate distribution. In this case, d = 2, and we write

2∑
i=1

wixi + w0 ≥ 0 ⇐⇒ w1x1 + w2x2 + w0 ≥ 0.

where at least one of w1 or w2 must be non-zero. Three situations can
occur:

(a) w1 = 0 and w2 �= 0.
The decision surface is the horizontal line given by x2 = −w0

w2

(b) w1 �= 0 and w2 = 0.
The decision surface is the vertical line given by x1 = −w0

w1
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(c) w1, w2 �= 0.
The decision surface is the general line given by

x2 = −
(
w1

w2
x1 +

w0

w2

)
. (1.6)

Note that cases (a) and (b) are quite similar to (1.5), the Stoller split
problem, but as we will see later they are not completely similar.

We now proceed to considering Gaussian distributions for the classes.

1.2 Two Gaussian classes

We consider the two-class problem where the classes have bivariate Gaus-
sian distributions. From the previous discussion, we see that it is crucial to
determine the distribution of z = wtx + w0. In this sense, we consider the
following property of multivariate Gaussian distributions:

Property - Multivariate Gaussianity is preserved under linear trans-
formations
If x = (x1, . . . , xd)

t has multivariate Gaussian distribution, x ∼ Gd(m,Σ),
w0 ∈ R

m and W is a m× d real matrix, then:

z = Wx+w0 ∼ Gm(Wm+w0,WΣWt).

The variable z = wtx + w0 above is the particular case with d = 2, m = 1.
Thus, if x ∼ G2(m,Σ), then:

z = wtx + w0 ∼ G1(w
tm+ w0,w

tΣw).

We now consider two classes such that

Ct∈{-1,1}, : x ∼ G2(mt,Σt) ⇒ z ∼ G1(w
tmt + w0,w

tΣtw).

Thus, for t ∈ {−1, 1}, we have

Fz|t(0) =
∫ 0

−∞

1√
2π

√
wtΣtw

exp

(
−(x−wtmt − w0)

2

2wtΣtw

)
dx (1.7)

= Φ

(
−wtmt + w0√

wtΣtw

)
(1.8)
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and therefore

P-1 = q

(
1− Φ

(
−wtm-1 + w0√

wtΣ-1w

))
, (1.9)

P1 = p Φ

(
−wtm1 + w0√

wtΣ1w

)
. (1.10)

1.3 Graphical analysis

We are now ready to study HE in some special cases. In order to make
graphical representations we make the following assumptions:

1. Considering mt = (mt1, mt2) for t ∈ {−1, 1}, we set mt2 = 0 and
m-11 = −m11 with m11 > 0. Basically, the centers of the classes lie in
the horizontal axis and are symmetric to each other. Notice that every
possible class configuration can be reduced to this case by applying
shifts and rotations. As this does not alter the probabilities P-1 and
P1, HE is only shifted and rotated, preserving the extrema.

2. Σ-1 = Σ1 = I. By assuming equal covariances, the optimal decision
surface is linear (a line in this case). Also, assuming the identity matrix
for the covariances corresponds to spherical distributions and allows
important simplifications in the above formulas.

With these assumptions, it is easy to see that the optimal solution1 w∗ =
(w∗

1, w
∗
2, w

∗
0)

t, in the sense of minimum probability of error, is the vertical line
x1 = 0 and the optimal decision is to classify x = (x1, x2)

t in C1 if x1 ≥ 0.
This means that w∗

0 = w∗
2 = 0 and w∗

1 must be a positive real number (to
give the correct orientation of the classes). We start, due to representational
reasons, by setting w0 = 0 and draw HE as a function of w1 and w2 as shown
in Figure 1.1. We first notice that the surfaces are symmetric about w2 = 0.
Let us analyze two different situations:

1. w1 > 0
As expected, the minimum of HE is attained when w2 = 0, indepen-
dently of the proximity of the classes. For w2 �= 0 and considering
sufficiently distant classes (Figure 1.1(a)), there are an infinite num-
ber of near-optimal solutions (the flat region) with nearly the same
entropy. This corresponds to decision boundaries with high positive

1Henceforward, we will use this asterisk notation for the optimal solution.
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Figure 1.1: HE for different values of m11 = −m-11.

or negative slopes. Moreover, for smaller values of
∣∣∣−w1

w2

∣∣∣ (for example,

fix w2 and let w1 → 0), entropy increases, because we are considering
solutions converging to x2 = 0. When the classes are closer, the flat
region disappears, because decision boundaries with slope are less tol-
erable here (there is more probability of error). We also notice that for
distant classes, HE ≈ 0 for w2 = 0 because P (E = −2) and P (E = 2)
are nearly zero.

2. w1 < 0
In this case the perceptron is performing a swapped classification,
C-1 ↔ C1. Nevertheless, a minimum value is obtained for w2 = 0,
that seems to be preserved when the classes get closer in a similar
fashion as for w1 > 0.
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These findings seem to contradict the previous results for Stoller splits. This
is not true, however. Note that by setting w0 = 0, the line is already fixed
to the origin and only has the freedom to rotate. This is not the case for the
Stoller split problem. Instead, if w2 = 0, the line is fixed to be vertical and
has freedom to make shifts − the Stoller split problem. Figure 1.2 shows
similar plots for this case. The surfaces are very similar to the previous ones.
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Figure 1.2: HE for different values of m11 and w2 = 0. The entropy maxi-
mum is clearly visible in (c) for w0 = 0.

Again, we can distinguish, due to the same reasons, the case of w1 > 0 and
w1 < 0. Let us analyze the former. When the classes are distant, the opti-
mal solution is obtained when w0 = 0, although small shifts of the line are
also acceptable (the flat region). This is obvious because the probabilities P1

and P-1 are not greatly changed. However, when the classes get extremely
close, the optimal solution, w∗

0 = 0, turns out to be a maximum of entropy,
which is in accordance to the results obtained for Stoller splits.
Finally, we illustrate a more general setting by assuming m1 = −m-1 =

10



−2

0

2

−2

0

2

0.2

1.1

w
1w

2

H
E

(a)

Figure 1.3: HE for m1 = −m-1 = (1, 1) and w0 = 0.

(1, 1)t and noticing that the optimal decision line has equation x2 = −x1.
From (1.6), we see that w0 = 0 and w1 = w2. Again, for correct classifica-
tion, w1 (and hence w2) must be positive. This is shown in Figure 1.3 (with
w0 = 0).

The previous analysis has shown different behaviors for w2 = 0 and w0 = 0.
A natural question then arises: what is the behavior of HE when all the
parameters are free? More precisely, when training a learning machine that
implements an hyperplane as the decision surface (like the simple percep-
tron), there is, in general, no a priori information that one or more of the
parameters w1, w2 or w0 should be zero. Thus, does the optimal set of
parameters (in the sense of minimum probability of error) also correspond
to a minimum of entropy? Does it turn to a maximum (like in the case of
the Stoller split) when the classes get closer? We start investigating these
questions by inspecting the surface levels of HE, the equivalent to contour
levels in the two variable case. In other words, we examine the surfaces
HE(w1, w2, w0) = c for increasing or decreasing values of c ∈ R.

To draw the surfaces we assume the same conditions as above. Figure 1.4
shows some surface levels (iso-entropy surfaces or iso-entropics) of HE . For
distant classes (Figures 1.4(a) and 1.4(b)), we see that as we decrease the
value of c, the iso-entropics converge to the positive w1 axis, the optimal
solution. On the other hand, when the classes are close (m11 = 0.5) the
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Figure 1.4: Surface levels of HE (with values of c represented). Figure (c) is
split into three subfigures with increasing value of c from left to right.

behavior is completely different as is shown in Figure 1.4(c). Due to an high
computational demand, this case is split into three subfigures. From left to
right, we gradually increase the value of c. On the left, we find that when
c is decreased to its minimum, the iso-entropics converge to the w0 axis
(although HE is not defined there). On the other hand, when c is increased
to its maximum (for w1 > 0), the iso-entropics converge to the axis w2;
this is shown on the right figure of Figure 1.4(c). The optimal solution, the
positive w1 axis, appears for an intermediate value of c, as shown in the
middle figure of Figure 1.4(c). In fact, we see from Figure 1.2(c) (although
in this case w2 = 0) that the positive w1 axis is a local maximum.
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1.4 First and second order information

Despite the above graphical suggestions, and specially in the last situation,
we cannot conclude with confidence on the exact nature of these solutions.
We now study these behaviors from an analytical point of view, using first
and second order information about HE (first and second order derivatives).
In what follows we omit several expressions due to their complexity and
length. It is easy to show that HE is constant in the positive and negative
axis w1, with values converging to zero and ln(0.5) respectively, as the classes
get farther. Also, by computing the gradient we see that w̄ = (w1, 0, 0)

t for
w1 �= 0 are critical points of HE or, in other words, that ∇HE(w̄) = 0. The
nature of these critical points can be further investigated using second order
information about HE , which is given by its Hessian matrix. We restrict our
study to the following cases:

1. m11 = 5 and w1 > 0
The Hessian matrix ∇2HE at w̄ is given by

∇2HE(w̄) =

⎛
⎜⎝

0 0 0
0 0.4809

w2
1

0

0 0 0.3527
w2

1

⎞
⎟⎠ ,

which is a positive semi-definite matrix (with det∇2HE(w̄) = 0). As
it is a diagonal matrix, its eigenvalues are directly given by the diag-
onal elements. Due to the singularity of the Hessian, w̄ is said to be
a degenerated critical point and a clear conclusion about its nature
cannot be made. However, we can use the Taylor expansion of HE

to analyze its behavior in a neighborhood of w̄. Consider increments
h = (h1, h2, h3)

t where hi, i = 1, . . . , 3, is small. Then, we can write

HE(w̄+h) = HE(w̄)+ht∇HE(w̄)+ht∇2HE(w̄)h+ o(‖h‖2). (1.11)

For very small ‖h‖, one can neglect o(‖h‖2) and write

HE(w̄ + h)−HE(w̄) ≈ ht∇2HE(w̄)h. (1.12)

Now, if the Hessian was positive definite (all positive eigenvalues), then
for any h, the quadratic form ht∇2HE(w̄)h would be positive and w̄
would be a strict local minimum. However, it is easy to see that there
are increments h such that ht∇2HE(w̄)h = 0; these are of the form
h = (h1, 0, 0). But in this case, w̄ + h belongs to the positive w1 axis
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where HE is constant. Along any other h directions, the quadratic
form is positive. This means that w̄, or more precisely, the whole
positive w1 axis, is in fact an entropy minimum.

2. m11 = 0.5 and w1 > 0
The Hessian now becomes

∇2HE(w̄) =

⎛
⎜⎝

0 0 0
0 0.2641

w2
1

0

0 0 −0.1377
w2

1

⎞
⎟⎠ . (1.13)

This matrix is indefinite, because it has positive and negative eigenval-
ues. This means that there are directions such that w∗ is a minimum
and directions such that w̄ is a maximum (and of course, as discussed
above, directions where HE remains constant). These critical points
saddle points.

This analysis shows that the discrete EEM principle applied to hyperplane
learning, is even less general than the unidimensional case. In fact, while in
the Stoller split problems, the minimum of entropy changes to maximum, in
the bivariate case, the minimum may change to a saddle point, which brings
about further difficulties when applying an optimization strategy.

1.5 Minimum distance for Gaussian classes

It is worth asking what is the minimum distance between the Gaussian
classes such that the minimum of HE is preserved. This can be studied using
the eigenvalues of the Hessian matrix. In fact, ∇2HE(w̄) is always a diagonal
matrix with a zero entry, an always positive entry, and a third entry that
changes the sign as the classes get closer (this is perfectly illustrated with
the two Hessian matrices above); these entries are precisely the eigenvalues
of the matrix. We can, therefore, determine the minimum distance to have
a minimum of HE at (w1, 0, 0)

t for w1 �= 0, by inspecting when the last
eigenvalue changes of sign. With m11 = −m-11, m12 = m-12 = 0 and Σ1 =
Σ2 = σ2I, the third eigenvalue can be written as a function of d = m11/σ,
which can be seen as a normalized half distance between the classes. The
obtained expression is rather long and we just verify that the eigenvalue is
positive if the following expression is positive:

√
2πd(1− Φ(d)) ln

(
2Φ(d)

1− Φ(d)

)
− e−

d2

2 . (1.14)
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The turning value is approximately d = 0.7026, which corresponds to a
normalized distance between the classes of approximately 1.4052. This is
precisely the same value encountered for the Stoller split problem.

1.6 Equal error probabilities as a necessary

condition

We now prove that equal class error probabilities is a necessary condition to
ensure that the optimal solution w∗ is a critical point of error entropy. This
is a bivariate version of Theorem 3 in [ref].

Theorem. In the bivariate two-class problem, if the optimal set of parame-
ters w∗ = (w∗

1, w
∗
2, w

∗
0) of a separating line constitute a critical point of error

entropy then the error probabilities of each class at w∗ are equal.

Proof.
We start by noticing that the linear discriminant can be viewed has a one-
dimensional classification problem. In fact, z̄ = wtx is a projection of
x onto w. From an initial distribution represented by a density g(x) =
qg-1(x) + pg1(x) we get, on the projected space, the distribution of the
projected data given by f(z̄) = qf-1(z̄) + pf1(z̄). The parameter w0 then
functions as a Stoller split: a given pattern is classified in C1 if z̄ ≥ w0. Thus,
and from the results in [ref], we can assert that qf-1(z̄) = pf1(z̄) at w

∗.

We rewrite the error probabilities of each class as

P-1 = q(1− Fz̄|-1(−w0)), (1.15)

P1 = pFz̄|1(−w0) (1.16)

where z̄ = wtx. Thus

∂P-1
∂w0

= −qfz̄|-1(−w0) (1.17)

∂P1

∂w0
= pfz̄|1(−w0) (1.18)

From (1.2)
∂HE

∂Pt

= ln

(
1− P-1 − P1

Pt

)
t ∈ {-1, 1}
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From the chain rule and using the fact that qf-1 = pf1 at w∗ we see that

∂HE

∂w0
(w∗) = 0 ⇔ (1.19)

⇔ pfz̄|1(w∗
0)

(
ln

(
1− P-1 − P1

P-1

)
− ln

(
1− P-1 − P1

P1

))
= 0 (1.20)

⇔ fz̄|1(w∗
0) = 0 ∨ P-1 = P1 (1.21)

Note that fz̄|1(w∗
0) = 0 iff the classes have distribution with exclusive support

(they are separable). But in this case P-1 = P1 = 0. Thus, it remains that
P-1 = P1 is necessary to make null the above partial derivative.

q.e.d.

Computing the remaining partial derivatives with respect to w1 and w2 could
show that the equal error probabilities condition is also sufficient. Thus, at
this time, we do not know if there are situations such that at w∗ with equal
probabilities, the lacking derivatives (which for now, are difficult to com-
pute) are null or not.

We illustrate the preceding Theorem, with the following two examples:

Example 1. We assume m-1 = (−5, 0), m1 = (5, 0) and Σ1 = Σ2 = I.
Also, q = 1 − p. Note that P-1 = P1 only if p = 1/2. The optimal decision
line becomes

x1 =
1

10
ln

(
1− p

p

)
Hence,

−w∗
0

w∗
1

=
1

10
ln

(
1− p

p

)
and therefore we can set

w∗
2 = 0; w∗

1 = 1; w∗
0 = − 1

10
ln

(
1− p

p

)

Now, we can determine (numerically) that ∇HE(w
∗) = 0 only if p = 1/2;

but this is the case of equal class error probabilities.
Example 2. In the second example we assume, m-1 = (−2, 0), m1 = (2, 0),
p = 1− q = 1/2, Σ-1 = I and

Σ1 =

(
2 0
0 1

)
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Although the covariance matrices are different the optimal decision is still a
vertical line with equation

x1 = −6 +
√

32 + 2 ln(2)

The probabilities of error are unequal, with values P-1 ≈ 0.02 and P1 ≈ 0.03.
We then verify that

∇HE(1, 0,−6 +
√
32 + 2 ln(2)) ≈ (−0.0153, 0,−0.0695) �= 0 (1.22)

∇HE(−1, 0, 6−
√
32 + 2 ln(2)) ≈ (0.0149, 0, 0.0672) �= 0 (1.23)

(1.24)

Thus, the optimal solution is not a critical point of error entropy.
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