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Process modeling strategy combining analytical and data based techniques
Petia Georgieval, Cristina Oliveiraz, Fernando Rocha®
IDepartment of Electronics, Telecommunications and Informatics

University of Aveiro, Portugal
ZDepartment of Chemical Engineering, University of Porto, Portugal

I. NN identification of reaction rates with known kinetics coefficients

II. NN identification of reaction rates with partially unknown Kinetics coefficients

data-based analytical
submodel submodel

process model

Fig. 1 hybrid (ANN + analytical) model

1. General dynamical macro model of biochemical reactors (matrix form)

dX

>y = K(p(X, T)+ DX + F;, - F,,, - mass balance 1)
dT
% Kop(X,T)-DyT + F,, - energy balance ?2)
X = (x1 (I (t))T concentrations of the n process variables at time #;
T temperature of the reactor;
K = [kb ______ 'km] c Rm stoichiometric matrix-Kkinetics coefficients
Ky € R coefficients of exothermicity;
¢= ((Pla ....... . )T reaction rate vector, where
; () ngl — Ry are nonnegative continuous functions, j=1,...m;
F, (): Ryg = RY, piecewise continuous and bounded function of n feed

concentrations at time z.



Fou(): Ryg —> RY piecewise CODtlIlllOl.lS and b.ounded function of n
effluent concentrations at time #;

F.= (Fl"’” (N (t))T

D./D, Dilution rate/heat transfer rate

An augmented state vector is defined

X K| .
Xaug = {T} » Kaug = |:K0:| dlm(Ka“g) = (n+Dxm, mnk(Ka“g) - P

. dX%ug ( )
General dynamical macro model % = KpugP\X gug |~ DX g + Fiy = Foiy - 3)

Main challenges

1. Not all states are available (measurable) - X aug
2. Not all kinetics coefficients are known - K aug

3. Usually the reaction rates are not measurable - (p(X aug)
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2. NN based identification of reaction rates when all kinetics coefficients are known and
not all state variables are measured



Step 1: Model transformation

State partition 1 is defined: X, = [X a Xp ]T - the partition is not unique

aug —

dx

dla :Ka¢(XaaXb)_DXa+F}n7a_Foutia (4)
dx,
7:Kb¢(Xa:Xb)_DXb+F}n_b_Fout_b (©))

A new vector Z is defined as the following linear combination of the states

Z=4X, +X, (6)

Where 4, is the unique solution of the equation

4K, +K,=0, K, isapxm full rank arbitrary submatrix of X, @)

dz
— = D2+ Ay (Ko Ky (Fy o= F,

O

ulia)—l_(F;'nib_Foutib) ®

The purpose of the model transformation (8) is to get a vector Z, which is a linear
combination of the process states, and is independent of the reaction rates. Eq. (8) will be
used to recover the unmeasured states. The procedure for the state recovery, termed as
state observer in the control theory, is discussed below.

Step 2: State observer independently of the reaction rates

State partition 2: Z = 4, (K ;) X1 + 45 (K 46) X5 &)
X;- measured X,-unmeasured - the partition is unique
%:KWJ(XI’XZ)_DXI +Fy 1 = Fou (10.1)
%=Kz(0(X1,X2)—DX2 +Fy 2= Four 2 (10.2)

dz ;
= P2 A o~ Fou o)+ Ei_p = Fou ) (11
X, = AN Z-4X) (11.2)



Step 3: Error signal for NN updating

]T

KBHM f X = [X1 X,
General \L
dynamical -
¢A'1’
M model X;,yb
ANWN +
(state observer)
Error signal for E
NN updating *
E <

£-of

X
The true process behaviour: ciz’_t =Ko-DX +F, -F,, (12.1)

The adaptive hybrid model (KBHM):

dt

=Koyy _Dthb +Ey = Fou +Q(X_thb) 12.2)

The model error dynamics:

d(X = Xpyp)
TZK(¢—¢NN)—D(X—thb)+Q(X—thb) (13)
The observation error is defined as:  E, = (X —X,;) (14)
The NN error signal is defined as: E,=¢-ony (15)
dE .

—==KE,~(Q+D)E,  (16.1)

-1 Ex Ex -
E,=K"'[D+Q ) =B =B LE, (162)

X X

Q is a design parameter, defines the influence of each of the terms in (16.2)

3. CASE STUDY A — ESTIMATION OF THE PRECIPITATION RATE OF CALCIUM PHOSPHATE

The calcium phosphate is recognized as an important product in the soil fertilizing and in

the animal food engineering as the source of calcium supplement.
Depending on the temperature, the level of supersaturation, pH and initial concentration
of reagents, the precipitation of calcium phosphate exhibits different dynamics and

consequently different precipitation rates dynamics.



Analytical dynamical macro model:

amM
d_c = _qmlq)(Mc’MB) (17)
t
am
—dI:AP =—Kpap (M HAP)2 {1
amM
dtB = (D(McaMB)+IO‘Im2KHAP(MHAP)Z 19)

M . is the mass of calcium into solution, M ,,,, is the mass of HAP and A/ ; is the mass of

brushite; go() is the precipitation rate, ¢,,;,q,,, are molar weight ratios.

State partition 1 and 2: X, =X, =M_, X, =X, =My (20)
K,==q,, K =1 (21)
dM
%:—KHAP(MHAP)2 (23.1)
dZ -
EleQmZKHAP(MHAP)Z (23.2)
~ ~ 1
Mp=7Z-—-M, (23.3)
dml
M.-M
The observation error £, = ¢ b (24)
Mg —M gy,
0.5 0
Q = , D =20 (25)
0 0.5
| (Mc —1\20)+0.5(MC )
E,=— (26)

0= (MB_A;B)+O.5(MB_MB)

Numerical Results
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TABLE 1 ESTIMATION RESULTS FOR 3 ANALYTICAL MODELS AND THE KBHM

Calcium phosphate precipitation rate models

NDEI* for model validation
data Mc - 0.4M

Monod type model (Lubenova et al., 2003)

_ ApMp N AaM

IBBI+MB :Bcl+Mc

0.404




Ap1> 4015 Pp1,> Beo1 - tuning parameters

Contois type model (Oliveira et al, 2002)

Q= ABZMB + /ICZMC
BrapoMpgup +Mp  BoMp+M,

Ap2> 42, Brapa > Beo - tuning parameters

0.096

“Logistic” type model (Bastin and Dochain, 1990)

@ =exp(-43M p), A;- tuning parameter

0.062

KBHM (this work)
A feedforward NN with 2 inputs (M, M), 1 output

(@ v ), one hidden layer with 7 sigmoid nodes

0.023

*NDEI - nondimensional error index

the root mean square error (RMSE) divided by the standard deviation of the target series

4. NN based identification of reaction rates when not all the states are measured and the
Kinetics coefficients related with the measured states are unknown

Step 1: Model transformation (the same as in the previous case) :

State partition 1:

Step 2: State observer

State partition 2:

Z=A0Xa+Xb (27)

Z = A4(Ky,Ky) Xy + 4 (K, Ky) X, (28)

% = Kip(X,,X,)-DX,+F,, |-F,, | , X;- measured, K is unknown (29)
% = K2¢(X1, Xz)—DXz + ij —Fomiz , X, -unmeasured, K, is known (30)
”ff =—DZ + Ay (Ki, K))Fiy o= Fout_ )+ Fiy 5= Foua_p) @1

X, = (Az(klaKz))_l(i—A1(I€13K2)X1)

(32)

Step 3: Observer based estimator

10




dz 5 ;
—=-DZ+ AO(KlﬂKZ)(F}n_a _Fout_a)—"(F;'n_b _Fout_b) (31)

dt

~ ~ —1/( ~ n

X, - . .
i =Kiony —DX1+ Fy = Foy 1 +Q(X - X)) (33)
dl%l > . .
7y =l (X] - X7) - adaptive estimator (34)

Q = diag {®;}, T =diag {y;}, 7;,€e R ", 0, e R", i=1.N (35)

The actual value of K is replaced by an estimate I%l which is updated by eq. (34)

I' is a gain matrix such that the matrix QO'T+IrQ s negative definite .
The updating law (34) is inspired by the theory of linear adaptive estimators, Narendra
K.S. and Annaswamy A.M., 1989, Stable adaptive systems.

Step 3: Error signal for NN updating

X, f
)2' v A A -X,
2 Py observer based Kl Partial Xl N
— AN > > >

> k}esti}mator Fff the | analytical model
inetics coefficients (State observer)
]_>
W apdating E,
EJC
E, =B i
Observation error £, =(X; — X 1) 36)
dE, 5
Ko -Kiowy -(Q+D)E, (37
Extended NN error signal £y, = K¢ —I%lgoNN 38)
Ex,=|[D+Q 1]E" B 5 |\ 4B, + Ak (39)
Ko Ex Ex 1+~x 2Hx

4. Case study B - estimation of the crystal growth rate (G) of sugar crystallization process
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aM,

— =G+ F, p;B Pur,
i 1T PRy
dM, e

dt
dmo _ k3G
dt
dT,
Tt’” =kyG+bFy+cJ,,, +d

where M is the mass of dissolved sucrose, M _is the mass of crystals, 7,

is the

temperature of the massecuite, 7, is the number of crystals. Pur; and p, are the purity
(mass fraction of sucrose in the dissolved solids) and the density of the incoming feed. ',

is the feed flowrate, J vap is the evaporation rate and b, ¢, d are parameters

incorporating the enthalpy terms and specific heat capacities derived as functions of
physical and thermodynamic properties.

Xaug:[Ms Mc my Tm]T’Kaug:[_kl kl k3 kZ]T (40)

ki,k, —unknown

T
state partition 1 : X, =M., X, =[M, T, mO]T,AOZP _% _%}
1 1

r
ky ks
. T r - T
statepart1t10n2:X1=[MC Tm] ,X2=[MS mo] , Ay = ky ky | s
0 1 0

1 0 o]
A2:
00 1

Observer based estimator:

21=M6+MS
22:—l€2MC+Tm
1
Z3=—§Mc+ﬁ10
ky
dM, A A
0 w 0 _
dr | - lfl Gy + + M. jtlc, D=0
ar, ky bFf +chap+d 0 o] T,-T,
dt

12



7 0 1 A T
mO i Z3 lki]; m
-—= 0
L k]
dk,
E =G {7/1 0:|M0_Mc
A - NN A
dky 0 nl|r1,-T,
dt

(MC—A;[Cj%ra)I(MC—]\;IC)

M -M
E=|: ¢ Ac:|aEK(p: ) A A
[Tm —Tm)+a)2(Tm -7,)

\r,-T,

One step NN optimization

A

1| Moy =Mooy Moy =M i .
C C _ cll clil +a)1 (Mc(l) —Mc(l)) +
dml T T

T oo—T, . T ~—T, .
) ~ Lm- () ~ mG-1) A

Epiy =

T

Simulation Results

Table: Final average (in mass) crystal size (AM) and coefficient of variation (CV)
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batch No. experimental data One step NN optimization = Batch NN optimization

MA CV [%] MA [mm] CV [%] MA [mm] CV [%l]

[mm]
1 0.479 32.6 0.51 28.86 0.583 23.26
2 0.559 33.7 0.52 29.87 0.542 21.43
3 0.680 43.6 0.57 32.99 0.547 23.69
4 0.494 33.7 0.51 35.03 0.481 23.16
5 0.537 325 0.59 29.66 0.623 21.36
6 0.556 35.5 0.49 28.89 0.471 20.642
7 0.560 31.6 0.61 35.02 0.755 329
8 0.530 31.2 0.60 36.11 0.681 25.39
av. error 6.7% 12.6% 12.1% 27.3%

A feedforward NN with 3 inputs (M., T,,, M), 1 output (G, ), one hidden layer with
sigmoid nodes

7
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