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Abstract
A new learning principle was introduced recently called the Zero-Error Density

Maximization (Z-EDM) and was proposed in the framework of MLP backpropa-
gation. In this paper we present the adaptation of this principle to online learning
in recurrent neural networks, more precisely, to the Real Time Recurrent Learn-
ing (RTRL) approach. We show how to modify the RTRL learning algorithm in
order to make it learn using Z-EDM criteria by using a sliding time window of
previous error values. We present experiments showing that this new approach im-
proves the convergence rate of the RNNs and improves the prediction performance
in time series forecast.

1 Introduction
Recently [3] a new principle for learning in neural networks was proposed: since the
network learns as the errors converge to zero, the learning is made such that the zero-
error density is maximized. Hence the name Zero-Error Density Maximization (Z-
EDM). It has been shown to be a good alternative to learning according to the mini-
mization of the mean squared error and cross entropy [3, 4].

In this paper we adapt the idea of Z-EDM to learning in recurrent neural networks.
We show how an online learning algorithm for RNN, the Real Time Recurrent Learning
(RTRL) [5] can make use of the Z-EDM principle.

In the experiments section we present two applications: a symbolic prediction prob-
lem and a time series forecast problem (Mackey-Glass chaotic time series). In both
cases the new approach brings advantages when compared to the original RTRL.

The rest of the paper is organized as follows: the next section presents Z-EDM,
the following section discusses RTRL and section 4 shows how to incorporated Z-
EDM into the RTRL algorithm. Section 5 presents the experiments and the last section
contains the conclusions.

∗This work was supported by the Portuguese FCT-Fundação para a Ciência e a Tecnologia,
POS_Conhecimento and FEDER (project POSC/EIA/56918/2004).
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2 Z-EDM
The Z-EDM was proposed in [3]. Minor modifications were introduced in [4].

The idea is that when training a learning machine, in our case a NN, the random
variable error, e, will tend to increase its density at the origin, as more and more patterns
are correctly predicted. So, instead of taking the usual approach of defining an error
surface (usually based on MSE error) and use gradient descend to search for the weights
that minimize that error, in the Z-EDM approach, we define the density of the error
variable and, also using the gradient descent, look for the weights that maximize the
error density at the origin. We will now formalize these ideas. We consider here the
original Z-EDM. The online version proposed in this paper is described below.

For a training set of sizeN , the error r.v. e(i) = d(i)−y(i) represents the difference
between the desired output vector d(i) and the actual output y(i), for a given pattern i.
Since as the training proceeds we expect that the values of e(i) = 0 for most i, we will
in fact use the following rule to search for the desired weights:

w∗ = arg max
w

f(0; w) (1)

where f(0; ·) stands for the density of the errors at the origin, and w represents the
network weights. The weight dependency of the error density was made explicit in the
above expression. To apply this expression we need the error density, which is normally
unknown. So we estimate it using the Parzen window non-parametric estimator:

f̂(0; w) =
1

Nhp

N∑
i=1

K

(
0− e(i)

h

)
(2)

where h represents the bandwidth of the kernel K and p is the dimension of e (the
number of network outputs).

The kernel used is the Gaussian kernel with zero mean and unit covariance given
by

K(x) =
1√
2π

exp
(
−xT x

2

)
(3)

By replacing this in expression (2) we get the our estimator for the error density

f̂(0; w) =
1√

2πNhp

N∑
i=1

exp
(
−e(i)T e(i)

2h2

)
(4)

Due to reasons discussed in [4] related to the speed of convergence of the Z-EDM,
instead of using expression (4) we shall use the following simplification

f̂(0; w) = h2
N∑

i=1

exp
(
−e(i)T e(i)

2h2

)
(5)

and given that the difference relies only on constant terms, we know that the same
extrema will be found.
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Figure 1: A fully recurrent one hidden layer neural network. The notation is explained
in the text.

We are now interested in the gradient of (5):

∂f̂(0; w)
∂w

= −
N∑

i=1

exp
(
−e(i)T e(i)

2h2

)
e(i)

(
∂e(i)
∂w

)
(6)

Since we are searching for the weights yielding the maximum of the error density
at 0, the network weight update shall be made by

∆w = η
∂f̂(0; w)
∂w

(7)

where η stands for the learning rate.

3 RTRL
The RTRL algorithm for training fully recurrent neural networks (NNs) was originally
proposed in [5]. Many modifications to this original proposal have been made.
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In this section we will follow the notation of [1]. Consider the fully recurrent neural
network of figure 1. It contains q neurons, m inputs and p outputs.

The state-space description is given by the following equations

x(t+ 1) =
[
ϕ(wT

1 ξ(t)), . . . , ϕ(wT
q ξ(t))

]T
(8)

where x represents the state vector, t stands for the time, and ϕ is the activation func-
tion. The (q + m + 1)-by-1 vector wj contains the weights of neuron j and ξ(t) is
another (q + m + 1)-by-1 vector defined by [x(t),u(t)]T . The (1 + m)-by-1 vector
u(t) contains in the first position 1 (the bias fixed input value) and in the remaining
positions the m network inputs. The equation that gives the p-by-1 vector of network
outputs, y, is

y(t) = Cx(t) (9)

where C is a p-by-q matrix that is used to select which neurons produce the network
output.

The idea is to use the instantaneous gradient of the error to guide the search for
the optimal weights that minimize this error. The algorithm works by computing the
following for each time t:

Λj(t+ 1) = Φ(t) (Wa(t)Λj(t) + Uj(t)) (10)
e(t) = d(t)− Cx(t) (11)

∆wj = η
(
e(t)T CΛj(t)

)T
(12)

where Λj contains the partial derivatives of x w.r.t. the weight vector wj , Φ is a diag-
onal matrix with the partial derivatives of the activation function w.r.t. its arguments,
Wa contains part of the network weights and Uj is a zero matrix with the transpose
of vector ξ in its jth row (please see [1] for details). e is the error and d the desired
output.

4 Application of Z-EDM to RTRL
To use the Z-EDM approach in a RNN, we chose to adapt the RTRL algorithm. The
idea of finding the maximum of the density now can’t be done using a static set of N
error values.

We propose to use the previous L values of the error to build a dynamic approxi-
mation to the error-density. This will use a time sliding window that will allow us to
define the density in an online formulation of the learning problem.

This adaptation of the Z-EDM will change expression (6) above to

∂f̂(0, t; w)
∂w

=

−
L∑

i=1

exp
(
−e(t− i)T e(t− i)

2h2

)
e(t− i)

(
∂e(t− i)
∂w

)
(13)
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where instead of computing the density over the N data points of a training set, we are
computing it over the last L errors of the RNN. Notice that the dependency on time of
the gradient of the density is now explicit.

This approach is an approximation to the real gradient of the density since it uses
error values from different time steps to create an estimate of the error density. Given
that learning is online and the weights are adjusted on each time step, the construction
of a density from errors at different time steps is valid if L is not too large since then it
would include error information from a very different weight state and L can’t be too
small otherwise the density estimation will suffer from the lack of samples.

The modification to the RTRL will be on equation (12) which contains the weight
update rule:

∆wj =

η

L∑
i=1

exp
(
−e(t− i)T e(t− i)

2h2

)(
e(t− i)T CΛj(t− i)

)T
(14)

The negative sign on expression 13 cancels with the negative sign we would insert
on the ∆wj given that we now want to maximize instead of minimize.

5 Experiments
In this section we present experiments to evaluate the performance of the proposed
method. We compare the obtained results against the original RTRL on the same
RNNs. First we should refer that the activation function we used in the RNNs is the
standard sigmoid. Also worth mentioning is the initialization values of the following
matrices: x(0) = 0,Λj(0) = 0, j = 1, . . . , q.

5.1 First experiment
The first problem consists in predicting the next symbol of the sequence: 0 1 0 0
1 0 0 0 1 0 0 0 0 1 . . ., up to twenty zeros, always followed by a one. We
record how many symbols did the network need to see to correctly make the remaining
predictions until the end of the sequence. The sequence is composed of 230 symbols.

We made 100 repetitions starting with random initialization of the weights, varied
the learning rate, η, in {2, 3, 4, 5, 6}, varied the kernel bandwidth, h, in {1, 2, 3} and the
size of the sliding window for the temporal estimation of the density, L, in {8, 10, 12}.
The results are in figures 2 (for a network with 4 neurons) and figure 3 (for a network
with 6 neurons).

Each point in these figures represents the percentage of convergence on 100 exper-
iments versus the correspondent average number of symbols necessary for learning the
problem (NS), for the standard RTRL (circle) and the RTRL with Z-EDM (star). The
different points were obtained by changing the parameters: η, L, and h (in the case of
standard RTRL only η is used).

We only plotted the cases where at least one of the 100 repetitions converged.
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The figures show that standard RTRL is not able to obtain more than 30% conver-
gence, but the RTRL with Z-EDM can reach 100% convergence.

We can also observe that for a given value of NS, the RTRL with Z-EDM is able to
obtain higher percentages of convergence than the original RTRL.

An advantage of the original RTRL over the new proposal is that it is able to learn
the problem with fewer symbols: around 20 (although with very small percentage of
convergence) while the new method needs around 50 symbols to learn.
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Figure 2: Percentage of convergence on 100 experiments versus the correspondent
average number of symbols necessary for learning the problem (NS), for the standard
RTRL and the RTRL with Z-EDM. Network with 4 neurons. First experiment.

5.2 Second experiment
In this experiment 3000 points of the Mackey-Glass time series [2] are used. The first
2000 are ignored (we consider that the network is still adapting to the signal) and the
last 1000 are used for evaluation. We use the mean squared error (MSE) between the
true value of the series and the prediction as the measure for prediction quality. The
predictions are 1-step ahead.

To see how good these predictions are, we found the MSE for the naïf predictor:
next value is equal to the previous. We call this the MSE0 and its value is 0.00109. So,
good predictors should have smaller MSE than MSE0.

Each point in figures 4 and 5 represents the percentage of convergence on 100
experiments versus the correspondent average MSE, for the standard RTRL (circle)
and the RTRL with Z-EDM (star). The different points were obtained by changing the
parameters: η, L, and h (in the case of standard RTRL only η is used). Both figures
have the same scale to facilitate comparisons.
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Figure 3: Percentage of convergence on 100 experiments versus the correspondent
average number of symbols necessary for learning the problem (NS), for the standard
RTRL and the RTRL with Z-EDM. Network with 6 neurons. First experiment.

Figure 4 contains the results for a network with 4 neurons and figure 5 for a network
with 6 neurons. We did not continue to expand the number of neurons since there was
not a considerable difference in performance by increasing the number of neurons in
either approach.

Note that we only represented the results when the average MSE for the 100 rep-
etitions was smaller than MSE0 (the total number of experiments conducted was over
500, but only a small portion had the required MSE value). This means that the num-
ber of points from RTRL is not the same as the number of points from RTRL with
Z-EDM. Notice also that since the approach with Z-EDM has 3 parameters (excluding
the number of neurons) versus only one parameter for the standard RTRL, we had to
make many more experiments for the approach with Z-EDM to search for appropriate
parameters than the number of experiments done for the standard RTRL.

By looking at the figures we find that the RTRL with Z-EDM is always able to
obtain smaller values of MSE than the standard RTRL and that the difference is sig-
nificative. Another important aspect is that only the RTRL with Z-EDM was able to
obtain MSE smaller than MSE0 and also have 100% convergence. This is more signi-
ficative for the case of 6 neurons since the best convergence here for the standard RTRL
is 4%. In the case of 4 neurons, the standard RTRL is able to reach 82% convergence
(although with not as good MSE as the best 100% convergence RTRL with Z-EDM).

6 Conclusions
In this paper a new learning algorithm for RTRL was introduced: RTRL with Z-EDM.
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We presented experiments on symbol prediction and time series prediction.
This shows that it is possible to use the concept of Z-EDM in recurrent neural net-

work training; that this approach is beneficial since the percentage of the time that the
RNN converges was increased in the experiments we presented; and in the time series
prediction experiment, the proposed method has much better prediction capabilities
than the original.

The possible drawbacks are a slight increase in computational time and the need to
set two more parameters: the kernel bandwidth h and the size of the window used for
keeping previous error values, L. In our experiments we did not find it difficult to find
adequate parameters with a standard grid search.
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Figure 4: Percentage of convergence on 100 experiments versus the correspondent
average MSE, for the standard RTRL and the RTRL with Z-EDM. Network with 4
neurons. Second experiment.
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Figure 5: Percentage of convergence on 100 experiments versus the correspondent
average MSE, for the standard RTRL and the RTRL with Z-EDM. Network with 6
neurons. Second experiment.
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