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Chapter 1

Introduction

Information Theoretic Learning (ITL) is an area of research enjoying a grow-
ing interest and promising new and important breakthroughs in many ap-
plications. The introduction of ITL can be traced back at least to [10]
who introduced the maximization of mutual information between the input
and output of a neural network (the infomax principle) as an unsupervised
method that can be applied, for instance, for feature extraction. But the real
blossom of ITL dates back from more recent years when the minimization
of Rényi’s quadratic entropy of data errors for solving regression problems
was proposed [4]. This was followed by a wide panoply of ITL theoretical
results and applications developed by Pŕıncipe and co-workers, namely in
time series prediction [5], feature extraction, clustering [6, 9] and blind source
separation [8, 3]. The rationale is as follows. Having an adaptive system
with output variable Y and target variable T , the minimization of the error
entropy (MEE), that is the entropy of E = T −Y , implies a reduction of the
expected information contained in the error, leading to the maximization of
the mutual information between the desired target and the system output
[4, 5]. This means that the system is learning the target variable. Entropy-
based cost functions, since they depend on the whole probability distribution
of E, reflect the global behavior of the error distribution; therefore, learning
systems with entropic cost functions can be expected to often outperform
those using the classic and popular mean square error (MSE) cost, which
only reflects the second-order statistics of the error. The outperformance of
MEE over MSE has been shown in the cited works, a good example of which
is the prediction of the Mackey-Glass temporal series described in [5]. An
objection that could be raised to using the MEE principle is the need to es-
timate the probability density function (pdf) of E, in the case of continuous
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error distributions. Now, it is a well-known fact that accurate pdf estima-
tion may be a tougher problem than having to solve a related regression or
classification problem. However, it turns out that when applying the MEE
principle using Rényi’s entropy, pdf estimation is short-circuited altogether
[11]. Even if one uses Shannon’s entropy usually a simple and coarse pdf
estimate is all that is needed [18].
The application of the MEE principle to solving data classification problems
has been carried out by our team and divulged in several papers, either using
MLP’s [15, 13, 18, 16] or recurrent networks [1] (the principle is coined EEM
in these references.). It has been applied with success in classifiers using a
kernel-based approach [7]. We have also applied entropic cost functions with
excellent results in a new data clustering algorithm [14]. Despite the evi-
dence of good performance provided by the experimental results presented
in these references, very little is known about the theoretical properties of
MEE when applied to data classification. Let us consider a classification
problem with a set of classes Ω = {ω} and a parametric machine (param-
eter set W = {w}) performing a mapping Y = ϕw(X) where X and Y are
the input and output spaces, respectively. The machine is trained by some
algorithm in order to minimize a risk functional on the parameter set W of
the function class Φ = {ϕw}, implemented by the classifier, which is often
written for continuous data distributions as

min
W

RΦ = min
W

∑
Ω

P (ω)

∫
X,T

L(t, y)dF (t, x|ω) with y = ϕw(x)

where T is the target space, F (t, x|ω) ≡ FT,X(t, x|ω) is the joint cumulative
distribution and the P (ω) are prior probabilities. The target-output dis-
tance, i.e. the cost function L(·), can be chosen in various ways. For instance,
for MSE, L(t, y) = (t − y)2 and for cross-entropy and two-class problems
with Y ∈ [0, 1] and T ∈ {0, 1}, L(t, y) = t ln y+(1− t) ln(1− y). Minkowski
and exponentially weighted distances have also been proposed. The risk
functional for MEE is written not as a distance functional but instead as
a functional of the error E = T − Y pdf f(e) ≡ fE(e)(assuming it exists),
namely as -

∫
E
ln f(e|ω)dF (e|ω) for the Shannon entropy of the error, or as

1
1−α

ln
∫
E
f(e|ω)α−1dF (e|ω) for the Rényi entropy. Thus the MEE functional

reflects the whole error pdf, whereas the popular MSE functional only reflects
the error variance. The main problem in data classification called from now
on the classifier problem is the possibility of attaining the minimum proba-
bility of error afforded by the machine architecture, that is, by the family of
functions Φ, for some w∗, the so-called optimal solution. Let us denote the
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minimum probability of error, achievable in Φ by minW PeΦ
1. From now on

whenever we talk of optimal solution, w∗, we always mean optimal in the
minW PeΦ sense. The classifier problem corresponds to the following ques-
tion: does minW RΦ imply minW PeΦ? (Note that minW PeΦ corresponds in
the distance functional to setting L(t, y) = {0, if t = y ; 1, otherwise}; how-
ever we are only interested in risk functionals with continuous integrands,
for which efficient optimization algorithms exist.) For instance, if hypo-
thetically minW RΦ does not lead to minW PeΦ, one has to conclude that a
risk functional is being used which fails to adequately take into account the
whole Φ set complexity. One should then turn to another risk functional.
This essential problem has been somewhat overlooked in past literature.
Concerning MSE, the main and often mentioned results are that for Gaus-
sian distributions MSE yields the optimal regression solution and that the
outputs of a neural network (NN) trained with MSE correspond to Bayesian
posterior probabilities [2, 12], which allow some confidence that MSE will
also perform well in classification problems. However, MSE may fail for
some families of error pdf’s where MEE performs in the optimal way, as
shown in Appendix .1. Another type of problem where MSE will completely
fail is when the error data is characterized by a fat-tail distribution, such as
sometimes encountered in financial time series. Take the Cauchy distribu-
tion. Empirical variances computed in a Cauchy time series vary erratically,
since the Cauchy distribution has no variance; however, it does have a finite
Shannon entropy; so the application of MEE to such time series is not a
problem. Since MEE is a more sophisticated approach than often used MSE
or CE, which takes into account the whole distribution of the errors, and
given the large amount of good experimental results obtained with MEE,
it really seems worth to investigate the classifier problem with MEE. Along
this investigation many interesting aspects and new insights come to light.
In a previous work [17] we have showed that for univariate data and the
Stoller split setting [20] (a popular setting in decision trees) the MEE prin-
ciple does not always lead to minW PeΦ and we were able to rigorously state
the very general conditions when it does. In the present work we go several
steps further. We investigate the behavior of a simple perceptron trained
with MEE using both discrete and continuous activation functions (a.f.).
Although the analysis is carried out in two-class simple perceptrons, what
really matters is the MEE behavior in realistic situations of univariate fam-
ilies of error pdf’s. The main conclusions can therefore be extrapolated to

1For some architectures minW PeΦ may correspond to the optimal Bayes error. How-
ever, this issue will not occupy us here.
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more complex classifiers.
The organization of the paper is as follows. In the following section 2 we in-
troduce notation and present the error entropy expressions for both discrete
and continuous cases. We also show in section 2 that for data classification
the MEE principle is harder to apply than for regression. In Section 3 we
analyze the classifier problem for a simple perceptron with a threshold a.f..
The error distribution is therefore discrete and this analysis completes our
previous work [17] extrapolating some previous findings and demonstrating
some interesting and even surprising results. In Section 4 we analyze the
classifier problem for a simple perceptron with sigmoidal a.f. and explain
why the MEE principle works in practice besides some negative theoretical
findings. Finally, in section 5 we draw the main conclusions.

1.1 MEE is Harder for Classification than for

Regression

1.1.1 The Error Entropy for Data Classification

We consider two-class problems where a given instance x = (x1, . . . , xd)
T

from X is to be classified in one of two classes, C-1 or C1, the target set is
T ∈ {−1, 1}, and a machine (e.g., NN) implements a parameterized family
Φ = {ϕw}, w ∈ W , and issues a single output y ∈ [−1, 1]. Any other
supports for T and Y could be used. The ones indicated make computations
easier. The random variable (r.v.) Y may be discrete (e.g., as a result of the
NN having threshold functions as a.f.) or continuous (e.g., as the result of
sigmoidal a.f.). The distribution of the error r.v., E = T − Y , for two-class
problems, is given by (see Appendix .2):

Continuous case: fE(e) =
∑
t∈T

πtfY |t(t− e) e ∈ [−2, 2]; (1.1)

Discrete case: pE(e) =
∑
t∈T

πtpY |t(t− e)δ(e, t− y) e ∈ {−2, 0, 2};

(1.2)

with priors πt = P (T = t), also denote p, q for π1, π-1, respectively. We
also denote by fY |t the conditional pdf fY (.|t). Likewise for pY |t. For the
continuous case, the error Shannon’s entropyHS(E) can then be decomposed
as:

HS(E) = pHS|1 + qHS|-1 +HS(T ) (1.3)
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whereHS|t is the error Shannon’s entropy2 for class Ct andHS(T ) =
∑

t∈T πt lnπt

is the prior Shannon’s entropy. This formula is the consequence of disjoint
integration supports. For the discrete case, and defining Pt∈{−1,1} as the
probability of error for class Ct, the entropy formula becomes

HS = − [P-1 ln(P-1) + P1 ln(P1) + (1− P-1 − P1) ln(1− P-1 − P1)] . (1.4)

The distributions and entropies are functions of w, the machine parameter
vector, although we omit this dependency for the sake of simpler notation.

1.1.2 The Minimum of the Error Entropy

Looking at (1.3) and since HS(T ) is a constant, minHS = min{pHS|1 +
qHS|-1}. Thus, in general one can say nothing about the minimum (location
and value) since it will depend on the particular shapes of HS|t as functions
of w, and the particular value of p. However, with iso-entropic distributions,
i.e. whenever HS|1(w) = HS|-1(w), ∀w, one only has to study one of the
HS|t. The situation is even more complicated for the discrete case where no
decomposition in sub-entropies is possible.

1.1.3 The Minimum of the KL Divergence

An important result concerning the error (Shannon’s) entropy minimum
was shown by [5]. These authors demonstrated that the MEE principle
corresponds to the minimum of the Kullback-Leibler (KL) divergence. This
“probability density matching” result was demonstrated for the regression
setting. However, for the data-classification setting two difficulties arise:

1. For the regression setting one may write fE(e) = fY |x(d−e|x) as in the
cited paper, since there is only one distribution of y values and d can be
seen as the mean of the y values. However, for the classification setting
one has to write: fE|t(e|t) = fE|t,x(d−e|t, x). That is, one has to study
what happens to each class conditional distribution, individually; and,
therefore, to individually study the KL divergence relative to each class

2From now on we will omit the dependency on E and simply denote HS(E) ≡ HS .
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conditional distribution, that is:

Continuous case: KLt =

∫ ∫
fXY |t(x, y) ln

fXY |t(x, y)
dXY |t(x, y)

(1.5)

Discrete case: KLt =
∑
X

∑
y

PXY |t(x, y) ln
PXY |t(x, y)
DXY |t(x, y)

(1.6)

where dXY |t(x, y) (or DXY |t(x, y)) is the desired input-output proba-
bility density (or mass) function.

2. The KL divergence is undefined whenever dXY |t(x, y) (or DXY |t(x, y))
has zeros in the supports of X and Y . This problem, which may
or may not be present in the regression setting, is always present in
the classification setting, since the desired input-output probability
density or mass functions are continuous and discrete Dirac functions,
respectively.

Even if we relax the conditions on the desired input-output probability den-
sity or mass functions, for instance by choosing functions with no zeros on
the Y support but sufficiently close to Dirac functions, we may not yet reach
the MEE condition for classification because of section 1.1.2: attaining the
KL minimum for a class conditional distribution, says nothing about the
other class conditional distribution and about HS.
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Chapter 2

Perceptron with Discrete
Errors

2.1 The General Setting

The perceptron with threshold a.f. implements a linear discriminant

y =

{
1,

∑d
i=1wixi + w0 ≥ 0

−1,
∑d

i=1wixi + w0 < 0
, (2.1)

where wi, i = 0, . . . , d are real parameters. Geometrically, the decision
surface, given by wTx + w0 (where wT = (w1, . . . , wd)) is an hyperplane.
We now study the data classification problem in light of the MEE prin-
ciple. More precisely, we question if the solution (hyperplane) obtained
by minimizing the error entropy corresponds to the optimal solution. The
output Y in (2.1) and the target T (class membership) are discrete ran-
dom variables. The error r.v. E = T − Y takes value in {−2, 0, 2} with
probabilities P (E = −2) = P-1, the probability of misclassifying a C-1 pat-
tern, P (E = 2) = P1, the probability of misclassifying a C1 pattern and
P (E = 0) = 1 − P-1 − P1, the probability of making a correct classifica-
tion. The error entropy is given by formula (1.4). For the decision rule
corresponding to (2.1) we compute

P-1 = P (Y = 1, T = −1) = P (wTx+ w0 ≥ 0, T = −1) = q(1− Fz|-1(0)),
(2.2)

P1 = P (Y = −1, T = 1) = P (wTx+ w0 ≤ 0, T = 1) = pFz|1(0), (2.3)

where Fz|t(0) = P (z ≤ 0|T = t) is the conditional distribution value at the
origin of the univariate r.v. z = wTx + w0. We now consider two cases:
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1. Classes with univariate distribution. Here, d = 1 and we may write

wx+ w0 ≥ 0 ⇐⇒ x ≥ −w0

w
. (2.4)

Surely, w 	= 0. Without loss of generality, we assume class C1 at the
right of class C-1. Hence, we may also consider w = 1 and the decision
rule becomes

x belongs to C1 if x ≥ −w0

This is the Stoller split setting already studied [17].

2. Classes with bivariate distribution. In this case, d = 2, and we write

2∑
i=1

wixi + w0 ≥ 0 ⇐⇒ w1x1 + w2x2 + w0 ≥ 0,

where at least one of w1 or w2 must be non-zero. Three situations can
occur:

(a) w1 = 0 and w2 	= 0.
The decision surface is the horizontal line given by x2 = −w0

w2

(b) w1 	= 0 and w2 = 0.
The decision surface is the vertical line given by x1 = −w0

w1

(c) w1, w2 	= 0.
The decision surface is the general line given by

x2 = −
(
w1

w2
x1 +

w0

w2

)
. (2.5)

Note that cases (a) and (b) are quite similar to (2.4), the Stoller split
problem, but as we will see later they are not completely similar.

We now proceed to considering Gaussian distributions for the classes.

2.2 The Case of Two Gaussian Classes

We consider the two-class problem with input data having bivariate Gaussian
distributions. From the previous discussion, we see that it is crucial to
determine the distribution of z = wTx+w0. For that purpose, we take into
account that Gaussianity is preserved under linear transformations:
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Property 1. If x = (x1, . . . , xd)
T has multivariate Gaussian distribution

with mean vector µ and covariance matrix Σ, i.e x ∼ Gd(µ,Σ), w0 ∈ R
m

and W is a m× d real matrix, then:

z = Wx+w0 ∼ Gm(Wµ+w0,WΣWT).

We now consider two classes such that

Ct∈{-1,1}, : x ∼ G2(µt,Σt) ⇒ z ∼ G1(w
Tµt + w0,w

TΣtw).

Hence, for t ∈ {−1, 1}, we have

Fz|t(0) =
∫ 0

−∞

1√
2π

√
wTΣtw

exp

(
−(x−wTµt − w0)

2

2wTΣtw

)
dx (2.6)

= Φ

(
−wTµt + w0√

wTΣtw

)
(2.7)

and therefore

P-1 = π-1

(
1− Φ

(
−wTµ-1 + w0√

wTΣ-1w

))
, (2.8)

P1 = π1 Φ

(
−wTµ1 + w0√

wTΣ1w

)
. (2.9)

To further investigate this two-class problem in light of the MEE principle
we assume, without loss of generality, the following:

1. Considering µt = (μt1, μt2) for t ∈ {−1, 1}, we set μt2 = 0 and
μ-11 = −μ11 with μ11 > 0; i.e, the centers of the classes lie in the
horizontal axis and are symmetric to each other. Notice that every
possible class configuration can be reduced to this case by applying
shifts and rotations. As this does not alter the probabilities P-1 and
P1, HS is only shifted and rotated, preserving the extrema.

2. Σ-1 = Σ1 = I. By assuming equal covariances, the optimal decision
surface is linear (a line in this case). Also, assuming the identity matrix
for the covariances corresponds to spherical distributions and allows
important simplifications in the above formulas.

With these assumptions, it is easy to see that the optimal solution w∗ =
(w∗

1, w
∗
2, w

∗
0)

T corresponds to the vertical line x1 = 0 and the optimal decision
is to classify x = (x1, x2)

T in C1 if x1 ≥ 0. This means that w∗
0 = w∗

2 = 0
and w∗

1 must be a positive real number (to give the correct orientation of
the classes).
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2.2.1 Graphical Analysis

Due to representational reasons, we must fix one of the parameters w1, w2

or w0. As we have some prior knowledge about the solutions we start by
setting w2 = 0 and plot HS as a function of w1 and w0 in Figures 2.1(a) and
2.1(b).
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Figure 2.1: HS for different values of μ11 = −μ-11. From left to right we
decrease the distance between the classes. Also, the top figures were drawn
with w2 = 0, while the bottom ones were drawn with w0 = 0.

Note that we are assuming a vertical line with freedom to make shifts as the
solution to the problem. This is in fact equivalent to the Stoller split case.
We may distinguish two regions defined by w1 > 0 and w1 < 0.

• w1 > 0
When the classes are distant, the optimal solution is obtained at w0 =
0, although small shifts of the line are also acceptable (the flat region
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in Figure 2.1(a)). In fact, there are infinite near-optimal solutions
with approximately the same entropy (HS ≈ 0). This is because the
probabilities P1 and P-1 are not greatly affected by (small) shifting
when the classes are distant. However, when the classes get extremely
close (Figure 2.1(b)), we obtain a local maximum of the entropy for
w0 = 0, which is in accordance to the results obtained for Stoller splits
[17].

• w1 < 0
In this case, a swapped classification is being performed, C-1 ↔ C1.
The same behaviors as for w1 > 0 are observed.

If we now set w0 = 0, we are considering a solution given by a line passing
through the origin but capable of rotating. Let us analyze the w1 > 0 case,
by inspecting Figures 2.1(c) and 2.1(d). As expected, the minimum of HS

is attained when w2 = 0, but now it will not turn into a maximum when
the classes get closer. Simply, the flat region disappears, because decision
boundaries with slope are less tolerable here (there is more probability of
error). Thus, we encounter different behavior for w2 = 0 and for w0 =
0. A natural question then arises: what is the behavior of HS when all
the parameters are free to vary? More precisely, when training a learning
machine that implements a hyperplane as the decision surface (like the single
perceptron), there is, in general, no prior information that one or more of
the parameters w1, w2 or w0 should be set to zero (assuming appropriate
data shift and rotation). Does the optimal set of parameters also correspond
to an entropy minimum? Does it turn to a maximum when the classes get
closer (as in the Stoller split case)? We start investigating these questions by
inspecting the surface levels ofHS, the equivalent to contour levels in the two
variable case. In other words, we examine the surfacesHS(w1, w2, w0) = c for
increasing or decreasing values of c ∈ R. Figure 2.2 shows some surface levels
(iso-entropy surfaces or iso-entropics) of HS. For distant classes, Figures
2.2(a) and 2.2(b) show that as one decreases the value of c, the iso-entropics
converge to the positive w1 axis, meaning that HS(w1, 0, 0) for w1 > 0 has
the lowest entropy value. On the other hand, when the classes get closer
the behavior is completely different. This case is split into three subfigures
in Figure 2.2(c), where from left to right, we gradually increase the value
of c. We find that when c is decreased to its minimum, the iso-entropics
converge to the w0 axis (left figure). On the other hand, when c is increased
to its maximum (for w1 > 0), the iso-entropics converge to the axis w2 (right
figure). The positive w1 axis appears for an intermediate value of c, shown
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Figure 2.2: Surface levels of HS (values of c also shown). Figure (c) is split
into three subfigures with increasing value of c from left to right.

in the middle figure of Figure 2.2(c), which means that this solution (in
fact, the optimal solution) is not a global minimum nor maximum of the
entropy. In fact, as we found with Figure 2.1(b) the positive w1 axis is a
local maximum.

2.2.2 First and Second Order Information

Despite the above graphical suggestions one cannot conclude with confidence
the exact nature of the solutions. We now study their behavior from an
analytical point of view, using first and second order information about
HS (first and second order derivatives). In what follows we omit several
expressions due to their complexity and length. It is easy to show that for the
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class configuration stated in section 2.2 (the centers of the classes lie in the
horizontal axis x1 and are symmetric to each other) we have HS(w1, 0, 0) =
c1 ∀w1 > 0 and H(w1, 0, 0) = c2 ∀w1 < 0, where c1, c2 ∈ R. Moreover, it
can be proved that c1 → 0 (100% correct classification) and c2 → ln(0.5)
(ditto, with swapped class labels), as we increase the distance between the
classes. Computing the gradient of HS we find that vectors of the form
w̄ = (w1, 0, 0)

T for w1 	= 0 are critical points of HS or, in other words, that
∇HS(w̄) = 0. The nature of these critical points can be further investigated
using second order information about HS, given by its Hessian matrix. We
restrict our study to the following cases:

1. μ11 = 5 and w1 > 0
The Hessian matrix ∇2HS at w̄ is given by

∇2HS(w̄) ≈

⎛
⎜⎝

0 0 0
0 0.4809

w2
1

0

0 0 0.3527
w2

1

⎞
⎟⎠ ,

which is a positive semi-definite matrix. Since it is a diagonal matrix,
its eigenvalues are directly given by the diagonal elements. Due to the
singularity of the Hessian, w̄ is said to be a degenerated critical point
and a clear conclusion about its nature cannot be made. However,
we can use the Taylor expansion of HS to analyze its behavior in
a neighborhood of w̄. Consider increments h = (h1, h2, h3)

T where
hi, i = 1, . . . , 3, is small. We can write

HS(w̄+h) = HS(w̄)+hT∇HS(w̄)+hT∇2HS(w̄)h+ o(‖h‖2). (2.10)

For very small ‖h‖, one may neglect o(‖h‖2) and write

HS(w̄ + h)−HS(w̄) ≈ hT∇2HS(w̄)h. (2.11)

Now, if the Hessian were positive definite (all positive eigenvalues),
then for any h, the quadratic form hT∇2HS(w̄)h would be positive
and w̄ would be a strict local minimum. However, it is easy to see
that there are increments h such that hT∇2HS(w̄)h = 0; these are
of the form h = (h1, 0, 0). But in this case, w̄ + h belongs to the
positive w1 axis where HS is constant. Along any other h directions,
the quadratic form is positive. This means that w̄, or more precisely,
the whole positive w1 axis, is in fact an entropy minimum.
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2. μ11 = 0.5 and w1 > 0
The Hessian now becomes

∇2HS(w̄) ≈

⎛
⎜⎝

0 0 0
0 0.2641

w2
1

0

0 0 −0.1377
w2

1

⎞
⎟⎠ . (2.12)

This matrix is indefinite, because it has positive and negative eigenval-
ues. This means that there are directions such that w̄ is a minimum
and directions such that w̄ is a maximum (and of course, as discussed
above, directions where HS remains constant). These critical points
are saddle points.

This analysis shows that the discrete MEE principle applied to hyperplane
learning, is even less general than in the unidimensional case. In fact, while
for Stoller split problems the minimum of entropy changes to maximum as
the classes get closer [17], in the bivariate case the minimum may change
to a saddle point, which brings about further difficulties when applying an
optimization strategy.

2.2.3 Minimum Distance for Gaussian Classes

It is worth asking when are the Gaussian classes no longer “distant” and
the minimum of HS turns into a maximum. This can be studied using the
eigenvalues of the Hessian matrix. In fact, ∇2HS(w̄) is always a diagonal
matrix with one zero entry, an always positive entry, and a third entry that
changes sign as the classes get closer (as previously illustrated); these entries
are the eigenvalues of the matrix. We can, therefore, determine the minimum
distance yielding a minimum of HS at (w1, 0, 0)

T for w1 	= 0, by inspecting
when the sign-changing eigenvalue changes of sign. With μ11 = −μ-11,
μ12 = μ-12 = 0 and Σ1 = Σ2 = σ2I, this eigenvalue can be written as
a function of d = μ11/σ, which can be seen as a normalized half distance
between the classes. The obtained expression is rather long and but it can be
verified that the eigenvalue is positive if the following expression is positive:

√
2πd(1− F (d)) ln

(
2F (d)

1− F (d)

)
− e−

d2

2 , (2.13)

where F is the cumulative distribution of G1(0, 1). The turning value is
approximately d = 0.7026, which corresponds to a normalized distance be-
tween the classes of approximately 1.4052. This is precisely the same value
encountered for the Stoller split problem [17].
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2.2.4 Equal Error Probabilities as a Necessary Condi-
tion

We now prove that equal class error probabilities is a necessary condition to
ensure that the optimal solution w∗ is a critical point of error entropy. This
is a multivariate version of Theorem 3 in [17].

Theorem 1. In the two-class multivariate problem, if the optimal set of
parameters w∗ = (w∗

1, . . . , w
∗
d, w

∗
0)

T of a separating line constitute a critical
point of the error entropy then the error probabilities of each class at w∗ are
equal.

Proof.
We start by noticing that the linear discriminant can be viewed has a one-
dimensional classification problem. In fact, z̄ = wTx is a projection of
x onto w. From an initial distribution represented by a density g(x) =
qgX|-1(x) + pgX|1(x) we get, on the projected space, the distribution of the
projected data given by f(z̄) = qfz̄|-1(z̄) + pfz̄|1(z̄). The parameter w0 then
works as a Stoller split: a given pattern is classified in C1 if z̄ ≥ w0. Thus,
and from the results in [17], we can assert that qfz̄|-1(z̄) = pfz̄|1(z̄) at w∗.
We rewrite the error probabilities of each class as

P-1 = q(1− Fz̄|-1(−w0)), (2.14)

P1 = pFz̄|1(−w0) (2.15)

where z̄ = wTx. Thus

∂P-1
∂w0

= −qfz̄|-1(−w0) (2.16)

∂P1

∂w0

= pfz̄|1(−w0) (2.17)

From (1.4)
∂HS

∂Pt
= ln

(
1− P-1 − P1

Pt

)
t ∈ {-1, 1}

From the chain rule and using the fact that qf-1 = pf1 at w∗ we see that

∂HS

∂w0
(w∗) = 0 ⇔ (2.18)

⇔ pfz̄|1(w∗
0)

(
ln

(
1− P-1 − P1

P-1

)
− ln

(
1− P-1 − P1

P1

))
= 0 (2.19)

⇔ fz̄|1(w∗
0) = 0 ∨ P-1 = P1 (2.20)
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Note that fz̄|1(w∗
0) = 0 if and only if the classes have distributions with

disjoint supports (they are separable). But in this case P-1 = P1 = 0. Thus,
in both cases P-1 = P1 is a necessary condition.

q.e.d.

If it were possible to compute the partial derivatives with respect to w1 and
w2 one could also show whether or not the equal-error-probability condition
is also sufficient. Two examples are given in Appendix .3 illustrating this
Theorem.
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Chapter 3

Perceptron with Continuous
Errors

The continuous error distribution is characterized by formula (1.1). We
consider two types of a.f.: linear and squashing functions. We also use two
definitions of entropy, viz. Shannon entropy, HS(E), and Rényi’s entropy,
HRα(E), defined as in the Introduction. Our goal is again to study the
classifier problem in light of the MEE principle. More precisely, we will
study the behavior of the error entropy as we vary the parameters of ϕw(x)
(we often simply denote by ϕ(x)) and investigate if the theoretical optimal
solution corresponds to an error distribution with minimum entropy.

3.1 The Split-Type Setting

We start by considering perceptrons with only one adjustable parameter;
that is, the perceptron is trained to find a split point in the error distribu-
tion, as in the Stoller split setting. The only difference is that now we have
a continuous error distribution. In the following we consider the cases of
linear and squashing activation functions.
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3.1.1 Linear Activation Function

Consider two uniform overlapping classes defined by the densities1

fX|-1(x) =
1

b− a
I[a,b](x) fX|1(x) =

1

d− c
I[c,d](x) (3.1)

with a < c < b < d and ϕ(x) = x−w, where w is a threshold. Note that, if
ϕ(x) ≥ 0 ⇐⇒ x ≥ w we classify x as C1, otherwise we classify as C-1. One
easily derives

fY |-1(−1 − e) =
1

b− a
I[w−b−1,w−a−1](e) (3.2)

fY |1(1− e) =
1

d− c
I[w−d+1,w−c+1](e) (3.3)

The final configuration of the transformed (shifted) distributions is depen-
dent on the values of c − a and d − b (in some cases the optimal solution
would need two splits). Also, E is not necessarily constrained to the inter-
val [−2, 2]. We analyze the case where the final distributions are such that
w− d+1 < w− b− 1 < w− c+1 < w− a− 1, that is we assume an overlap
in the interval [w − b− 1, w − c+ 1]. In this case,

HS(E) = −
[∫ w−b−1

w−d+1

p

d− c
ln

(
p

d− c

)
de+∫ w−c+1

w−b−1

(
p

d− c
+

q

b− a

)
ln

(
p

d− c
+

q

b− a

)
de+∫ w−a−1

w−c+1

q

b− a
ln

(
q

b− a

)
de

]
(3.4)

Thus:

HS(E) =
p(d− b− 2)

d− c
ln

(
p

d− c

)
+(

p

d− c
+

q

b− a

)
ln

(
p

d− c
+

q

b− a

)
(b− c+ 2)+

q(c− a− 2)

b− a
ln

(
q

b− a

)
(3.5)

which does not dependent on w! Hence, the MEE principle doesn’t work
with linear a.f., which anyway isn’t the most appropriate for classification
problems.

1I[a,b](x) is the indicator function with value 1 whenever x ∈ [a, b] and 0 otherwise.
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3.1.2 Squashing Activation Function

We take as squashing function of a single perceptron the popular and math-
ematically easy to manipulate tanh function. In order to derive the error
pdf, we start by recalling that HS can be decomposed as a sum of error
sub-entropies as stated in formula (1.3). For the Rényi’s entropy one derives

HRα =
1

1− α
ln

∫ ∞

−∞
[fE(e)]

α de (3.6)

=
1

1− α
log ln

[∫ 0

−2

[qf-1(e)]
α de+

∫ 2

0

[pf1(e)]
α de

]
(3.7)

Although Rényi’s entropy is not decomposable as a sum of class sub-entropies,
the minimization problem can be transformed into an equivalent problem
where a sum of two positive quantities (each exclusively related to each class)
appears. As an example, for the special case with α = 2, the minimization
of HR2 is equivalent to the maximization of

VR2 = exp(−HR2) =

∫ 0

−2

[qf-1(e)]
2 de+

∫ 2

0

[pf1(e)]
2 de (3.8)

This decomposition is an important property of MEE for classification and
emphasizes the difference between classification and regression (as previously
discussed). The same decomposition appears for multi-class problems. In
fact, whenever a pdf f(x) can be written as

f(x) =
∑
i

aifi(x)

with
∑

i ai = 1 and the supportsDi of the pdf’s fi(x) are such thatDi∩Dj =
∅, ∀i 	= j, then the Shannon’s entropy Hf associated with f is given by

Hf = −
∑
i

ai ln(ai) +
∑
i

aiHfi,

where Hfi is the Shannon’s entropy associated to fi. This applies to multi-
class problems whenever an 1-out-of-C coding is used. An equivalent de-
composition appears for VR2 .

For two-class problems with squashing a.f. we also need to use the well-
known theorem of r.v. transformation:
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Theorem 2. Let f(x) be the pdf of the r.v. X. Assume ϕ(x) to be monotonic
and differentiable and suppose ϕ′(x) 	= 0 ∀x. If g(y) is the density of Y =
ϕ(X) then

g(y) =

⎧⎨
⎩

f(ϕ-1(y))

|ϕ′(ϕ-1(y))| , inf ϕ(x) < y < supϕ(x)

0, otherwise
(3.9)

where x = ϕ-1(y) is the inverse function of y = ϕ(x).

Note that our aim is to compute the density of E, which is a transformation
of the inputX. For the split-type case, ϕ(x) = tanh(x−w), is a differentiable
and strictly increasing transformation, where w acts as the split point. We
thus have

ϕ′(x) = 1− tanh2(x− w) 	= 0 ∀x (3.10)

ϕ−1(y) = w + arctanh(y) (3.11)

ϕ′(ϕ−1(y)) = 1− y2 (3.12)

We now study the special cases of uniform and Gaussian distributed input
data.
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Uniform Classes

Suppose that the two classes have inputs described by two overlapping
uniform densities as in (3.1). Making use of Theorem 2 one derives

fY |-11(−1− e) =
−1

(b− a)e(2 + e)
I[−1−tanh(b−w),−1−tanh(a−w)](e) (3.13)

fY |1(1− e) =
1

(d− c)e(2− e)
I[1−tanh(d−w),1−tanh(c−w)](e) (3.14)

Thus, from (1.3), we obtain

HS = q

⎡
⎣2 ln

(
|e|
2+e

)
ln
(

−1
(b−a)e(2+e)

)
+ 4dilog

(
2+e
2

)
4(b− a)

+

+
ln |e| ln

(
|e|(2+e)2

16

)
+ 2 ln(2)2 − ln(2 + e)2

4(b− a)

⎤
⎦

−1−tanh(a−w)

−1−tanh(b−w)

+

+ p

⎡
⎣2 ln

(
e

|e−2|

)
ln ((d− c)e(2− e)) + 4 dilog

(
e
2

)
4(d− c)

+

+
ln |e− 2| ln

(
e2|e−2|

16

)
+ 2 ln(2)2 − ln(e)2

4(d− c)

⎤
⎦
1−tanh(c−w)

1−tanh(d−w)

+HS(T ) (3.15)

and for Rényi’s entropy

VR2 = −q2

4

⎡
⎣2 + e(2 + e) ln

(
|e|
2+e

)
+ 2e

(b− a)2(2 + e)e

⎤
⎦

−1−tanh(a−w)

−1−tanh(b−w)

+

+
p2

4

⎡
⎣2 + ln

(
e

|e−2|

)
e(e− 2)− 2e

(d− c)2(e− 2)e

⎤
⎦

1−tanh(c−w)

1−tanh(d−w)

(3.16)

Figure 3.1 shows HS andHR2 as a function of w using exact and approximate
computation of the integrals. The deviation of the approximate solution
from the exact one is attributed to the fact that inaccuracies are unavoidable
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Figure 3.1: Shannon and Rényi entropies as a function of w. Dashed lines
are obtained with exact computations, while solid lines use approximated
computation (quadrature) of the integrals.

in the numerical evaluation of the integrals near the diverging tails of the
integrands. Class C-1 is fixed to [a, b] = [0, 1] and p = q = 1/2. In Figure
3.1(a), where the classes have equal support width, the optimal split is
any point in the interval [0.5, 1]. Both Shannon and Rényi’s entropies have
a maximum at w = 0.75. This is in direct contradiction with the MEE
criterion, which states that w should be chosen so as to minimize the error
entropy. The particular choice of this split can be explained by the fact
that this is the split point providing equal class error probability. This was
already encountered in the discrete entropy case [17]. In general, one can
prove the following. Let a = 0 ≤ c ≤ b ≤ d = c + k, where k ∈ R controls
the support width of C1. For k ≥ b− a the optimal split point for the b = 1
setting occurs obviously at w = 1, since it will correspond to minPe. For
Shannon entropy

dHS

dw
=

k ln
(

cosh2(w)

cosh2(b−w)

)
+ b ln

(
cosh(c−w)2

cosh(c+k−w)2

)
−2bk

, (3.17)

d2HS

dw2
= −

k sinh(b)
cosh(w)cosh(b−w)

+ b
(

sinh(c+k−w)
cosh(c+k−w)

− sinh(c−w)
cosh(c−w)

)
bk

. (3.18)

If we take k = b, and thus, both classes have equal support width, we get

dHS

dw

(
b+ c

2

)
= 0 ∧ d2HS

dw2

(
b+ c

2

)
< 0
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dw
as a function of c and k.

which means that (b+ c)/2 is a maximizer of HS.
A rather unexpected behavior appears when the support of class C1 is in-
creased. In Figure 3.1(b), where [c, d] = [0.5, 2], the optimal split moves
toward an unique point, w = 1. However, both Shannon and Rényi’s en-
tropies fail to identify it (now, the maximum is at w ≈ 0.859 and w ≈ 0.841,
respectively). Note that in this case, the class error probabilities are not
equal. We know that in the discrete case a necessary condition for the
optimal split corresponding to the entropy extrema is that the class error
probabilities are equal [17]. However, in the present case this correspondence
is not valid. This can be seen by first answering the question: is there any
combination of c and k which yields w = 1 as the optimal solution? Figure
3.2 answers this question by showing the solution of dHS

dw
= 0 for w = 1 and

b = 1. This figure tells us that k has to be greater than 1 and furthermore
as c decreases, a higher k is needed. As an example, we may see that while
the setting [a, b] = [0, 1] and [c, d] = [1, 2] has a maximum at w = 1, the
setting [a, b] = [0, 1] and [c, d] = [1, 1.9] does not. This also contradicts the
“equal-error necessary condition” hypothesis, because for c < 1 < k the
error probabilities are not equal (for example, for c = 0.8 one should have
k ≈ 1.48). Can these behaviors be attributed to the fact that the uniform
pdf is not continuous? We proceed to analyzing the case of two Gaussian
classes, where we will find the same behavior.
Gaussian Classes

Let us now consider the case where the input distributions are Gaussian

fX|-1(x) ∼ N(μ-1, σ
2
-1) fX|1(x) ∼ N(μ1, σ

2
1)
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Figure 3.3: Shannon and Rényi’s entropies as a function of w.

Applying Theorem 2 one easily gets

fY |t(t− e) =

exp

(
−1

2

(
arctanh(t−e)−(μt−w)

σt

)2
)

√
2πσt e(2t− e)

I[t−1,t+1](e) (3.19)

Figure 3.3 shows HS and HR2 as a function of w using approximate com-
putation of the integrals (there is no closed form for the integrals). Class
C-1 is fixed to (μ-1, σ-1) = (0, 1) and p = q = 1/2. In Figure 3.3(a), where
the class means just differ in location, the optimal split is the middle point
between the class means, w∗ = 1.5. Both entropies find this point as a
maximum. Moreover, in Figure 3.3(b), where (μ1, σ1) = (3, 2), the optimal
split changes to w ≈ 1.403. Both entropies fail to identify this point. Again
the error probabilities for each class are equal in the former case, while this

28



does not happen in the latter case.

These theoretical behaviors of both Shannon and Rényi’s entropies (max-
imum instead of minimum and displaced from the minW PeΦ position) raise
the natural question: how is it possible that the MEE principle works well in
practice? There are two main aspects that differentiate the preceding theo-
retical analysis from the practical implementation. The first one is related
to the learning machine’s flexibility/complexity. In fact, in the preceding
examples the perceptron was allowed only a sliding split that basically sets
the location of the a.f.. Whether a more flexible activation performs better
is investigated in the following section. Secondly, as the true class distribu-
tions are not known, the error distribution cannot be computed using tools
like Theorem 2. A kernel density estimator is used in practice and its effect
is also investigated in a forthcoming section.

3.2 The Perceptron Setting

We now assume ϕ(x) = tanh(w1x − w0). That is, instead of a split-type
setting, controlled by w0 imposing a simple sliding of ϕ(x), we now have
a more realistic perceptron setting with a parameter, w1, controlling the
function shape of ϕ(x) (in fact, the steepness of ϕ). In particular, ϕ(x) →
H(x) as w1 → +∞, where H(x) is the threshold a.f.. We also assume that
w1 > 0 since for w1 = 0, no adaptation would be possible and if w1 < 0, ϕ
would perform a swapped classification. Using Theorem 2 one derives

ϕ′(x) = w1(1− tanh2(w1x− w0)) 	= 0 ∀x (3.20)

ϕ−1(y) =
1

w1
(w0 + arctanh(y)) (3.21)

ϕ′(ϕ−1(y)) = w1(1− y2) (3.22)

We repeat the previous analysis for uniform and Gaussian classes.

Uniform Classes

The error pdf’s for uniform classes are again obtained using Theorem 2.
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They look very similar to the previous ones

fY |-1(−1 − e) =
−1

w1(b− a)e(2 + e)
I[−1−tanh(w1b−w0),−1−tanh(w1a−w0)] (3.23)

fY |1(1− e) =
1

w1(d− c)e(2− e)
I[1−tanh(w1d−w0),1−tanh(w1c−w0)] (3.24)

Entropy is now a function of two variables, w1 and w0. Figure 3.4 shows the
surface of HS and its contours. Two examples are shown with [a, b] = [0, 1]
and [c, d] = [0.2, 1.2] in Figure 3.4(a) and [c, d] = [0.9, 1.9] in Figure 3.4(b).
The grids for w1 and w0 are chosen so that they are able to display the op-
timal solutions, namely the middle points of the overlapping intervals. We
see that both surfaces have a maximum. Analyzing the more informative
contour plots, we encounter interesting behaviors. Let us first analyze the
case where the overlapping region is [0.2, 1] (Figure 3.4(a)). Any split in this
interval is optimal. In particular, the “middle” optimal split (the one corre-
sponding to equal class error probabilities) corresponds to the w0/w1 = 0.6
line. This line (solid line) is represented over the contour plot together with
the w0/w1 = 0.2 and w0/w1 = 1 dashed lines, also achieving minPe. The
solid line appears to pass at the location of the maximum as can be more
clearly seen in the zoomed image (elliptical axes). However, instead of yield-
ing the whole w0/w1 = 0.6 line as a solution, i.e., instead of exhibiting a
straight “ridge”, the entropy surface exhibits a single peak. In the bot-
tom figures we encounter a similar behavior. It is interesting to see that
in this case a lower value for w1 is obtained. In fact one observes a depen-
dency between the steepness of the a.f. and the amount of overlap, with
an increased overlap requiring an increased steepness of the a.f.. Consider
HS = HS(w1, w0) and a = 0 ≤ c ≤ b ≤ d = c + b (classes with equal-length
support). Then2

∂HS

∂w0

(
w1, w1

b+ c

2

)
= 0 (3.25)

This means that the middle point of the overlapped region is a candidate for
an extremum. Its nature can be studied using the second order information
given by the Hessian. We then verify that

∂2HS

∂w2
0

(
w1, w1

b+ c

2

)
< 0 (3.26)

∂2HS

∂w1∂w0

(
w1, w1

b+ c

2

)
=

∂2HS

∂w0∂w1

(
w1, w1

b+ c

2

)
> 0 (3.27)

2The partial derivative with respect to w1 is intractable.
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Figure 3.4: Surfaces and contour plots of HS(w1, w0) for different values of
[c, d].

The expression for ∂2HS/∂w
2
1 is intractable. With this information one can

be sure that if the critical point (w1, w1(b+ c)/2) is not a saddle point, then
it is a maximum.

31



Gaussian Classes

The Gaussian transformed pdf’s are derived as

fY |t(t− e) =

exp

(
−1

2

(
arctanh(t−e)−(w1μt−w0)

w1σt

)2
)

√
2πw1σt e(2t− e)

I[t−1,t+1](e) (3.28)

In Figure 3.5, we specified a value for w1 (the steepness parameter) and
let w0 vary in a way such that the optimal solution is displayed. Thus,
HS is plotted as a function of w0/w1. Without loss of generality, we set
the “left class” with (μ-1, σ-1) = (0, 1). Figure 3.5(a) refer to the setting
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Figure 3.5: HS(w1, w0) for fixed values of w1 and different locations of the
Gaussians.

(μ1, σ1) = (3, 1) with corresponding optimal split at x∗ = 1.5. We observe
that the increase of w1 causes HS to change from a maximum to a minimum
at x∗. In Figure 3.5(b), where (μ1, σ1) = (1, 1) and x∗ = 0.5, we observe
that the increase of overlap between the classes requires an higher value of
w1 to perform the same change.

These results suggest the need of using function shaping parameters, as
is the case with multilayer perceptrons, in order to get an entropy minimum.
Figure 3.6 shows HS as a function of (w1, w0), where one can identify the
previous behaviors. Note that the minima attained for small values of w1

and high values of w0 do not correspond to an optimal solution (due to the
relation w1x = w0). Nonetheless, a local minimum is attained at (w1, w0) ∈
[6.5, 6.7]× [9.5, 10.5] as shown in the contour plot. As before, the solid line

32



0 2 4 6 8 10
0

10

20
−30

10

w
1

w
0

H

(a)

w
1

w
0

6.5 6.55 6.6 6.65 6.7
9.5

10

10.5

(b)

Figure 3.6: Surface and contour plot of HS(w1, w0).

represents the set of solutions w0/w1 = 1.5. Again, the line appears to pass
through the minimum. Unfortunately, due to the complexity of the formulas,
a functional analysis similar to the one performed for uniform classes, is not
possible. We were also able to observe that if the classes get closer, the same
behavior is obtained, namely the need of a higher w1 in order to obtain the
minimum.

3.3 Estimating the Error Density

There is an essential difference between the theoretical MEE and how it is
implemented. In fact, the input distributions are usually unknown which
makes it impossible to use Theorem 2 to determine the exact error distribu-
tions. A method to estimate the error pdf’s is then used. The usual method
is the kernel density estimator (kde) also known as Parzen window estima-
tor. Given a dataset x1, x2, . . . , xN an estimate f̂(x) of the pdf f(x) is given
by

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
(3.29)

where K is a kernel function and h is the kernel bandwidth (smoothing
parameter). The standardized Gaussian pdf enjoys desirable properties as
kernel function, thereby is popularly used and is the one that we consider. To
analyze the kde impact on the MEE principle for classification we performed
the following experiment. Two Gaussian classes were generated with 10000
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data points each. Class C-1 was always centered at the origin and its standard
deviation was 1. Class C1 was generated in two different settings differing
from C-1 only in its location: μ1 ∈ {1, 3}. We then applied the following
transformation

ei = t− tanh(xi − w), xi ∈ Ct, t ∈ {−1, 1} (3.30)

for a grid of w values. Figure 3.7 shows the theoretical and an instance of
the practical error pdf’s. Note the smoothing imposed by the kde. Entropy
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Figure 3.7: The kde smoothing effect. The top figures show the class pdf’s
with the split location (dashed vertical line). The bottom figures show the
theoretical (solid line) and kde (dashed line) error pdf’s for the corresponding
split.
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was finally estimated using the following relations [18, 5]

HS = E{ln f(e)} ≈ 1

N

N∑
i=1

ln f(ei) ≈ 1

N

N∑
i=1

ln f̂(ei) (3.31)

HR2 = − ln
1√

2hN2

N∑
i=1

N∑
j=1

K

(
ei − ej√

2h

)
(3.32)

Note that, by using enough data and a proper h, both approximations are
reliable [19]. The joint effect of varying the smoothing parameter h and
of increasing/decreasing the overlap between the classes is shown in Figure
3.8 for both Shannon and Rényi’s entropies as functions of the split point
w. From left to right we increase the overlap while from top to bottom we
increase h. We see that the increase of h implies a change from a maximum
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Figure 3.8: Effect of the kde in Shannon’s and Rényi’s error entropies.
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to a minimum. Also, this optimal extreme gradually becomes “less local”.
The increase of overlap mainly requires greater values of h to obtain the
same behavior. It is now clear the impact of the kde when using the MEE
principle, even for this “worst” case, the split-type setting, where we have
previously shown the sole existence of a maximum. Note that we cannot say
that any one of the used entropies is better in some sense than the other,
because they clearly work with different values for h (higher for Shannon
entropy). In fact, they are quite similar if we compare Rényi’s for h = 0.5
with Shannon’s for h = 1.0 when μ1 = 3. Let us examine the expression
of the empirical entropy. We use Rényi’s expression for simplicity and to
better emphasize the relations. The minimization of (3.32) is equivalent to
the maximization of

V̂R2 =
1√

2hN2

N∑
i=1

N∑
j=1

K

(
ei − ej√

2h

)
(3.33)

Let s =
ei−ej√

2h
, c = 1√

2hN2 and ct =
1√

2hN2
t
for t ∈ {−1, 1} where Nt is the

number of samples from class Ct. Then, if K is symmetrical about the origin
(as is the Gaussian kernel) we may write

V̂R2 = c
∑
i∈C-1

∑
j∈C-1

K (s) + c
∑
i∈C-1

∑
j∈C1

K (s) + c
∑
i∈C1

∑
j∈C-1

K (s) + c
∑
i∈C1

∑
j∈C1

K (s)

(3.34)

=

(
N-1

N

)2

c-1
∑
i∈C-1

∑
j∈C-1

K (s) +

(
N1

N

)2

c1
∑
i∈C1

∑
j∈C1

K (s) + 2c
∑
i∈C1

∑
j∈C-1

K (s)

(3.35)

= q̂2V̂R2|-1 + p̂2V̂R2|1 + 2c
∑
i∈C1

∑
j∈C-1

K (s) (3.36)

Entropy is, therefore, decomposed as a weighted sum of the error entropies
for each class (as in the theoretic derivation) plus a term that relates the
errors of one class with those of the other. For a small h this interference
term is also small and V̂R2 will be close to VR2. For large h the interference
term will be large and the smoothing effect displayed in Figure ref will show
up and gives rise to an entropy minimum. This behavior has been observed
in the many experiments we have performed.
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Chapter 4

Conclusions

The application of the MEE principle to error distributions in two-class
problems was analyzed using a single perceptron. The main point of this
analysis was to clarify how this information theoretic principle, that has the
virtue of being based on the whole error pdf (and not a single measure of it),
would cope with the classifier problem. The main motivation for this anal-
ysis was the good performance of MEE in many practical problems, often
superior to the performance attained by using the ubiquitous MSE principle,
in rigorously controlled experiments. This suggests that MEE is indeed a
good principle for dealing with the classifier problem, i.e., for attaining the
minW PeΦ allowed by the family of functions implemented by the classifier.
In spite of the fact that we restricted the analysis to such a simple clas-
sifier as the perceptron, the theoretical analysis revealed nonetheless to be
rather intricate in many circumstances. It did also reveal a large spectrum
of behaviors that MEE can be expected to exhibit in practical problems. In
what concerns the application of MEE to threshold-type machines (the dis-
crete error case) applied to hyperplane learning, the analysis revealed that
the MEE principle is even less general than in the unidimensional Stoller
split case. In fact, while in Stoller split problems the minimum of entropy
may change to a maximum for input data distributions that are close to each
other, in the bivariate case and a fortiori in multivariate cases, the minimum
may change to a saddle point, which brings about further difficulties when
applying an optimization strategy. Therefore, for threshold-type machines
the MEE principle should only be applied to well separated distributions.
Some quantification of well-separateness for some univariate distributions
can be found in [17]. The present work confirmed the same separating value
for the bivariate case and Gaussian distributions. We were also able to prove
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for the multivariate case that equal class error probabilities is a necessary
condition for MEE to work. In what concerns the application of MEE to per-
ceptrons having continuous activation functions (the continuous error case)
after demonstrating that MEE cannot work with linear functions we investi-
gated the use of a squashing function as activation function. We have shown
that for MEE to work in this case, and using the true error pdf, there must
exist parameters controlling the squashing function shape. A single location
parameter (split-type setting) is not enough. This is of course not an im-
portant restriction at all, because in real practical problems there are many
function shaping parameters. Moreover, and this is an important result, we
have shown that by using Parzen window estimation of the pdf (given that
in general practice the true error pdf is unknown) we are in fact using a
smoothed version of the error pdf that clearly helps in setting the minimum
error entropy at the optimal parameter vector corresponding to minW PeΦ;
as a matter of fact, Parzen window estimation often changes a theoretical
error entropy maximum into a practical error entropy minimum.

.1 Example where MSE Fails

Let us suppose that E has a continuous distribution described by the fol-
lowing pdf

f(e) =
1

4
[Tr(e, 0, α) + Tr(e,−α, 0) + Tr(e, 0, 1/α) + Tr(e,−1/α, 0)] ,

a sum of triangular distributions where, for α > 0,

Tr(e, a, b) =

{
4(x−a)
(b−a)2

a ≤ x ≤ (b+ a)/2
4(b−x)
(b−a)2

(b+ a)/2 < x ≤ b
(1)

This is a legitimate family for the error E (see Appendix .2). Figure 1
shows the variance and Rényi’s entropy of E plotted as functions of α. We
observe that the variance has a minimum at α = 1 while entropy attains its
minimum value for α → 0 or α → +∞, that is when the family converges
to a Dirac function at zero, the optimal error solution.
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Figure 1: (a) Variance as a function of α. (b) Rényi’s entropy as a function
of α.

.2 Deriving the Error Distribution

FE(e) = P (E ≤ e) = P ((T = 1, E ≤ e) ∨ (T = −1, E ≤ e))

= P (T = 1)P (E ≤ e|T = 1) + P (T = −1)P (E ≤ e|T = −1)

= π1P (1− Y ≤ e|T = 1) + π-1P (−1− Y ≤ e|T = −1)

= π1(1− FY |1(1− e)) + π-1(1− FY |-1(−1 − e))

= 1− π1FY |1(1− e)− π-1FY |-1(−1− e). (2)

The probability function (for the discrete case) and the density function (for
the continuous case) are then easily obtained as

pE(e) = π1pY |1(1− e)δ(e, t− y) + π-1pY |-1(−1− e)δ(e, t− y) (3)

fE(e) =
dFE

de
= π1fY |1(1− e) + π-1fY |-1(−1− e) (4)

respectively. It is worth noting that, for continuous class-conditional pdf’s
of Y we have fE(0) = 0, since limε→0 fY |-1(−1 + ε) = limε→0 fY |1(1− ε) = 0,
as illustrated in Figure 2.

.3 Examples for Theorem 1

Example 1. We assume µ-1 = (−5, 0), µ1 = (5, 0) and Σ1 = Σ-1 = I. In
this case P-1 = P1 only if p = 1/2. The optimal decision line can be derived
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as

x∗
1 =

1

10
ln

(
1− p

p

)

Hence,

−w∗
0

w∗
1

=
1

10
ln

(
1− p

p

)

and therefore we can set

w∗
2 = 0; w∗

1 = 1; w∗
0 = − 1

10
ln

(
1− p

p

)

Now, we can determine (numerically) that ∇HS(w
∗) = 0 only if p = 1/2;

but this is the case of equal class error probabilities.

Example 2. In the second example we assume, µ-1 = (−2, 0), µ1 = (2, 0),
p = 1/2, Σ-1 = I and

Σ1 =

(
2 0
0 1

)

Although the covariance matrices are different the optimal decision line is
still a vertical line with equation

x∗
1 = −6 +

√
32 + 2 ln(2)

The error probabilities are unequal, with values P-1 ≈ 0.02 and P1 ≈ 0.03.
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We also verify that

∇HS(1, 0,−6 +
√

32 + 2 ln(2)) ≈ (−0.0153, 0,−0.0695) 	= 0 (5)

∇HS(−1, 0, 6−
√

32 + 2 ln(2)) ≈ (0.0149, 0, 0.0672) 	= 0 (6)

(7)

Thus, the optimal solution is indeed not a critical point of the error entropy.
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[4] D. Erdogmus and J. C. Pŕıncipe. Comparison of entropy and mean
square error criteria in adaptive system training using higher order
statistics. In Intl. Conf. on ICA and Signal Separation, pages 75–80,
Helsinki, Finland, 2000.
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