

Título/*Title*: **EEG Processing**

Autor(es)/*Author(s)*: Luís Alexandre

Relatório Técnico/Technical Report No. 2 /2008

FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Título/*Title*: EEG Processing

Autor(es)/*Author(s)*: Luís Alexandre

Relatório Técnico/*Technical Report* No. 2 /2008 Publicado por/*Published by*: NNIG. http://paginas.fe.up.pt/~nnig/

© INEB: FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

- The approach Power spectru Entropies
- ent2wEX
- SOM1
- mediaSina
- Classifiers
- Results

Future work

Cleaning the signals Using RNNs

References

EEG processing

Luís A. Alexandre

Univ. Beira Interior and IT – Networks and Multimedia Group, Covilhã Portugal

NNIG, July 18, 2008

Luís A. Alexandre

Problem description

n-back memory test

The data

Three possible problems

Work done

The approach Power spectrum Entropies Wavelets ent2wFX SOM1 mediaSinais Classifiers

Future work

Cleaning the signals Using RNNs

References

n-back memory test

- The subject must press a button if the current stimulus is identical to the one presented *n* trails ago.
- The stimulus was a single light being on, on a circular pattern similar to a watch dial where the place where each hour would be has a light that can be on or off.

The data

EEG processing

Luís A. Alexandre

Problem description

n-back memory test

The data

Three possible problems

Work done

- The approach Power spectru
- Entropies
- Wavelets
- SOM1
- 50IVI1
- Classifiers
- Results

Future work

Cleaning the signal Using RNNs

- 64 electrodes (2 are discarded leaving 62)
- 5 subjects (there were in fact 6 but the data of one of them was too noisy)
- 4 tasks (0-back to 3-back)
- each task has 102 trials (the first 6 and the last 6 are discarded yielding 90 trials)
- each trial takes 2.2 seconds
- sample rate of 512Hz
- signals passed through a 0.01-100Hz bandpass filter
- data was filtered with a surface Laplacian
- 3 bands: A (1-20Hz), B (1-50Hz), C (1-80Hz) (used only band A)
- size for one band only: 62 * 5 * 4 * 90 * 2.2 * 512 = 125706240 (since each double is usually represented with 8 bytes this gives 960Mbytes on disk)

Luís A. Alexandre

Problem descriptior

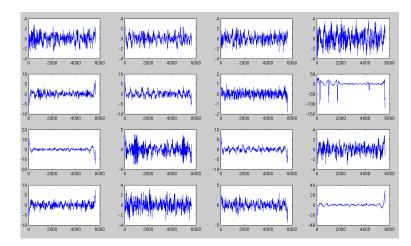
n-back memory test

The data

Three possible problems

Work done

The approach Power spectrur Entropies Wavelets ent2wFX SOM1 mediaSinais Classifiers Poculto


Future wor

Cleaning the signal Using RNNs

References

First 16 channels of subject 1, task 1 and segment 1 (5 trials).

The data

Luís A. Alexandre

Problem description

n-back memory test The data

Three possible problems

Work done

The approach Power spectrum Entropies Wavelets ent2wFX SOM1 mediaSinais Classifiers Results

Future work

Cleaning the signals Using RNNs

References

Three possible problems

- Problem 1: use data from only one person and try to predict the task being done: 4 class problem, easy.
- Problem 2: use data from five persons and try to predict the task being done by which person: 5×4=20 class problem, medium.
- Problem 3: use data from five persons and try to predict the task being done independently of the person that is doing it: 4 class problem, hard.

The approach

Problem description

EEG processing

Luís A. Alexandre

n-back memory test The data Three possible problems

Work done

- The approach Power spectru Entropies Wavelets
- ent2WF/
- 501011
- Classifions
- Danulas

Future work

Cleaning the signals Using RNNs

- Since the amount of data is large, the basic approach is to try to reduce it while preserving the discriminative information that it contains.
- Previous work used entropy of the signals and mutual information from pairs of electrodes.

The approach

EEG processing

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

The approach

- Power spectrum
- Entropies
- Wavelets
- ent2wFX
- SOM1
- mediaSina
- Classifiers
- Results

Future work

Cleaning the signal Using RNNs

- I tried to reach similar results using:
 - PS: Welch's approach to finding the power spectrum
 - PS2: power spectrum
 - entropia: entropy according to [1]
 - entropia2: naif entropy (histogram based)
 - waveletF1: detail coeficients at a given decomposition level
 - waveletF2: approximation coeficients at a given decomposition level
 - ent2wF1: entropy 2 after waveletF1
 - ent2wF2: entropy 2 after waveletF2
 - ent2PS: entropy 2 after PS
 - ent2PS2: entropy 2 after PS2
 - SOM1:
 - mediaSinais: average of the wavelet (qual ??)

Power spectrum

Problem description

EEG processing

Luís A. Alexandre

n-back memory test The data Three possible problems

Work done

The approach

Power spectrum

- Entropies Wavelets ent2wFX SOM1 mediaSina
- Classifiers
- Results

Future work

- Cleaning the signals Using RNNs
- References

- PS parameters: by default, the signal is divided into eight sections with 50% overlap, each section is windowed with a Hamming window and eight modified periodograms are computed and averaged.
- PS2 parameters: number of points to retain after finding the power spectrum calculation (typically 128)

entropia

Problem

EEG processing

Luís A. Alexandre

n-back memory test The data Three possible problems

Work done

- The approach
- Power spectru

Entropies

- Wavelet
- ent2wFX
- SOMI
- mediaSina
- Classifiers
- Results

Future work

Cleaning the signals Using RNNs

- entropia parameters: $\beta=$ 0, number of bins on the histogram
- entropia2 parameters: number of bins on the histogram

Luís A. Alexandre

Problem description

- *n*-back memory test The data
- Three possible problems

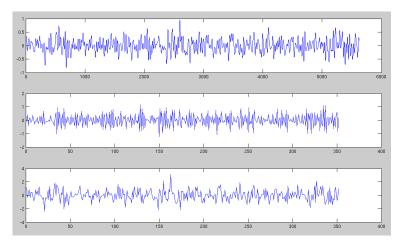
Work done

- The approach
- Power spect

Wavelets

- ent2wFX SOM1 mediaSina Classifiers
- Results

Future work


Cleaning the signal Using RNNs

References

Wavelets

• Parameters:

- decomposition level
- mother wavelet

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

- The approach
- Power spectru
- Entropies

ent2wFX

SOM1 mediaSina Classifiers Posulte

Future work

Cleaning the signals Using RNNs

References

ent2wFX

• Parameters: all of the parameters of the wavelets plus the parameters of entropia2.

SOM1

EEG processing

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

- The approach
- Entropies
- Wavelets
- ent2wF)
- SOM1
- mediaSinai Classifiers
- Results

Future work

- Cleaning the signals Using RNNs
- References

- A 1-D SOM tryies to approximate the signals after wavelet decomposition.
- Both wF1 and wF2 were tested. wF1 gave better results.
- Parameters: number of neurons (tested 1 and 10, 1 was better) plus wavelet parameters

mediaSinais

Problem description

EEG processing

Luís A. Alexandre

n-back memory test The data Three possible problems

Work done

- The approach Power spectrur
- Wavelets
- ent2wFX
- SOM1

mediaSinais

Classifier Results

Future work

Cleaning the signals Using RNNs

- Average of the 62 signals after a wavelet decomposition. Implemented to check the SOM1 results
- Both wF1 and wF2 were teste. wF1 gave better results.
- Parameters: wavelet parameters

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

- The approach Power spectrum Entropies Wavelets
- ent2wFX
- SOM1
- mediaSinais

Classifiers

Results

Future work

Cleaning the signals Using RNNs

References

Classifiers

- Used two classifiers: 1-NN and SVM-RBF
- SVM parameters: C and kernel width

Results

EEG processing

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

- The approach
- Entropies
- Wavelets
- ent2wFX
- SOM1
- mediaSinais
- Classifiers

Results

Future work

- Cleaning the signals Using RNNs
- References

• Accuracy in percentage on a leave-one-out CV experiment for problem 2 (20 class problem).

Features	1-NN	SVM-RBF
PS	33.4	-
PS2	28.4	-
entropia2	39.7	47.4
waveletF1	11.6	-
waveletF2	12.6	-
ent2wF1	43.9	55.0
ent2wF2	40.3	48.2
ent2PS	56.6	73.2
ent2PS2	30.5	46.6
SOM1 *	10.0	10.8
mediaSinais *	9.7	_

*=leave 76 out.

Luís A. Alexandre

Cleaning the signals

Problem description

n-back memory test The data Three possible problems

Work done

- The approach Power spectrum Entropies Wavelets ent2wFX SOM1
- Classifiers
- Results

Future work

Cleaning the signals Using RNNs

- Use the information on the eye channels to remove eye artifacts from the other signals
- Try to choose the channels that give more information (different people might use different parts of the brain for the same task so this might not work)
- Study carefully the noise reduction procedures that can be applied to the signals

Using RNNs

Problem description

EEG processing

Luís A. Alexandre

n-back memory test The data Three possible problems

Work done

- The approach Power spectru Entropies Wavelets ent2wFX SOM1
- mediaSina
- Classifiers
- Results

Future work Cleaning the signa

- Using RNNs
- References

• How can RNNs be used in this problem ?

- Idea 1: train a RNN to learn the signal from each channel, task and subject.
 - This gives 62 * 4 * 5 = 1240 RNNs.
 - In test mode, give the error while trying to approximate the input signals as input to another classifier.
 - This can be used for problem 2.
 - For problem 1 a subset of this can also be used (only one subject)
- Idea 2: Use RNNs to filter the signals somehow ...

Luís A. Alexandre

Problem description

n-back memory test The data Three possible problems

Work done

- The approach
- Entropies
- Wavelets
- ent2wEX
- SOM1
- mediaSinai
- Classifiers
- Results

Future work

Cleaning the signals Using RNNs

References

L. Wu, P. Neskovic, E. Reyes, E. Festa, and W. Heindel. Classifying n-back EEG data using entropy and mutual information features.

In ESANN, pages 61-66, 2007.