

Neural Network Interest Group

Título/Title:
Resilient Methods for Shannon Entropy and Z-EDM

Autor(es)/Author(s):
Luís M. Silva

Relatório Técnico/Technical Report No. 5 /2007

 FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Título/Title:
Resilient Methods for Shannon Entropy and Z-EDM

Autor(es)/Author(s):

Luís M. Silva

Relatório Técnico/Technical Report No. 5 /2007

Publicado por/Published by: NNIG. http://paginas.fe.up.pt/~nnig/

© INEB: FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

2

Contents

1 Resilient methods for Shannon entropy 5
1.1 Resilient methods . 5
1.2 Experiments and Results . 5

1.2.1 Evaluating convergence speed . 6
1.2.2 Evaluating generalization ability . 10

2 Resilient methods for Z-EDM 15
2.1 Resilient methods . 15
2.2 Experiments and Results . 15

2.2.1 Evaluating convergence speed . 16
2.2.2 Evaluating generalization ability . 21

3

4

Chapter 1

Resilient methods for Shannon
entropy

1.1 Resilient methods

In order to speedup the convergence of the proposed algorithm we have selected 3 algorithms
from the literature. We present a brief description of each

• Normal
The first one uses the same strategy as in [1], where a variable learning rate is used
to control the descent (in this case the ascent) through the performance surface. In the
presence of a decrease of the value of f at the origin from an epoch to another, the network
is set to the previous state and the learning rate is decreased, otherwise, η is increased to
speedup convergence.

• Rprop
This method, proposed by Riedmiller and Braun [2, 3], is considered among the best per-
forming first-order learning methods for neural networks. It controls every single weight
connection by using individual stepsizes. These stepsizes are updated by only inspect-
ing successive steps of the derivative’s signal. Independence from the magnitude of the
derivative and equal learning on the entire network are among the benefits of the method
cite.

• iRprop
iRprop stands for Improved Rprop and was proposed by Igel and Husken [4, 5]. In fact,
iRprop+ is the improved version used here (see cite for more approaches). The difference
to the original Rprop algorithm relies on the combination of individual information about
the error surface (sign of the derivative) with more global information (the value of the
error itself) to provide a weight-backtracking scheme.

1.2 Experiments and Results

We performed two types of experiments and used 4 well known datasets: Pb12 from [6] and
Iris, Wdbc and Pima from the UCI repository [7]. To have a fair comparison, a total of 100
trials of each experiment was made and the initial weights were always the same (for each trial)
for each algorithm.

5

1.2.1 Evaluating convergence speed

In the first set of experiments, we evaluated the rate of convergence success and speed. Each
dataset was trained during 500 epochs and the value of the objective function retained. The
following subsections refer to each dataset. Here, the figures show the entropy lines for each
trial and the corresponding mean curves (the latter in the bottom right figure). In the table we
count the percentage of convergence success for several values of entropy and the corresponding
mean number of iterations (only for the successful curves).

6

Iris

0 100 200 300 400 500
7.66

7.68

7.7

7.72
normal

0 100 200 300 400 500
7.66

7.68

7.7

7.72
Rprop

0 100 200 300 400 500
7.66

7.68

7.7

7.72
iRprop

0 100 200 300 400 500
7.66

7.68

7.7

7.72
normal
Rprop
iRprop

Iris 7.688 7.685 7.682 7.680
Normal 100% - 42 100% - 102 100% - 214 66% - 257
Rprop 100% - 8 100% - 26 99% - 75 99% - 164
iRprop 100% - 9 100% - 28 100% - 83 99% - 172

The mean curves for Rprop and iRprop are significantly better than the one from Normal,
which means that a faster trainig is performed by the resilient methods. Although not visible,
the Wilcoxon test shows that Rprop is better1 than iRprop during the initial 100 epochs. We
also see greater deviations of the 100 trials from the mean curves for iRprop/Rprop than for
Normal. From the table, we also see that a less number of iterations of Rprop/iRprop methods
are needed to achieve the convergence values. Normal looses (dramatically) convergence capacity
for the last entropy value.

1For now on, whenever one says better it means that it is significant by the Wilcoxon test.

7

Pima

0 100 200 300 400 500
2.54

2.56

2.58

2.6
normal

0 100 200 300 400 500
2.54

2.56

2.58

2.6
Rprop

0 100 200 300 400 500
2.54

2.56

2.58

2.6
iRprop

0 100 200 300 400 500
2.54

2.56

2.58

2.6
normal
Rprop
iRprop

Pima 2.562 2.560 2.558 2.555
Normal 100% - 117 100% - 257 66% - 280 -
Rprop 100% - 28 100% - 56 100% - 94 100% - 196
iRprop 100% - 28 100% - 55 100% - 92 100% - 191

We found no differences between Rprop and iRprop, while Normal has a significant worst
performance when compared to those methods. Note from the table that the resilient meth-
ods doesn’t loose convergence capacity. On the other hand, Normal already perform badly for
2.558 and in the last value it was not able to converge (while Rprop/iRprop have 100% suc-
cess). Also, for the first two values of entropy, Normal needs roughly 4 times more epochs than
Rprop/iRprop.

8

Wdbc

0 100 200 300 400 500
2.55

2.555

2.56

2.565

2.57

2.575
normal

0 100 200 300 400 500
2.55

2.555

2.56

2.565

2.57

2.575
Rprop

0 100 200 300 400 500
2.55

2.555

2.56

2.565

2.57

2.575
iRprop

0 100 200 300 400 500
2.55

2.555

2.56

2.565

2.57

2.575
normal
Rprop
iRprop

Wdbc 2.565 2.562 2.560 2.558
Normal 100% - 16 100% - 121 95% - 251 7% - 33
Rprop 100% - 3 100% - 24 99% - 70 93% - 209
iRprop 100% - 3 100% - 26 100% - 81 83% - 188

The resilient methods are again better than Normal. The Wilcoxon test also showed that
Rprop performs better than iRprop for the first 25 epochs, which is not evident from the figure.
From tha table we see the need for a higher number of epochs for Normal ant its degrading
behaviour for smaller values of entropy. It is also interesting to see that Rprop is, among the
resilient methods, the first to loose convergence capacity (see why in the top right figure), but
then iRprop degrades more for the last value of entropy.

9

1.2.2 Evaluating generalization ability

The second set of experiments was devoted to the evaluation of generalization error of the
proposed methods. For each dataset, 70% was used for training and 30% for testing. In each
trial, this division was the same for all algorithms. The figures show the mean training and
test error curves for three datasets. The tables show the minimumtest error achieved and
corresponding epoch. standard deviations are in brackets. The last two columns have the
p-values of the Wilcoxon test for comparison of the mean values.

Iris

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Train

normal
Rprop
iRprop

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Test

normal
Rprop
iRprop

• Train
Rprop/iRprop are significantly better than Normal mainly in the first 30 epochs, while
between them we found no difference.

• Test
Again iRprop and Rprop perform equally. After the first 30 epochs, Normal generalizes
significantly better. Also the minimum value for test error in Normal is different from the
other two.

10

Test error epoch Normal Rprop
Normal 3.73(2.71) 56
Rprop 4.58(2.99) 52 0.000
iRprop 4.58(2.99) 59 0.000 0.6199

Pima

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5
Train

0 100 200 300 400 500
0.2

0.3

0.4

0.5
Test

normal
Rprop
iRprop

normal
Rprop
iRprop

• Train
iRprop and Rprop perform equally. Normal is significantly worst than the other two.

• Test
Rprop and iRprop are very fast to attain the minimum error but overfit very rapidly
when compared to Normal. However, when comparing the minimum errors for the three
methods we see that they are not significantly different (see the table).

11

Test error epoch Normal Rprop
Normal 23.68(2.33) 41
Rprop 23.87(2.35) 10 0.1686
iRprop 23.87(2.48) 9 0.1878 0.9154

Pb12

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Train

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Test

normal
Rprop
iRprop

normal
Rprop
iRprop

• Train
Rprop and iRprop perform equally and both are better than Normal. However, this
behaviour reverses at the very last epochs.

• Test
We have a similar behaviour as in training, but here after 250 epochs Normal is significantly
better.

12

Test error epoch Normal Rprop
Normal 9.79(6.88) 485
Rprop 13.07(9.70) 500 0.006
iRprop 12.49(8.03) 497 0.002 0.700

13

14

Chapter 2

Resilient methods for Z-EDM

2.1 Resilient methods

In order to speedup the convergence of the proposed algorithm we have selected 3 algorithms
from the literature. We present a brief description of each

• Normal
The first one uses the same strategy as in [1], where a variable learning rate is used
to control the descent (in this case the ascent) through the performance surface. In the
presence of a decrease of the value of f at the origin from an epoch to another, the network
is set to the previous state and the learning rate is decreased, otherwise, η is increased to
speedup convergence.

• Rprop
This method, proposed by Riedmiller and Braun [2, 3], is considered among the best per-
forming first-order learning methods for neural networks. It controls every single weight
connection by using individual stepsizes. These stepsizes are updated by only inspect-
ing successive steps of the derivative’s signal. Independence from the magnitude of the
derivative and equal learning on the entire network are among the benefits of the method
cite.

• iRprop
iRprop stands for Improved Rprop and was proposed by Igel and Husken [4, 5]. In fact,
iRprop+ is the improved version used here (see cite for more approaches). The difference
to the original Rprop algorithm relies on the combination of individual information about
the error surface (sign of the derivative) with more global information (the value of the
error itself) to provide a weight-backtracking scheme.

2.2 Experiments and Results

We performed two types of experiments and used 4 well known datasets: Pb12 from [6] and
Iris, Wdbc and Pima from the UCI repository [7]. To have a fair comparison, a total of 100
trials of each experiment was made and the initial weights were always the same (for each trial)
for each algorithm.

15

2.2.1 Evaluating convergence speed

In the first set of experiments, we evaluated the rate of convergence success and speed. Each
dataset was trained during 500 epochs and the value of the objective function retained. The
following subsections refer to each dataset. Here, the figures show the entropy lines for each
trial and the corresponding mean curves (the latter in the bottom right figure). In the table we
count the percentage of convergence success for several values of entropy and the corresponding
mean number of iterations (only for the successful curves).

16

Iris

0 100 200 300 400 500
0.0119

0.012

0.0121

0.0122

normal

0 100 200 300 400 500
0.0119

0.012

0.0121

0.0122

Rprop

0 100 200 300 400 500
0.0119

0.012

0.0121

0.0122

iRprop

0 100 200 300 400 500
0.0119

0.012

0.0121

0.0122

normal
Rprop
iRprop

0.01209 0.0121 0.01211 0.01212
Normal 99% - 218 95% - 273 82% - 309 38% - 171
Rprop 100% - 128 98% - 181 89% - 228 60% - 195
iRprop 97% - 222 80% - 235 50% - 172 22% - 92

Rprop performs significantly better than the other two methods. While iRprop is better
than Normal during the initial 200 epochs, this behaviour reverses in the last epochs where the
latter is significantly better. Analyzing the table, one can see the fast degrade of iRprop, while,
of course, Rprop is always the bets approach.

17

Pima

0 100 200 300 400 500
0.0775

0.078

0.0785

0.079

0.0795

normal

0 100 200 300 400 500
0.0775

0.078

0.0785

0.079

0.0795

Rprop

0 100 200 300 400 500
0.0775

0.078

0.0785

0.079

0.0795

iRprop

0 100 200 300 400 500
0.0775

0.078

0.0785

0.079

0.0795

normal
Rprop
iRprop

0.0785 0.0786 0.0788 0.0789
Normal 100% - 272 5% - 24 - -
Rprop 100% - 39 100% - 77 99% - 275 31% - 139
iRprop 100% - 65 100% - 131 54% - 230 -

Again, Rprop is always significantly better than the other two methods. However, with this
dataset, iRprop is also better than Normal in all the training phase. From the table we also see
that Normal looses convergence capacity very soon. In the first value of the objective function
(the only one comparable), Rprop needs only 39 epochs (in mean) while Normal needs 272.

18

Pb12

0 100 200 300 400 500
4.6

4.65

4.7

4.75

4.8
x 10

−3 normal

0 100 200 300 400 500
4.6

4.65

4.7

4.75

4.8
x 10

−3 Rprop

0 100 200 300 400 500
4.6

4.65

4.7

4.75

4.8
x 10

−3 iRprop

0 100 200 300 400 500
4.6

4.65

4.7

4.75

4.8
x 10

−3

normal
Rprop
iRprop

0.004770 0.004772 0.004774 0.004776
Normal 100% - 56 - - -
Rprop 100% - 6 97% - 185 53% - 157 10% - 39
iRprop 100% - 9 80% - 205 28% - 87 2% - 9

iRprop and Rprop perform always better than Normal. Although visually the differences
after the first 50 epochs are quite small, they are always significant by the Wilcoxon test. The
same happens between Rprop and iRprop with advantage for Rprop. Note also from the figures
the similar behaviour of all 100 trials in each method

19

Wdbc

0 100 200 300 400 500
0.078

0.0782

0.0784

0.0786

0.0788
normal

0 100 200 300 400 500
0.078

0.0782

0.0784

0.0786

0.0788
Rprop

0 100 200 300 400 500
0.078

0.0782

0.0784

0.0786

0.0788
iRprop

0 100 200 300 400 500
0.078

0.0782

0.0784

0.0786

0.0788

normal
Rprop
iRprop

0.0784 0.0785 0.07855 0.0786
Normal 100% - 104 72% - 254 15% - 70 -
Rprop 100% - 17 100% - 53 100% - 104 96% - 192
iRprop 100% - 25 100% - 90 100% - 183 79% - 269

We found all the differences encountered in the bottom right figure significant by the Wilcoxon
test. These are the orders: 1st - Rprop; 2nd - iRprop; 3th - Normal. By the table we also see
tha fast degrade of Normal and the difference in terms of mean number of iterations needed:
Rprop is approximately 5 times faster than Normal.

20

2.2.2 Evaluating generalization ability

The second set of experiments was devoted to the evaluation of generalization error of the
proposed methods. For each dataset, 70% was used for training and 30% for testing. In each
trial, this division was the same for all algorithms. The figures show the mean training and
test error curves for three datasets. The tables show the minimumtest error achieved and
corresponding epoch. standard deviations are in brackets. The last two columns have the
p-values of the Wilcoxon test for comparison of the mean values.

Iris

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Train

normal
Rprop
iRprop

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Test

normal
Rprop
iRprop

• Train
Rprop is significantly better than the other two methods in all 200 epochs. It is also very
fast at the first epochs.

• Test
A similar behaviour is encountered here (see the figures) except that after 80 epochs
Normal has a significant better generalization performance.

Rprop performs better than iRprop.

21

Test error epoch Normal Rprop
Normal 2.78(2.33) 144
Rprop 3.40(2.57) 80 0.000
iRprop 3.51(2.65) 1.07 0.000 0.373

Pima

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5
Train

normal
Rprop
iRprop

0 100 200 300 400 500
0.2

0.4

0.6

0.8
Test

normal
Rprop
iRprop

• Train
Rprop is significantly better than the other two methods

• Test
Rprop and iRprop are very fast to attain the minimum error but overfit very rapidly
when compared to Normal (iRprop doesn’t overfit as rapidly as Rprop). However, when
comparing the minimum errors for the three methods we see that they are not significantly
different (see the table).

22

Test error epoch Normal Rprop
Normal 23.08(2.38) 50
Rprop 23.15(2.30) 8 0.396
iRprop 23.14(2.37) 15 0.453 0.998

Pb12

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Train

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Test

normal
Rprop
iRprop

normal
Rprop
iRprop

• Train
Rprop performs significantly better than iRprop and Normal by the Wilcoxon test, al-
though visually the differences are not detected after 150/200 epochs.

• Test
We have a similar behaviour as before but after (around) 150 epochs, all the methods
perform equally by the Wilcoxon test. This test also shows that the minimum test errors
achieved are not different.

23

Test error epoch Normal Rprop
Normal 7.66(1.62) 497
Rprop 7.67(1.58) 319 0.599
iRprop 7.72(1.58) 464 0.275 0.489

Wdbc

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Train

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Test

normal
Rprop
iRprop

normal
Rprop
iRprop

• Train
Rprop and iRprop are faster at the beginning with advantage for Rprop for the first 50
epochs. Only for the last 30 epochs, Normal is better by the Wilcoxon test (which is not
visible!)

• Test
Rprop and iRprop are better than Normal for the first 40 epochs, then Normal is better
between 45 to 75 epochs and Rprop and iRprop are again better after around 120 epochs.
iRprop is better than Rprop between 15 and 30 epochs. From the table one can see that
the minimum of Normal and Rprop are different, while Normal and iRprop are equal.

24

Test error epoch Normal Rprop
Normal 2.30(1.01) 49
Rprop 2.54(1.08) 11 0.008
iRprop 2.35(1.05) 17 0.557 0.013

25

26

Bibliography

[1] L.M. Silva, J. Marques de Sá, and L.A. Alexandre. Neural Network Classification using Shannon’s Entropy.
In European Symposium on Artificial Neural Networks, 2005.

[2] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586–591, San Francisco,
CA, 1993.

[3] M. Riedmiller and H. Braun. Rprop – description and implementation details, 1994.

[4] Christian Igel and Michael Hüsken. Improving the Rprop learning algorithm, 2000.

[5] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing,
50(C):105–123, 2003.

[6] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive mixtures of local experts. Neural Computation,
3:79–87, 1991.

[7] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases. University of California, Irvine,
Dept. of Information and Computer Sciences, 1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

27

