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I. NN identification of reaction rates with known kinetics coefficients 
 

II. NN identification of reaction rates with partially unknown kinetics coefficients 
 
 
 

 
data-based 
submodel  

analytical 
submodel

process model 

 
Fig. 1 hybrid (ANN + analytical) model  

 
 
 

1. General dynamical macro model of biochemical reactors (matrix form) 
 

( ) outin FFDXTXK
dt
dX

−++= ,ϕ  - mass balance                    (1) 

( ) inFTDTXK
dt
dT

+−= 00 ,ϕ - energy balance                                             (2) 

 
 

( )Tn txtxX )(),.......(1=  concentrations of the n process variables at time t; 
 

T temperature of the reactor; 
 

[ ] mn
m RkkK ×∈= ,.......1  stoichiometric matrix-kinetics coefficients  

 
mRK 00 ≥∈  coefficients of exothermicity; 

 
( )Tmϕϕϕ ,.......1=  reaction rate vector, where 

0
1

0:),( ≥
+

≥ →⋅⋅ RRn
jϕ  are nonnegative continuous functions, j=1,…m; 

 
n

in RRF 00:)( ≥≥ →⋅  

( )Tin
n

in
in tFtFF )(),.......(

1
=  

piecewise continuous and bounded function of n feed 
concentrations at time t.  
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p
out RRF 00:)( ≥≥ →⋅  

( )Tout
p

out
out tFtFF )(),.......(

1
=  

piecewise continuous and bounded function of n 
effluent concentrations at time t; 
 

xD / 0D  Dilution rate/heat transfer rate  

 
An augmented state vector is defined  

 









=

T
X

X aug , 







=

0K
K

Kaug  pKrankxmnK augaug =+= )(,)1()dim(  

 

General dynamical macro model  ( ) outinaugaugaug
aug FFDXXK

dt
dX

−+−= ϕ     (3) 

 
Main challenges  

 
1. Not all states are available (measurable) - augX  

2.  Not all kinetics coefficients are known - augK  
3. Usually the reaction rates are not measurable - ( )augXϕ  

ANN  in out
 target ??? 

error

ANN  in X
Target

available 

 error 

Anal.  
 model

 
 
 
 
 
 
 
 

2. NN based identification of reaction rates when all kinetics coefficients are known and 
not all state variables are measured  
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Step 1: Model transformation  

 
 

State partition 1 is defined: [ ]Tbaaug XXX =  - the partition is not unique 
 

( ) aoutainabaa
a FFDXXXK

dt
dX

__, −+−= ϕ     (4) 

 

( ) boutbinbbab
b FFDXXXK

dt
dX

__, −+−= ϕ     (5) 

 
A new vector Z is defined as the following linear combination of the states  

   
ba XXAZ += 0              (6) 

 
         Where 0A  is the unique solution of the equation  
           
        00 =+ ba KKA  ,   aK  is a pxm full rank arbitrary submatrix of augK        (7) 
                              

)())(,( ____0 boutbinaoutainba FFFFKKADZ
dt
dZ

−+−+−=       (8) 

 
The purpose of the model transformation (8) is to get a vector Z, which is a linear 
combination of the process states, and is independent of the reaction rates. Eq. (8) will be 
used to recover the unmeasured states. The procedure for the state recovery, termed as 
state observer in the control theory, is discussed below.  
 
 

Step 2: State observer independently of the reaction rates 
 

State partition 2: 2211 )()( XKAXKAZ augaug +=                                 (9) 
 

1X - measured     2X -unmeasured   -     the partition is unique 
 

( ) 1_1_1211
1 , outin FFDXXXK

dt
dX

−+−= ϕ           (10.1) 

 

( ) 2_2_2212
2 , outin FFDXXXK

dt
dX

−+−= ϕ            (10.2) 

 

)()(ˆˆ
____0 boutbinaoutain FFFFAZD

dt
Zd

−+−+−=   (11.1) 

 
)ˆ(ˆ

11
1

22 XAZAX −= −          (11.2) 
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Step 3: Error signal for NN updating 
 

[ ]TXXX 21
ˆ=  

xE

- 









=

x

x

E
E

BE &ϕ

E rror sign a l for   
N N  u p da tin g  

h ybX
G en era l 

d yn am ica l 
m od el 

+  
(sta te  observer )

K B H M  

 
A N N  

N Nϕ  

 
           

   The true process behaviour:  outin FFDXK
dt
dX

−+−= ϕ      (12.1) 

 
 The adaptive hybrid model (KBHM):   

)( hyboutinhybNN
hyb XXFFDXK

dt
dX

−Ω+−+−= ϕ      (12.2) 

 
The model error dynamics:  

)()()(
)(

hybhybNN
hyb XXXXDK

dt
XXd

−Ω+−−−=
−

ϕϕ              (13) 

             The observation error is defined as:     )( hybx XXE −=                        (14) 
              The NN error signal is defined as:       NNE ϕϕϕ −=                           (15) 

                                                      x
x EDKE

dt
dE )( +Ω−= ϕ    (16.1) 

                                          [ ] xx
x

x

x

x EE
E
E

B
E
E

DKE &
&& 21

1 1 λλϕ +=







=








Ω+= −      (16.2) 

 
Ω  is a design parameter, defines the influence of each of the terms in (16.2) 

3. CASE STUDY A – ESTIMATION OF THE PRECIPITATION RATE OF CALCIUM PHOSPHATE 
The calcium phosphate is recognized as an important product in the soil fertilizing and in 
the animal food engineering as the source of calcium supplement.   
Depending on the temperature, the level of supersaturation, pH and initial concentration 
of reagents, the precipitation of calcium phosphate exhibits different dynamics and 
consequently different precipitation rates dynamics.  
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Analytical dynamical macro model: 
 

( )Bcm
c MMq

dt
dM ,1ϕ−=                                                (17) 

 

( )2HAPHAP
HAP MK

dt
dM

−=                                             (18) 

 

( ) ( )2210, HAPHAPmBc
B MKqMM

dt
dM

+=ϕ                          (19) 

 
cM  is the mass of calcium into solution, HAPM  is the mass of HAP and BM  is the mass of 

brushite; ( )⋅ϕ  is the precipitation rate, 21, mm qq  are molar weight ratios.  
 
 
 

State partition 1 and 2: ca MXX == 1 , Bb MXX == 2       (20) 
 

1ma qK −= , 1=bK                      (21) 
 

110 /1 mqAA ==   12 =A          (22) 
 

( )2ˆ
HAPHAP

HAP MK
dt

Md
−=        (23.1) 

 

( )22
ˆ10

ˆ
HAPHAPm MKq

dt
Zd
=        (23.2) 

 

c
m

B M
q

ZM
1

1ˆˆ −=                       (23.3) 

 

The observation error 







−

−
=

BhybB

chybc
x MM

MM
E ˆ        (24) 

 

 0,
5.00

05.0
=








=Ω D          (25) 

 

( )
( )















−+




 −

−+




 −

=
BBBB

cccc

m MMMM

MMMM

q
E

ˆ5.0ˆ

ˆ5.0ˆ
1

1 &&

&&

ϕ              (26) 

 
Numerical Results 
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Training data - Initial concentration of reagents 0.3 M 

 

 
Training data - Initial concentration of reagents 0.2 M 

Numerical Results 
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Validation data - Initial concentration of reagents 0.4 M 

 

 
Validation data - Initial concentration of reagents 0.05 M 

 
 

TABLE 1 ESTIMATION RESULTS FOR 3 ANALYTICAL MODELS AND THE KBHM 
 
Calcium phosphate precipitation rate models 

NDEI* for model validation 
data Mc – 0.4M 

Monod type model (Lubenova et al., 2003) 
 

cc

cc

BB

BB
M

M
M

M
+

+
+

=
1

1

1

1
β
λ

β
λϕ  

 

 
 
 
0.404 



 

 10

1111 ,,, cBcB ββλλ - tuning parameters 
Contois type model (Oliveira et al, 2002) 
 

cBc

cc

BHAPHAP

BB
MM

M
MM

M
+

+
+

=
2

2

2

2
β

λ
β

λ
ϕ  

 
2222 ,,, cHAPcB ββλλ - tuning parameters 

 
 
 
0.096 

“Logistic” type model (Bastin and Dochain, 1990) 
 

)exp( 3 BMλϕ −= , 3λ - tuning parameter 
 

 
 
0.062 

KBHM (this work) 
A feedforward NN with 2 inputs ( cM , BM ) , 1 output 
( NNϕ ), one hidden layer with 7 sigmoid nodes 

 
 
0.023 

 
 
*NDEI - nondimensional error index  
the root mean square error (RMSE) divided by the standard deviation of the target series 
 
 
4. NN based identification of reaction rates when not all the states are measured and the 

kinetics coefficients related with the measured states are unknown  
 

Step 1: Model transformation (the same as in the previous case) :  
 

State partition 1:    ba XXAZ += 0    (27) 
 

Step 2: State observer 
 

State partition 2:   
22121211 ),(),( XKKAXKKAZ +=         (28) 

 

( ) 1_1_1211
1 , outin FFDXXXK

dt
dX

−+−= ϕ  , 1X - measured, 1K  is unknown   (29) 

 

( ) 2_2_2212
2 , outin FFDXXXK

dt
dX

−+−= ϕ  , 2X -unmeasured, 2K is known    (30) 

 

)())(,ˆ(ˆˆ
____210 boutbinaoutain FFFFKKAZD

dt
Zd

−+−+−=         (31) 

 

( ) ( )1211
1

2122 ),ˆ(ˆ),ˆ(ˆ XKKAZKKAX −=
−

                      (32) 
 

 
Step 3: Observer based estimator 
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)())(,ˆ(ˆˆ
____210 boutbinaoutain FFFFKKAZD

dt
Zd

−+−+−=   (31) 

 

( ) ( )1211
1

2122 ),ˆ(ˆ),ˆ(ˆ XKKAZKKAX −=
−

            (32) 
 

)ˆ(ˆˆˆ
111_1_11

1 XXFFXDK
dt
Xd

outinNN −Ω+−+−= ϕ        (33)                      

       

)ˆ(
ˆ

11
1 XX

dt
Kd

NN −Γ=ϕ         - adaptive estimator          (34) 

 
Nidiagdiag iiii ..1,,},{},{ =ℜ∈ℜ∈=Γ=Ω ++ ωγγω  (35) 

 
The actual value of  1K is replaced by an estimate 1K̂  which is updated by eq. (34) 

Γ  is a gain matrix such that the matrix ΓΩ+ΓΩT  is negative definite . 
The updating law (34) is inspired by the theory of linear adaptive estimators, Narendra 
K.S. and Annaswamy A.M., 1989, Stable adaptive systems.  

 
 
 

Step 3: Error signal for NN updating 
 










2

1

X̂
X

 
observer based  
estim ator o f the 

kinetics coefficien ts 

NNϕ   
1K̂ 1X̂  

xE

1X−

E rror signal fo r  
N N  updating 









=

x

x
k E

E
BE &ϕ

P artial 
analytical m odel 
(S tate observer) 

 
A N N  

 
 

Observation error )ˆ( 11 XXEx −=                         (36) 
 

             xNN
x EDKK

dt
dE )(ˆ

11 +Ω−−= ϕϕ                         (37) 

 
Extended NN error signal NNK KKE ϕϕϕ 11

ˆ−=                        (38) 

[ ] xx
x

x

x

x
K EE

E
E

B
E
E

DE &
&& 211 λλϕ +=







=








Ω+=                                     (39) 

 
4. Case study B - estimation of the crystal growth rate (G) of sugar crystallization process 
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ffff
s PurBFGk

dt
dM ρ+−= 1  

 

Gk
dt

dMc
1=  

 

Gk
dt

dm
3

0 =  

dcJbFGk
dt

dT
vapf

m +++= 2  

where sM is the mass of dissolved sucrose, cM is the mass of crystals, mT  is the 
temperature of the massecuite, 0m is the number of crystals. fPur  and fρ  are the purity 

(mass fraction of sucrose in the dissolved solids) and the density of the incoming feed. fF  

is the feed flowrate, vapJ  is the evaporation rate and  b, c, d are parameters 
incorporating the enthalpy terms and specific heat capacities derived as functions of 
physical and thermodynamic properties. 

 
[ ]Tmcsaug TmMMX 0= , [ ]Taug kkkkK 2311−=                             (40) 

−21,kk unknown 

state partition 1  : ca MX = , [ ]Tmsb mTMX 0= , 
T

k
k

k
kA 








−−=

1

3

1

2
0 1  

                    
 

state partition 2 : [ ]Tmc TMX =1 , [ ]Ts mMX 02 = , 

T

k
k

k
k

A












 −−
=

010

1
1

3

1

2

1 , 

T

A 







=

100
001

2  

 
Observer based estimator: 
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5.021 == ωω ,  121 == γγ  
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One step NN optimization 
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Simulation Results 
 

Table: Final average (in mass) crystal size (AM) and coefficient of variation (CV)  
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A feedforward NN with 3 inputs ( mc TM , , sM ) , 1 output ( NNG ), one hidden layer with  7 

sigmoid nodes 
 

experimental data One step NN optimization  Batch NN optimization batch No. 

MA 

[mm] 

CV [%] MA [mm] CV [%] MA [mm] CV [%] 

1 0.479 32.6 0.51 28.86 0.583 23.26 

2 0.559 33.7 0.52 29.87 0.542 21.43 

3 0.680 43.6 0.57 32.99 0.547 23.69 

4 0.494 33.7 0.51 35.03 0.481 23.16 

5 0.537 32.5 0.59 29.66 0.623 21.36 

6 0.556 35.5 0.49 28.89 0.471 20.642 

7 0.560 31.6 0.61 35.02 0.755 32.9 

8 0.530 31.2 0.60 36.11 0.681 25.39 

av.  error   6.7% 12.6% 12.1% 27.3% 


