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1 Risk Functional 

The risk functional of a machine provides a measure of how close the machine output

),( wxy ϕ=  is to the target variable t : 
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The risk functional is the expected value of a loss function L on the set of all possible (x, 

t) pairs. The formula above is expressed as a Lebesgue integral in order to cope with 

any general probability distribution of (X,T). For instance, in Figure 1 we have a 

probability distribution which has two probability masses of p1 and p2 (two Dirac 

functions with those areas) added to a continuous component responsible by a 

probability of 1 – (p1 + p2). It doesn't make sense to speak of f(x)dx and express a 

probability calculation as a Riemann integral. However, it does make sense to speak of 

dF(x) and probability calculations are then carried out as Lebesgue integrals. 
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Figure 1 

 

 

We now consider the data classification setting. The risk functional is rewritten as: 
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Furthermore, if we limit ourselves to the usual scenario of continuous data distributions 

(not mixed distributions as in Figure 1), we have: 



 

 

 

∫∑=
X X

T

dxtxfwxtLtPwR )|());(,()()( ϕ  

 

 

x

t

0

1

f(x|0)

f(x|1)

P(0)

P(1)

a b  
Figure 2. E[g(x)] with g(x) = 1, x∈[a, b], 0, otherwise, is green×P(0) + red×P(1). 

 

 

The risk functional can be expressed in terms of any other variables by performing the 

adequate change of variable. In the following we assume a strictly increasing ϕ(X) 

function (as is usual with sigmoids) and drop the dependence on w. 

 

• The risk functional expressed in terms of the output variable: 
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• The risk functional expressed in terms of the error variable: 

 

For simplicity and convenience we will restrict ourselves to 2-class problems, T = {-1, 

1}, Y = ϕ(X) ∈[-1,1]. However, the results are directly generalized to other settings. 
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But, the error r.v. E = T – Y . For class −1 we have: 
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Working out the second integral in the same way, we arrive at: 
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In the case that 
22

)(),( eytytL =−=  we get: 
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This corresponds to the variance of the error only when 0=Eµ . 

 

Let us now take the following cost function: 
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This is the cost function corresponding to misclassifications with soft (e.g. sigmoidal) 

output: if y ≥ 0 then decide class 1 else decide class 2. 

 

Noting that L(t, y) = 1 if [ ] [ ] 10,111,0 −=∧−∈∨=∧∈ tyty , we have for this cost 

function: 
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This affords an easy way to compute Pe (fig. 3). 
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Figure 3.  The dashed area corresponds to the error probability. 

 

Note that in order to obtain zero error probability (separable classes for the function 

family implemented by the classifier) the error pdf most be confined to the [-1, 1] 

interval. 

The cost function corresponding to misclassifications with hard thresholded output is: 
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In this case one may view the problem as a discrete error problem (the errors can only 

assume three values) and Pe = 0 corresponds to a discrete Dirac for the error (mass) 

probability function. 

2 Entropy of Partitioned pdfs 

Consider a pdf f(x) which is a weighted sum of functions with disjoint domains, i.e.: 
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We call such an f(x) a partitioned pdf. 
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• Note that entropy is invariant to scale reflections and translations: 
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A note concerning pdf and its moments (see Allan Gut, pag.158, 160, 175) 

 

Definition: The characteristic function of the r.v. X is 
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In the continuous case the characteristic function is similar to the Fourier transform of 

f(x). 

 

Theorem (uniqueness): Let X and Y be r.v. If YX ϕϕ = then X = Y and conversely. 



 

Theorem: Let X be a r.v. with distribution function F and characteristic function ϕ. If 

[ ] ∞<
n

XE  for all n, and [ ] 0
! ∞→

→
n

n
n

XE
n

t
 for all ℜ∈t , then 

 

[ ]∑
∞

=

+=
1 !

)(
1)(

k

k
k

XE
k

it
tϕ  

3 Variance of Partitioned pdfs 

Let [ ] [ ]XEXE
ifif == µµ ; . We have: 
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• Note that the variance is invariant to scale reflections but not invariant to scale 

translations. 

• The mean is not invariant to scale reflections and translations. 

 

Suppose that 1|−Yf  and 1|Yf  are mutually symmetric, p = q = ½, we are given [ ]YV
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4 Cross-Entropy 

General Setting 

 

We first consider a NN with c outputs yk trained with n input vectors xi. 

Cross-entropy follows from the Kullback-Leibler (K-L) divergence of )|( xtp  in 

relation to )|( xtpw : 
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That is, one is measuring the average "distance" between the unknown )|( xtp  and the 

machine produced )|( xtpw , using as "distance" the log of the ratio.  

The empirical estimate of the average given n inputs xi is: 
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Assuming mutually exclusive classes and that the outputs yi(xi) approximate the 

)|( iiw xtp , we rewrite: 
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We wish to train the NN such that )||(min wnW ppKL  is reached. Since this minimum 

does not depend on the pki, one only has to minimize the following cross-entropy 

expression:  
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In the same way as the K-L divergence, CE can be viewed as providing an empirical 

estimate of an average, corresponding to the following risk functional: 
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Two-class setting 

 

∑∑
==

−−=
n

i
ii

n

i
ii ytytCE

1
22

1
11 )ln()ln(  

 



 

Furthermore, let us consider a single output y ≡ y1, y∈D⊂[0,1], such that t ≡ t1∈{1}, t0 = 

1 – t; therefore, 1 – y represents y0. We then have: 
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The maximum support of y is: [ [ ] ]
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CE is n times the empirical estimate of 
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Example 1 

Let us consider P(0) = P(1) = ½ and the following family of uniform output pdf's: 
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Two particular cases: 
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Numerical simulation: 

 



 

 
Figure 4. Average (solid black) ± std (dashed) of 50 experiments with n = 200 points, half belonging to 

each uniformly distributed class, for d∈[0.0001, 0.999]. The red curve is the theoretical curve. Note the 

convergence towards 0 and n. 

 

 

We now search an expression of the cross-entropy in terms of the error r.v. For that 

purpose we first consider the expression of the 2-class cross-entropy with T = {-1, 1}, Y 

= ϕ(X) ∈[-1,1]: 
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Which is n times the estimate of: 
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Let us see the meaning of the two integrals. For the first one, we substitute v1 = 2 + e, 

getting 
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Similarly, substituting v2 = 2 – e for the second integral: 
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Figure 5 

 

Therefore, as shown in Figure 13, the cross-entropy is ln2 minus the sum of the means 

of the logarithmically stretched conditional error pdfs. 

 

If the conditional error pdfs are Dirac impulses at 0, we get: 
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As the conditional error pdfs concentrate near the extremes the means [ ]1|ln 1 −vE , 

[ ]1|ln 2vE , become very large negative numbers and therefore CE becomes very high. 

 

5 The Three Risk Functionals 

For simplicity we consider T = {-1, 1}, Y = ϕ(X) ∈[-1,1]: 
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We now consider the adaptive adjustment of the risk functionals, i.e., that there is an 

adaptive algorithm that at each step tries to move towards the minimization of the risk 

functionals. 

For the first two risk functionals at a certain step characterized by an error e, this 

corresponds to minimizing an average distance expressed as a function of e: 
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Example for t = 1: 

 

 
Figure 6 

 

MSE provides a square dispersion measure (related to the error variance): MSE "doesn't 

like" long-tail distributions, and therefore outliers. 

 

CE provides a logarithmic dispersion measure in such a way that true errors – note that 

for e < 1 the output y is not in error - are heavily weighted: CE penalizes heavier than 

MSE the tails corresponding to true errors and more so when the outputs are completely 

in the wrong side (true outliers). On the other hand, CE penalizes less than MSE the 

non-true errors. 

 

The H risk functional is not based on a constant distance measure L(e), since at any 

adaptive step the whole error distribution has to be taken into account. Thus, we are 

using a variable distance measure: );(ln);( wefweL E−= . When analyzing MEE one 

has to take into account families of error distributions. 

 

We know that the uniform distribution is the maximum entropy distribution among all 

continuous distributions which are supported in an interval [a, b]. We also know that the 

minimum entropy distribution is the Dirac δ-function, which may be seen as the limit of 

a uniform family
1
. So, ideally we would like that even in the initial worst case of H we 

would converge to the Dirac function at zero: 

 

 

                                                 
1
 In order to comply with the continuity requirement of error pdfs, we may always suppose without any 

important change of the main results that the end jumps are made by arbitrarily high slope lines. 
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Figure 7 

 

 

1) The problem is that entropy is invariant to partitions and scale translations; so, from 

a) and during the minimizing process one could fall in equally "ordered" distributions 

but probably meaning very different things in terms of classifier performance: 
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Figure 8.  All these error distributions have H = ln2 = 0.693. 

 

 

 

2) For equal variance of the errors MEE "prefers" completely ordered distributions 

(values concentrated in smaller intervals) than tailed distributions: 
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Figure 9 

 

 

 

 

 

 

3) Entropy tolerates lack of order in one component if the other gains in order: 
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b) H = 0.549 
Figure 10. In both cases the intervals occupied by the distributions have a total measure of 2. In b) one of 

the intervals increased by 0.5 (decrease of order) and the other increased by the same amount (increase of 

order).  However, the increase of entropy on the left component (0.2027) is more than compensated by 

the decrease on the right one (-0.3466). 

 

As a consequence of this property MEE tolerates outlier errors as far as the bulk is very 

concentrated. 

 

Properties 2 and 3 are clearly advantageous in many circumstances. Property 1 can 

bring about difficulties when applying MEE. 

6 Discriminative Training with MSE, CE and MEE 

We now consider given a training set and adaptively fitting a function φw ∈ Φ in order 

to converge to the minimum value of the empirical risk functional.  

 

We may, for instance, consider the adaptive process consist of gradient descent in the 

hypersurface corresponding to the empirical risk functional, i.e., gradient descent in

)(ˆ wR . 

 

Using MSE one tries to minimize the variance of the errors (deviations). 

Using CE one tries to minimize the logarithm of the error (deviation) amplitudes. 

Using MEE one tries to move to the error (deviation) distribution with smaller entropy. 

 

We assume )(ˆ wMEER  computed from )|(ˆ tyfY . 

 

Let us see with the help of Figure 10, where we assume Φ as the straight line family, 

what can happen during the adaptive training. 

 

In a) we have a possible initial situation: all the errors are at one side and widely spread 

⇒ MSE, CE and MEE are high. 

 

Next, we move on the hypersurface in order to: 

 

MSE: decrease the error variance. 

CE: decrease the logarithm of the error amplitudes. 

MEE: get )|(ˆ tyfY  achieving smaller error entropy. 
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Figure 11 

 

In b) we reach the best MEE:  

 

In c) we reach the best MSE:  

 

7 Linear Discriminant Output pdf 

A linear discriminant (l.d.) transforms the input pdf's into an output pdf by orthogonal 

projection onto the weight vector.  

 

We analyze for simplicity the 2D case. Consider the l.d. transformation: 
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where w is the weight vector. 
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Figure 12 



 

 

 

The decision border d(x) = 0 is a straight line orthogonal to the weight vector. Let us 

confirm this: 
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On the other hand, a vector n orthogonal to the decision border with amplitude r and in 

the direction shown above has components: 
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This confirms the orthogonality of w to the decision border. Therefore, since d(x) is the 

dot product of w and x, in order to obtain the pdf of d(x) one only has to project the data 

points onto the direction defined by w. 

 

We now analyze the case where the line passes through the origin and we want to 

express the projection d(x) = w'x in terms of the angle α that the line makes with the 

horizontal axis. Since tan(α) = −w1/w2 we have w1 = −sin(α), w2 = cos(α); therefore, 
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8 Examples where MEE Does Not Always Solve the 
Classifier Problem 

We consider 2-class classification problems in bivariate space ℜ2
, target space T = {-1, 

1}. We denote the input vectors by [x1 x2]' and consider the following marginal pdf's: 
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where ),,( dn σµ−  is the lower half of the Gaussian pdf with mean µ and std σ, 

truncated at d, and u(a,b) is the uniform distribution in [a,b].  

 
Example 2 

σ = 0.75, µ = −1, d = 1, c = 1  (dataset znormal200) 



 

 

 
Figure 13. Example 2 dataset with 200 points per each class. 

 

  

The estimated H, V were computed as follows (HVemp function): 

 

1. Projection of all points over the w line (computation of d(x)) for α = −π/2, 0. 

2. Computation of the error values. 

3. Computation of the variance of the errors. 

4. Estimation of )(ˆ ef E using a Gaussian kernel with h = 0.1 in a grid with ds = 0.05 

increments. (Both h and ds were selected based on several experiments.) 

5. Computation of H by integration. 

 

 
Figure 14.  H,V for znormal200 dataset 

 



 

 
Figure 15. CE for znormal200 dataset 

 

In this example, MEE fails to produce the good solution. The problem is that MEE 

looks at the most concentrated pdf, which happens to occur for α = 0. 

 

1

c

1/2

-1

e

 1-1

e

-2 2  
Figure 16 

 

MEE will provide the good solution if either c is increased or σ decreased, as in the 

following examples. 

 
Example 3 

σ = 0.75, µ = −1, d = 1, c = 2  (dataset znormal200-1) 

 

 
Figure 17 

  
Example 4  

σ = 0.4, µ = −1, d = 1, c = 1  (dataset znormal200-s04)  



 

 

 
Figure 18 

 

In both examples 3 and 4 CE produces the good solution (similar to Fig. 8). 

9 Examples where MEE solves the Classifier Problem 
and MSE and CE Do Not 

9.1 Setting 

We consider 2-class classification problems in bivariate space ℜ2
, target space T = {-1, 

1}. We denote the input vectors by [x1 x2]' and consider the following marginal pdf's: 
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where u(a,b) is the uniform distribution in [a,b].  

 



 

 
Figure 19. 1000 points of each class with a = 0.9, b = −1, c = 0.5 (500 points in each class rectangle). 

 

 

Given a balanced training set of the two classes the classification problem consists of 

adjusting a straight line passing through the origin (x2 = tan(α)x1) yielding the minimum 

probability of error. 

 

We first compute the theoretical MEE and MSE for two configurations, with p = q = 

1/2: 

 

Configuration #1: α = −π/2; w = [0 1]'; d(x2) = 0 
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Figure 20. Configuration #1 represented in terms of the error variable (E = T – D(X)) 
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Configuration #2: α = 0; w = [1 0]'; d(x1) = 0 
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Figure 21. Configuration #2 represented in terms of the error variable (E = T – D(X)) 
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9.2 MSE and MEE 

Example 5 

a = 0.9, b = −1, c = 1. 

We have (theoretical values): 

 

H#1 = 0.556; H#2 = 0.693 

 

On the other hand: 

 

V#1 = 0.703; V#2 = 1.083 

 

Using numerical simulation for several values of α (−π/2:π/100:0) we obtained the 

results of Figure 15. 

 

(We assume the decision line rotating in [−π/2, 0] in order not to swap the class labels. 

Note that for α = π/2 we get d(x) = −x and class 1 would have values corresponding to 

class −1 and vice-versa. Although this swap is of no consequence for MSE and MEE it 

would have to be taken into account for CE.) 

 

The numerical simulation (HV function) consisted of: 

1. Generation of 4000 points of each class equally distributed between the two 

uniform "rectangles" (each rectangle weight is ½, i.e., gets 2000 points). 

2. Projection of class −1 points over the w line (computation of d(x)). 

3. Estimation of f−1 ≡ fx∈C−1(d(x)) using a Gaussian kernel with h = 0.006 in a d 

grid with ds = 0.0025 increments. (Both h and ds were selected as the optimal 

values yielding the least sum of absolute deviations from the theoretical H and V 

values for α = −π/2, 0). 

4. Computation of H and V. 



 

  

 

 
Figure 22 Entropy (solid line) and variance (dash line) as functions of the angle alpha (dataset z2000). 

 

 

The MEE method achieves the smallest possible error at α = −π/2:  

 

Error = 0.263 

 

The MSE method also achieves the smallest error at α = −1.13:  

 

Error = 0.263 

 

So in this case, although the MSE decision line is not the "best" line, still the error is not 

affected. 

 
Figure 23. The error curve for Example 5. 



 

 

Note that if we perform the computation of H, V using the previous "empirical 

estimate" procedure, the results obtained are essentially the same: 

 

 
Figure 24 

 
Example 6 

a = 0.95, b = −1.7, c = 0.9.  

We have: 

 

H#1 = 0.378; H#2 = 0.588 

 

V#1 = 1.238; V#2 = 1.068  

 

  
Figure 25 Entropy (solid line) and variance (dash line) as functions of the angle alpha (dataset v2000). 

 

The MEE method achieves the smallest possible error at α = −π /2:  



 

 

Error = 0.321 

 

The MSE method achieves the smallest error at α = −0.377:  

 

Error = 0.355 

 
Figure 26. The error curve for Example 2 

 

 

Even with a smaller number of points the same results can be arrived at (provided 

adequate h and ds are used). 

 

Figure 20 shows the results obtained when 500 points per class are used (h = ds = 0.02; 

empirical estimate procedure). 

 
Figure 27 



 

9.3 Cross-Entropy Results 

Example 7 

Same dataset as in Example 5. 

 

 
Figure 28.  Cross-entropy for Example 5 dataset (z2000). 

 
Example 8 

 

a = 0.95, b = −2.4, c = 0.9. 

 

In this example we only consider the theoretical error curves computed by numerical 

simulation as above (4000 points per class). 

 
Figure 29. Cross-entropy error curve for Example 8.  

 

Whereas the minimum entropy error occurs at −π/2: 

 

Error = 0.3623 

 

The minimum cross-entropy error occurs at −0.3456 and is: 



 

 

Error = 0.4105 

 

10 Appendix A - Computation of the Error Curve 

We assume the two rectangles with uniform distributions of either class having weights 

p1 (large rectangle) and p2 (small rectangle), with p1 + p2 = 0.5. 

 

First configuration setting: −−−−b ≤ a 
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Second configuration setting: a < −−−−b  ≤ 1 
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Third configuration setting: −−−−b  > 1 
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11 Appendix B - 0ln0 

 

We want to compute xx
x
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