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1 Determination of optimal h and IMSE for a given n 

Based on the formulas of Tapia, RA, Thompson, JR (1978) Nonparametric Probability Density 
Estimation. The John Hopkins University Press. 
 
We are considering: 

∑
=








 −
=

n

i n

i

n
n h

xx
K

nh
xf

1

1)(ˆ  

 
The formulas of optimal IMSE and h (optimal in the IMSE sense) are (p. 59) 
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From now on we only consider the Gaussian kernel: 
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This kernel is also a pdf and is such that its characteristic exponent, r, is 2, where r is the largest 
positive number such that the characteristic coefficient 
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is nonzero and finite and k(u) is the characteristic function of the kernel pdf: 
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a Fourier transform of K. In a loose sense r controls the kernel decay. 
Now, for the Gaussian kernel we have: 
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Moreover, notice that for k3 is infinite. Therefore, the Gaussian kernel (along with other ones) has 
r = 2, k2 = ½. 
 
We now proceed to simplify the above expressions, denoting: h, k, α, β instead of hn, k2, α(K), 
β(f); ∫= 2KI K ; ∫=

2)2(
2 fI . We have: 
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We now analyze a few examples. 

1.1 The formulas for the Gaussian kernel 

For Gaussian kernel we have: 
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This is the value presented by Tapia, RA, Thompson, JR (1978) in page 60. 
Moreover: 
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Therefore in the following computations, where Gaussian kernel is assumed, we only have to 
compute I2 and obtain: 
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1.2 The n data points are from N(0,1) 

We have: 
I2 = 0.2116 (computed with Matlab) 

 
Let us now consider n = 25. We obtain: 
 

h = 0.5564; IMSE = 0.0254 
 
Tapia, RA, Thompson, JR (1978) indicates h = 0.56 (p. 67) and an average IMSE in 24 
experimental repetitions of 0.0163 (sd =0.119) 
 
 

n h IMSE 
25 0.556 0.025350 

100 0.422 0.008362 
200 0.367 0.004803 
300 0.338 0.003472 
400 0.320 0.002759 
500 0.306 0.002308 
600 0.295 0.001994 
700 0.286 0.001763 
800 0.278 0.001584 
900 0.272 0.001442 

1000 0.266 0.001325 
1100 0.261 0.001228 
1200 0.257 0.001145 
1300 0.252 0.001074 
1400 0.249 0.001013 
1500 0.245 0.000958 
1600 0.242 0.000910 
1700 0.239 0.000867 
1800 0.237 0.000828 
1900 0.234 0.000793 
2000 0.232 0.000761 
4000 0.202 0.000437 
6000 0.186 0.000316 
8000 0.176 0.000251 

10000 0.168 0.000210 
12000 0.162 0.000182 
14000 0.157 0.000160 
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16000 0.153 0.000144 
18000 0.149 0.000131 
20000 0.146 0.000121 
22000 0.143 0.000112 
24000 0.141 0.000104  

1.3 The n data points are from N(0,σ) 

Evaluation of the above formulas for a large range of σ values shows that h can be written as: 
 

2.00592.1 −= nh σ  
Therefore: 

8.0332911.0 −= nIMSE
σ

 

1.4 The n data points are from 0.5N(-1.5,1)+0.5N(1.5,1) 

We have: 
IK = 0.1559; I2 = 0.0918 
α = 0.6896; β = 1.6122 

 
Thus, for n = 25: 

h = 0.584; IMSE = 0.0133 
 
Tapia, RA, Thompson, JR (1978) indicates h = 0.66 (p. 67) and an average IMSE in 24 
experimental repetitions of 0.0095 (sd =0.007) 
 

n h IMSE 
25 0.584 0.013347 

100 0.443 0.004403 
200 0.385 0.002529 
300 0.355 0.001828 
400 0.335 0.001452 
500 0.321 0.001215 
600 0.309 0.001050 
700 0.300 0.000928 
800 0.292 0.000834 
900 0.285 0.000759 

1000 0.279 0.000698 
1100 0.274 0.000647 
1200 0.269 0.000603 
1300 0.265 0.000566 
1400 0.261 0.000533 
1500 0.258 0.000504 
1600 0.254 0.000479 
1700 0.251 0.000456 
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1800 0.248 0.000436 
1900 0.246 0.000418 
2000 0.243 0.000401 
4000 0.212 0.000230 
6000 0.195 0.000166 
8000 0.184 0.000132  
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1.5 Weibull distribution 
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This is the formula used by MATLAB.  
Excel (and the M. Sá book) swap a by b. 
Wikipedia uses (λ,k) with λ=a and k=b. 
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γ is the skewness. 
 
Properties: 
1 )()(1,/1 xxw λγ ε≡ ; b=1 sets the exponential shape and a, the scale, sets the decay. 
2 For b < 1 the distribution shape is hyperbolic. It can easily be modeled by an exponential 

with low L1 distance. 
3 For large b the Weibull distribution shape becomes increasingly symmetric (more or less 

compressed according to a) with 025.0≈γ  for b=3.5. 
 
Based on these properties the intervals for a and b that seem most interesting are: 

[ ]3,1.0∈a  
[ ]5.3,1∈b  

MATLAB is able to compute the I2 values for these intervals with increment 0.2 on b. For other 
values cubic spline interpolation may be used. 
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1.6 Gamma distribution 
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This is the formula used by MATLAB and EXCEL (notation α, β). 
The M. Sá book uses (p, a) with a = b and p = a. 
The Wikipedia uses (k,θ) with θ = b and k = a. 
 
Note that now a is the shape and b the scale (as opposite to Weibull). 
Also note that the gamma distribution is not defined for x = 0 (by contrast the Weibull is defined 
at zero). 
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Properties: 
1 )()(/1,1 xx λλ εγ ≡ ; a=1 sets the exponential shape and b, the scale, sets the decay. 
2 For a < 1 the distribution shape is hyperbolic. It can easily be modeled by an exponential 

with low L1 distance. 
3 Contrary to what happens with the Weibull distribution the gamma distribution maintains its 

skewed shape even for large a. For a = 4, 1=γ . For larger a the function exhibits close to the 
origin an increasingly large interval of nearly zero values; this feature (not so noticeable with 
Weibull) is uninteresting for pdf modeling. 

 
Based on these properties the intervals for a and b that seem most interesting are: 

[ ]4,1∈a  
[ ]3,1.0∈b  

MATLAB is able to compute the I2 values for these intervals with increment 0.25 on a. For other 
values cubic spline interpolation may be used. 

1.7 MATLAB code for Weibull and Gamma 

function [h imse] = weibullh(b) 
syms x f 
Ik = 0.282095; 
h = []; imse = []; 
av = (0.1:0.1:3)'; 
for k=1:size(av,1) 
    a = av(k); 
    g = (b/a)*((x/a)^(b-1))*exp(-(x/a)^b); 
    i2s = int( diff(diff(g,x),x)^2, x, 0, inf ); 
    I2 = eval(i2s); 
    hc = (Ik/I2)^0.2; 
    h = [h; hc]; 
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    imse = [imse; 5*Ik/(2*hc)]; 
end 
function [h imse] = gammah(b) 
syms x f 
Ik = 0.282095; 
h = []; imse = []; 
av = (1:0.25:4)'; 
for k=1:size(av,1) 
    a = av(k); 
    g = exp(-x/b)*(x^(a-1))/(b^a)/gamma(a); 
    i2s = int( diff(diff(g,x),x)^2, x, 0, inf ); 
    I2 = eval(i2s); 
    hc = (Ik/I2)^0.2; 
    h = [h; hc]; 
    imse = [imse; 5*Ik/(2*hc)]; 
end 

2 Pdf modeling and random data generation software 

The following functions are implemented in MATLAB. 

2.1 pdf1model 

The pdf1model function is called as 
 

pdfstruct = pdf1model(x) 
 
and finds a pdf model for the univariate data vector x. Pdf modeling is done as follows: first, a 
Parzen window estimate of the data pdf using a Gaussian kernel is derived; next, a best fit of a 
known pdf is searched for.   
Information on the pdf model in returned through pdfstruct, a structure with the following 
fields: 
 

• type, the distribution type: 'Normal', 'Gamma', 'Weibull'.  
• params, a row vector with 6 elements containing the following distribution parameters:  

Elements 1 and 2 are respectively the mean and standard deviation for the 'Normal', 
model or the a and b parameters for the 'Gamma' and 'Weibull' models. These two 
parameters are denoted 'm/a', 's/b' in the function GUI (see below). 
Element 3 is a user specified translation, x0, assuring the proper position of the 'Gamma' 
and 'Weibull' pdf origin. Note that x0 is the quantity that must be added to the abscissa 
so that the pdf starts at zero. 
Element 4, s, indicates whether or not the data pdf had to be flipped in order be modeled 
by the 'Gamma' or 'Weibull' pdf (1 means 'no flip'; -1 means 'flip'). Note that when a 
data flip is performed the minimum and maximum abscissa, xmin and xmax, swap roles. 
Elements 5 and 6 are respectively xmin and xmax. Their values have to be known in order 
to retrieve any data generated with the pdf model in the proper position. 
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• Stats, a row vector with the following 4 elements:  
Elements 1 and 2 are the areas subtended by respectively the data pdf and the model pdf. 
Element 3 is the estimate of the L1 distance between the data pdf and the model pdf. 
Element 4 is the estimate of the integrated mean square error (IMSE) between the data pdf 
and the model pdf. 

 
The function GUI shown below allows interactively designing the pdf model. 
 

 
pdf1model GUI (see text). 

GUI elements: 
• Overlayed plot of the Parzen estimated pdf (blue line) and the specified pdf model (black 

line) with a sliding red line for x0. 
• Buttons and editable text for specifying the smoothing factor, h. Optimal value assuming 

a normal pdf is shown in green text box (0.086676). 
• Buttons and editable text boxes for specifying m/a, s/b and x0. 
• Radio buttons for choosing the pdf model type: 'Normal', 'Gamma', 'Weibull'. 

'Normal' model is the starting option. 
• Button for flipping the estimated pdf (needed for 'Gamma' and 'Weibull'). 
• Button for finding the best (m/a, s/b) values in the min(L1) sense. Current L1 distance is 

displayed in yellow box. 
 
One should leave the pdf1model call by typing any key while in the MATLAB worksheet. 
 
Technical notes: 

• The "optimal" smoothing factor (kernel bandwidth) shown in the green text box is derived 
assuming normally distributed data and with the variance estimated from the data. This is 
usually an advisable value, which is also shown as the starting value in the h editable text 
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box (press the "Home" key to see this value; unfortunately MATLAB centers the text in 
this control causing it to be often masked). 

• When the pdf model parameters are somewhat "hand"-adjusted it is advisable to press the 
minL1 button. A best L1-distance model is then derived. 

2.2 pdf1rnd 

The pdf1rnd function is called as  
 

z = pdf1rnd(pdfstruct,n) 
or 

z = pdf1rnd(pdfstruct) 
 
and returns a column vector z containing data points generated according to the pdf model 
specified by the pdfstruct structure. 
When z = pdf1rnd(pdfstruct,n) is used exactly n points of the distribution are generated. 
When z = pdf1rnd(pdfstruct) is used the user has the possibility of choosing n with the 
guidance provided by the GUI shown below. 
The GUI has a header describing which model is being used and its main parameters. It also has 
the means to specify the value of n, at the same time showing the values of IMSE and h 
corresponding to that n. Usually one specifies a value of n achieving a sufficiently low IMSE 
(when using the indicated h). 
 
Technical note: 
The Gamma and Weibul tables used for computing the optimal IMSE and h are for the parameter 
intervals mentioned in 1.5 and 1.6. 

 
pdf1rnd GUI (see text). 
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2.3 data1clone 

A combination of the above functions allowing the generation of a clone dataset of a given 
dataset in one step. 

2.4 data2clone 

A version of the preceding function for bivariate datasets. In this case the data undergoes first a 
principal component transformation which will assure the independence of the marginal pdfs in 
the case of bivariate normal distributions.  
In the end the data undergoes the inverse transformation guaranteeing the estimated covariance 
matrix. 
With this tool one can generate bivariate pdf models guaranteeing reasonable marginals (with 
minimum L1 distances from the original pdfs) and covariance close to the original one. 
Whenever the uncorrelated marginals provided by the principal component projections can be 
assumed as being independent, the clone data should closely resemble, in a statistical sense, to 
the original data. 
Before leaving data2clone scatter plots of the original and clone datasets are shown for visual 
comparison purposes. 


