

Neural Network Interest Group

Título/Title:

MEE Trees

Autor(es)/Author(s):

J.P. Marques de Sá

Relatório Técnico/Technical Report No. 2 /2009

FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

2

Título/Title:

MEE Trees

Autor(es)/Author(s):

J.P. Marques de Sá

Relatório Técnico/Technical Report No. 2 /2009

Publicado por/Published by: NNIG. http://paginas.fe.up.pt/~nnig/

© INEB: FEUP/INEB, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

3

Contents

1 INTRODUCTION ... 5

2 MEE TREES.. 6

2.2 MEE SPLITS ... 6
2.3 THE MEE TREE ALGORITHM .. 7

2.3.1 Candidate class position for numerical variables ... 8
2.3.2 Handling categorical variables .. 8
2.3.3 Entropy-of-Error of Class Unions .. 9

3 ENTROPY-OF-ERROR AND IMPURITY FUNCTIONS ... 10

3.1 IMPURITY FUNCTIONS .. 10
3.2 COMPARING IG, PE AND EE ... 10

3.2.1 Theoretical analysis .. 11
3.2.2 Experiments with normal distributions ... 14

4 APPLICATION TO REAL-WORLD DATASETS ... 14

4.2 EXPERIMENTAL SETUP ... 14
4.3 RESULTS ... 15

4.3.1 Error Rates ... 15
4.3.2 Tree Sizes .. 16

5 THE PRUNING ISSUE .. 18

6 CONCLUSIONS ... 20

4

5

1 Introduction

Decision tree classifiers are mathematical devices popularly applied to data classification

tasks. Proposed in the late sixties as a hierarchical or sequential approach to pattern

recognition (see e.g. [10], [30]) they are now widely used in data mining tools. The main

advantages of decision trees are the semantic interpretation often assignable to decision rules

at each tree node (a relevant aspect e.g. in medical applications), the simplification afforded

by dealing at each successive tree node with a simpler problem, and to a certain extent their

fast computation (rendering them attractive in data mining applications).
Formally, in classifier design one is given a training set L ⊂ X×Ω, where X is the

pattern space whose instances (objects or cases) xi are feature (predictor) vectors and Ω is the
target (class) space whose elements ωi label in some convenient way the class membership of
each instance,)(ij xωω = , cj ,,1 K= ; c is the number of classes and ω the class assignment
function of X into }{ jω=Ω . The hierarchical or tree approach to classification, i.e. to a

Ω→Xy : mapping, uses consecutive domain partitions represented by the application of
successive tree node rules until reaching a tree leaf assigning a class label, Ω∈)(ixy .

Testing a single feature value at each node is by far the most used type of decision
rule. This so-called univariate split is represented by a binary test yj in the form of
{ ,;)(, kkijij xyx ωω=∆≤ otherwise} for numerical features or of
{ ,;)(, kkijij xyBx ωω=∈ otherwise} for categorical features, with ∆ and B representing
respectively a numerical threshold and a set of values (categories). Mathematical and
implementation details on this sort of binary decision trees can be found in many publications
(see e.g. [4, 8, 11, 22, 26). In the present paper we only consider binary trees based on
univariate splits, which are by far the most popular trees since they afford a straightforward
semantic interpretation and are easily implemented.

There is an abundant literature on tree design approaches aimed at finding an
"optimal" tree in the sense of finding a minimum sized tree attaining high classification
accuracy (e.g. [2]). Since a search on the whole set of possible trees for a given problem is
almost always impractical, strategies based on finding, in a top-down recursive way, locally
optimal nodes have been employed. There is however a shortcoming with such "optimized"
designs, as explained in [15]; whereas node performance is a linear function of the class
recognition rates, the total tree performance is a (usually highly) nonlinear function. To cope
with this issue more recent approaches of tackling the problem in a global bottom-up model-
based way were proposed (see e.g. [12]); such approaches seem, however, confined to very
simple problems, and where deriving such a model is a feasible task. Thus, finding an
"optimal" tree in practical problems remains an elusive goal.

Tree design in a top-down recursive fashion through the optimization of a local, nodal,
criterion is usually carried out with algorithms based on the seminal works [4] and [24]. Local
criteria popularized by these works are forms of a node disorder-measuring function, known
as impurity function. We use from now on the word "node" meaning the subset of L
represented by a node. Since the top-down design is not guaranteed to be "optimal" in any
sense, the accuracy, efficiency and generalization capability of the final solution relies on
using "reasonable" impurity functions and some sort of tree pruning remedying the usual
overfitting to the training set of the derived top-down solution.

In the present paper we describe the application of a new type of node criterion – the
entropy of nodal error – to tree design. This criterion, coined MEE (Minimization of Error
Entropy) in other works, was successfully applied to the design of other classifier machines,
namely artificial neural networks ([28]). The paper is organized as follows: section 2
describes the MEE design approach to trees and its idiosyncrasies; section 3 compares MEE
trees with their related competitors both from a theoretical and experimental perspective;
section 4 presents in a comparative way the application of MEE trees to real-world datasets;
section 5 discusses the pruning issue for MEE trees; finally, the conclusions are drawn in
section 6.

6

2 MEE Trees

2.2 MEE Splits

The main idea of the MEE tree design algorithm consists of viewing a candidate node split
(split of the U subset represented by a node u) as a two-class problem in Ω×Y (set-of-
classes×set-of-rules) and determining which (ω, y) ∈ Ω ×Y affords the best solution in the
minimum entropy-of-error sense.

Finding the best distribution-free univariate split in a two-class problem is known as a
Stoller split problem ([8], [29]). Consider then a candidate split at a node relative to a specific
class Ω∈kω and its complement ikik ωω ≠∪= as a Stoller split problem using a rule y ∈ Y.
For any input object x∈ U the rule y produces a class assignment { }kky x ωωω ,)(∈ which is
compared with the true class label)(xω as shown in Figure 1. We may further view the
determination of the best ∆ or B for a given feature variable as if achieved by some kind of
adaptive system as also shown in the same figure. Keeping with the terminology of adaptive
systems we then have an "error" variable corresponding to)()(xx yωω − (assuming
appropriate coding) and an adapting function of the error which is the entropy, H(error).

Split rule y

ωy(x)

error

x

ω(x)

H(error)

Tree node

Fig. 1. A node split viewed as an adaptive Stoller split problem.

Let us denote by T and Y the random variables (r.v.) corresponding to a convenient

coding of)(xω and)(xyω , respectively; say, by assigning 1 if kωω = and 0 otherwise. We
then also have an r.v. of the errors, YTE −= , taking value in {-1, 0, 1}, such that:

)0,1()1(10 ===≡= YTPPEP is the misclassification probability of class kω ;

)1,0()1(01 ===≡−= YTPPEP is the misclassification probability of class kω ;

10011)0(PPEP −−== is the correct classification probability.

The function of the error “adjusting” the split rule that we use is the Shannon Entropy-

of-Error (EE):

)1ln()1(lnln 1001100110100101 PPPPPPPPEE −−−−−−−= .

The MEE split then consists of finding ∆ or B corresponding to minEE. (In the
computations the 0ln0 = 0 convention applies as usual.)

Note that although EE is an impurity function of E it is not a node impurity function,
such as the Gini index of diversity ([4]) or the node "information" ([24]). Whereas a node
impurity function depends solely on the)node|(uP jω probability mass function (pmf), EE
depends on the “error” of a specific split involving parent and children nodes. Moreover,
whereas node impurity functions have a c-dimensional support for any arbitrary c, EE always
has a 3-point support strictly related to two-class problems.

The entropy-of-error has the following properties:

1.),(1001 PPEE is a concave function (surface) on [] [] []1,0,,01,0 101010 ∈×− PPP (since it
is a sum of concave functions with the same support).

7

2.),(1001 PPEE has three absolute minima (0) at (0,0), (0,1) and (1,0). Note that these
three minima correspond to Dirac distributions of E, with the first one being the ideal
one for an optimal classifier: no classification errors.

3.),(0101 PPEE has one absolute maximum (ln3) at 3/11001 == PP .

The motivation for using MEE splits stems from two facts: MEE often outperforms

other machine training methods (e.g., the ubiquitous mean square error) in classification,

namely in multilayer perceptron training ([28]); MEE will not work for largely overlapped

distributions ([27]) and this will provide a natural way where to stop when growing a tree.

Regarding this last aspect Figure 2 illustrates the two situations one may encounter. In Figure

2a the overlap of the distributions is small and the minEE point occurs somewhere near the

minimum error point. In Figure 2b with large overlap of the distributions the minEE point

occurs at an end point of the variable range. In this last case, as explained in [27], the

minimum error point tends to occur in the vicinity of an entropy maximum and not of a

minimum.

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

x9

EE

 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

x2

EE

Fig. 2. Entropy-of-error curves for two splits of the Breast-Tissue dataset (splitting the balls from the

crosses): a) feature x9 with class 6, minEE at x9=1563.8; b) feature x2 with class 2, minEE at x2=0.0162.

2.3 The MEE Tree Algorithm

The main algorithmic operations for growing a MEE tree are simple enough and resemble

those performed when using node impurity measures:

1. At each tree node, U ⊂ L, we are given an n×f feature matrix XU and an n×c class

matrix TU (filled with zeros and ones).

2. A univariate split y with parameter ∆ or B minimizing EE is searched for in the f×c

space.

3. For that purpose, the "error" probabilities are estimated for each candidate class label t

as:

nnPnnP /,/ 01011010 == ,

with 'ttn meaning the number of class t instances classified as t '.

4. The rule minimizing (the empirical) EE is assigned to the node and if a stopping

criterion is satisfied the node becomes a leaf. Otherwise, the corresponding left and

right node sets are generated and steps 2 and 3 iterated.

In step 2 the middle points of the distinct values of every feature fix i ,,1,. K= are
used as candidate split points j∆ for numerical-type rules (“ ?. jix ∆> ”), and combinations Bj
of categorical values for categorical-type rules (“ ?. ji Bx ∈ ”).

8

A leaf is reached whenever a lower bound on the number of instances is reached or

minEE occurs at interval ends. A previous (and preliminary) version of the algorithm in [19]

included also an EE threshold as stopping criterion; this was found to be of no use and

abandoned. The final class label assignment of the leaves is made by the usual majority voting

rule (it will differ from the MEE candidate class only in very rare cases).

The following three issues are characteristic of these trees.

2.3.1 Candidate class position for numerical variables
The entropy-of-error for numerical variables has to be computed for two distinct class
configurations: the candidate class (t = 1) corresponds to the jix ∆>. rule; the candidate class
(t = 1) corresponds to the jix ∆≤. rule. The reason for this is twofold: the class position is
not known a priori; EE is dependent on the class position (see below).

∆

1

n00 n10 n01 n11

∆
1

n10n00n01 n11

Fig. 3 The two distinct configurations of the candidate class (black meaning t=1 and white t=0; blacks and

whites are as continuous strips in the figure for ease of representation only).

It is, however, a trivial task to compute the EE for one of the configurations once the

numbers of errors are computed for the other. Let us assume that the computation for the left

configuration of Figure 3 has been carried out. In pseudo code:

)(deltaxrule >←

)andnot(10 trulesumn ←

)notand(01 trulesumn ←

Using these n's one now computes their values for the other configuration without
having to carry out the application of the decision rule:)(1 tsumn ← ; 10110 nnn −← ;

01101 nnnn −−← .
The class position issue does not apply to categorical variables (no order relation).

2.3.2 Handling categorical variables

Tree growing based on concave impurity functions enjoys a very interesting feature when
handling categorical variables of a set { }mbbB ,,1 L= : one does not have to analyze all

22 −m rules { } BbbbBx jijkjji ∈=∈ ,,,1. K . One only has to analyze m subsets jB ([4]). No
similar result exists for MEE trees. However, the computation of the 22 −m rules has only to
be fully carried out for the m categories. This represents a considerable time saving. We now
prove this. Denoting a singleton category set {b} by b and its complement, B−{b}, by b , we
have:

 Category

 b b

Class
ω1),1(bP),1(bP

ω0),0(bP),0(bP

The pmf of E has three values:

}){,(),1()0,1(110 bxPbPYTPP ∉≡==== ω ;

9

}){,(),0()1,0(001 bxPbPYTPP ∈≡==== ω ;

),0(),1(),0(),1(10 bPbPbPbPP +=−−= .

We have already seen that we only need to compute the two values 10P and 01P in
order to compute EE. Denoting by p and q the class priors we have:

pPbP /)1|(10= ; pPbP /1)1|(10−= ; qPbP /)0|(01= .

We now consider non-singleton sets, Bi. We first notice that:

)|()|()|},({ 2121 ωωω BPBPBBP += for ∅=∩ 21 BB .

Therefore, once the two 10P and 01P values have been computed for all m singleton
sets it is an easy task to compute them for any non-singleton category set B, since:

∑ ∈= Bb bPBP)1|()1|(; ∑ ∈= Bb bPBP)0|()0|(.

Thus:))1|(1(10 BPpP −= ;)0|(01 BqPP = .

These results hold for both the theoretical and empirical pmf's.

2.3.3 Entropy-of-Error of Class Unions
Since the MEE approach is essentially a two-class discrimination approach, one may expect
to obtain performance improvements for datasets with c > 3 classes by considering class
unions, i.e., by including unions of classes, say of k classes with k up to [c/2] (greatest integer
less than c/2) in the set of candidate classes. The difficulty thereof is that the number of
candidate classes may become quite high with an accordingly higher computation time. For
instance, for a 6 class problem one would have consider the () 156

2 = unions of 2 classes and
() 206
3 = unions of 3 classes, amounting to a total of 41 classes. There is, however, a fast way

of computing the errors for unions of classes as we shall now show. We first notice that:

n

n

n

n

n

n
YTPP 10

1

101
10)0,1(====≡ ,

n

n

n

n

n

n
YTPP 01

0

010
01)1,0(====≡ ,

01100 1))1,1()0,0((PPYTyTPP −−=====≡ U ,

where we assigned the candidate class, ω1, to the node that satisfies the rule, ω0 is its

complement, and named the n’s accordingly.
Consider the class union 21 ωωω ∪= , ∅=∩ 21 ωω , and suppose that we have

computed for ωi, i = 1, 2, the following three quantities:

1.)(10 in ω – number of instances of class i that do not satisfy the rule;

2.)(11 in ω – number of instances of class i that satisfy the rule;

3. nr – number of instances (from whatever class) that satisfy the rule r.

Quantity 3 is computed only once for each feature. Quantities)(10 in ω and)(01 in ω
have been used to compute EE. For the reasons shown below we compute)(11 in ω instead of

)(01 in ω . We have:

n

n

n

n

n

n
PrPrPP ii

i

i
iiii

)()(

)(

)(
)()|(),()(101

1

10
10

ωω

ω

ω
ωωωω ==== ;

10

n

n

n

n

n

n
PrPrP ii

i

i
iii

)()(

)(

)(
)()|(),(111

1

11 ωω

ω

ω
ωωω === ;

n

n

n

n
rPrPPrPrPrP ir

iiii

)(
),()()()(),(),(11

01

ω
ωωωω −=−=⇒=+ .

With n10 and n11 we are thus able to compute the EE for the original classes.

Moreover:

)()(),(),(),()(2101102110 ωωωωωω PPrPrPrPP +=+== ;

[]
.)()()(

),(),()(),()(),()(

201101

2101

rPPP

rPrPrPrPrPrPP

−+=

=+−=−==

ωω

ωωωωω

It is therefore a negligible time-consuming task to compute the probabilities of interest

for the union of classes without having to explicitly carry out the corresponding decision test.

These results hold for both the theoretical and empirical pmf's.

3 Entropy-of-Error and Impurity Functions

3.1 Impurity Functions

An impurity function of a node u, ())|(,),|()(1 uPuPu cωωφφ K≡ , measures the degree of
“disorder” of its pmf in such a way that: a) φ achieves its maximum at (1/c, 1/c,…, 1/c)
(uniform distribution); b) φ achieves its minimum at (1,0,…,0), (0,1,…,0),…,(0,0,…,1) (Dirac
distribution); c) φ is symmetric. It is a simple generalization of the entropy notion. Celebrated
impurity functions in the bibliography and applications are the Gini diversity index,

() () ()uPuPuGDIu k
c
j

c
jkk j ||)(1 ,1 ωωφ ∑ ∑= ≠===& = ∑ =− c

j j uP1
2)|(1 ω and the Shannon

entropy (also called "information") () == uHu &)(φ () ()uPuP k
c
k k |ln|1 ωω∑ =− . Other

definitions of entropy such as the Rényi or Tsallis entropies have also been used ([20]). The
Gini diversity index can be interpreted as a variance measure ([25]).

Consider a node u, candidate to splitting into right and left nodes, ur and ul. The
average impurity is)(),|()(),|()(llrry uyuuPuyuuPu φφφ += , called Gini index (GI) and
information gain (IG), respectively for GDI(u) and H(u), in [4] and [22-24]. One may then
compute and maximize)()()(uuu yy φφφ −=∆ at each node (contributing to a higher decrease
of impurity). Since)(uφ doesn’t depend on the rule one may equivalently minimize)(uyφ .
This is what we will do below.

One may also consider the probability of error (PE) at a node as an impurity function,
)|(max1)()(uPuPEu jj ωφ −==& , since it enjoys all the above properties. However, as

shown in [4], for tree design)(uPE has two serious defects: it may lead to
)()()(lr uuu ωωω == for all candidate splits when one of the classes has a predominant

number of instances (and the majority rule is used) and in such cases no best split can be
found; it may lead to reject solutions with purer children nodes in detriment of others with
highly impure nodes resulting in worse performing trees. For two-class splits with p and q = 1
– p being the respective class probabilities, pqpGI 2)(= and qqpppIG lnln)(−−= are
both concave functions whereas),min()(qppPE = Pe is not strictly concave, justifying as
shown in [4] the insufficiencies of PE.

3.2 Comparing IG, PE and EE

In this section we compare the IG, PE and EE criteria. The reason for electing to compare EE

with IG and PE and not other criteria (including those that do not correspond to impurity

functions) has to do with the fact that, as shown in the continuation, EE has a kind of

intermediate behavior between IG and PE. Also, since GDI(u) is simply the first order

11

approximation of H(u), both GI and IG measures behave in a similar way (a 2% disagreement

between GI and IG is reported in [25]) allowing us to focus solely on IG.

3.2.1 Theoretical analysis
We carry out the comparison in the following framework: we consider two classes, 1ω and

10 ωω ≡ , and the splitting of a node with n1 instances from class 1 and n0 from class 0 as
shown in Figure 4.

n1, n0

n1r, n0r
n1l, n0l

rl

a > ∆? YesNo

 Children

 r l

Parent
ω1 n1r n1l n1

ω0 n0r n0l n0

 nr nl n

Fig. 4. Two-class framework.

At the parent node, with 01 nnn += instances, we have (resubstitution estimates
throughout): pnnP == /)(11ω ; qpnnP =−== 1/)(00ω . In order to compare the several
splitting criteria we consider that for any prior)(1ωPp = and whatever criterion being used a
certain percentage α of 1ω instances are assigned to the right node and a certain percentage β
of 0ω instances are assigned to the left node. In other words, assuming that the labels
assigned to the right and left nodes are respectively ω1 and ω0, α and β are the percentages of
instances, respectively from classes 1 and 0, that are correctly classified: 11 nn r α= ;

00 nn l β= .

Denoting rrr nnn 01 += , lll nnn 01 += , we have:

Information-Gain criterion

Entropy of the right node:
r

r

r

r

r

r

r

r
r

n

n

n

n

n

n

n

n
H 0011 lnln −−=

Entropy of the left node:
l

l

l

l

l

l

l

l
l

n

n

n

n

n

n

n

n
H 0011 lnln −−=

Average entropy to be minimized: =+= l
l

r
r H

n

n
H

n

n
pIG),,(βα

qp

q
q

qp

p
p

qp

q
q

qp

p
p

βα

β
β

βα

α
α

βα

β
β

βα

α
α

+−
−

+−

−
−−

−+

−
−−

−+
−

)1(
ln

)1(

)1(
ln)1(

)1(

)1(
ln)1(

)1(
ln

Note that),,(βαpIG (as well as),,(βαpGI) is independent of the predicted
classification. That is, swapping α by β together with p by q in the above formula leads to the
same result. In contrast the following two criteria are not independent of the predicted
classification (and the last one is not a node impurity criterion).

Probability-of-Error criterion:

Assuming the assignment r = ω1, l = ω0 and denoting by PE1, PE0 the class error rates:

α−== 1
1

1
1

n

n
PE l ; β−== 1

0

0
0

n

n
PE r ;

n

nn
qpqPEpPEPE rl 01

01)1()1(
+

=−+−=+= βα

Had we swapped the assigned classes we would obtain in general a different value:

12

n

nn
qpqPEpPEPE lr 01

01

+
=+=+= βα

Entropy-of-Error criterion:

n

n

n

n

n

n
pEPP ll 1

1

11
10)1()1(==−==≡ α ;

n

n

n

n

n

n
qEPP rr 0

0

00
01)1()1(==−=−=≡ β ;

)1()1(1)0(01

0

0

1

1
0 −=−=−=+=

+
=+==≡ EPEPqp

n

nn

n

n
q

n

n
pEPP lrlr βα

To these values we apply: 0001011010 lnlnln PPPPPPEE −−−= . Again, for swapped
assignments one obtains in general a different value.

We now analyze three categories of configurations:

Configurations with p = 0

0 0.5 1
0

0.5

1

alpha

b
e
ta

IG

0 0.5 1
0

0.5

1

alpha

b
e
ta

PE

0 0.5 1
0

0.5

1

alpha

b
e
ta

EE

Fig. 5. The p = 0 setting. Darker colors and larger sizes correspond to higher values.

For p = 0 there are no class 1 instances and the value of α is immaterial. As illustrated

in Figure 5, IG (and GI) is always zero no matter how β is chosen because the descendent

nodes are always pure. PE grows linearly with decreasing β, because for smaller β larger

numbers of class 0 instances are sent to the wrong side. EE is concave and maximum at

β = 0.5 and minimum for β = 0, 1. Figure 6 shows error pmf's for three different values of β.

Notice that for β = 0 all instances would be wrongly classified; however, this doesn't happen

because of the majority rule. IG (and GI) are unable to discriminate these configurations.

Similar conclusions are extracted for the p = 1 configuration.

a -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

P

 b -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

P

 c -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

P

Fig. 6. Error pmf's for p = 0 and three different values of ββββ: a) β β β β = 0 (EE = 0); b) β β β β = 0.5 (EE = 0.69); c) β β β β =

1 (EE = 0) .

Configurations with p = 0.5

13

0 0.5 1
0

0.5

1

alpha

b
e
ta

IG

0 0.5 1
0

0.5

1

alpha

b
e
ta

PE

0 0.5 1
0

0.5

1

alpha

b
e
ta

EE

Fig. 7. The p = 0.5 setting. Darker colors and larger sizes correspond to higher values.

As shown in Figure 7 IG and EE are concave functions; PE is a linear function. Figure

8 shows the error pmf's for three combinations of α, β. Note that IG found cases 'a' and 'b' to

be similar, which seems rather inadequate, whereas both PE and EE found 'b' to be an

improvement over 'a'. Cases 'b' and 'c' correspond to those analyzed in [4] to illustrate why PE

should not be used. Note that IG selects 'c' with a decrease of 16%; EE also selects 'c' and with a

more pronounced decrease: 22%. Therefore, for equal probability of error EE also prefers purer nodes.
In all cases GI behaves similarly to IG.

a -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

P

 b -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

P

 c -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

P

Fig. 8. Error pmf's for p = 0.5: a) αααα = 0.5, ββββ = 0 (IG=0.48, PE=0.75, EE=1.04); b) αααα = 0.8, β β β β = 0.8 (IG=0.50,

PE=0.20, EE=0.64); c) αααα = 0.6, β β β β = 1 (IG=0.42, PE=0.20, EE=0.50).

Configurations with α α α α = ββββ

For these configurations PE doesn’t depend on p (PE = 1−α). It is then possible to

show the behavior in terms of p and PE as in Figure 9. We observe that EE is concave,

symmetric in p but asymmetric in PE! In conclusion, EE displays, just as GI and IG, a

concave behavior but sensitive to the PE value. Moreover, for fixed p, EE(p) only starts from

zero for PE = 0 or PE = 1; otherwise, the initial deviation from zero depends on the PE value.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

pPE

IG

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

pPE

E
E

Fig. 9. IG and EE for α α α α = β.β.β.β.

14

3.2.2 Experiments with normal distributions

We experimentally studied the convergence of the (empirical) error rates produced by the IG

and EE rules applied to Stoller split problems with normal distributions. In this setting the

theoretically optimal error rates are known. The experiments controlled the studentized

difference of the class means, psmmd /)(21 −= (sp is the pooled standard deviation), as well

as the number of class instances (equal for both classes), n, which we chose to vary from 10 to

200. We also computed the frequency of interval-end hits in all experiments.

For a fixed d and each value of n we performed 100 experiments obtaining in this way

reliable estimates of the empirical mean error. The following conclusions could then be drawn

from a large number of experiments with different d values: for a not too small d (say, d >

0.5) the empirical error rate produced by the IG rule converges to the optimal error rate and

only for low values of n (n < 20) there is a noticeable frequency of interval-end hits; in the

previous conditions the error rate of the EE rule does not converge to the optimal error rate (it

is slightly higher) and the frequency of interval-end hits remains significant even for high

values of n; only for higher values of d (say, d > 1.5) a convergence of the error rate of the EE

rule to the optimal value is observed and the frequency of interval-end hits is practically zero.

As a matter of fact, by appropriate experiments covering d∈[0.6, 2.2] we could locate

the turnover point between convergence and no-convergence to the optimal error rate at

around d=1.4, in agreement with the theoretical findings published in [27]. Below this "no-

convergence value" EE exhibits invalid solutions with split points at interval ends. The stop-

splitting rule mentioned in 2.3 (minEE occurs at interval ends) is therefore justified.

4 Application to Real-World Datasets

4.2 Experimental Setup

The MEE algorithm was implemented in Matlab (version 7.2)
1
, applied to the 24 datasets

presented in Table 1, and the results confronted with those obtained using the CART-Gini,

CART-Information-Gain (also known as "CART-deviance") and CART-Twoing algorithms

available in Matlab and the C4.5 algorithm available in Weka. The "towing" split rule

corresponds to maximizing the variance of class conditioned right and left pmf estimates

([4]); it is not related to an impurity function.

As shown in Table 1 the datasets are quite diverse in terms of number of instances,

features and classes as well as of feature types. The following ones are from the well-known

UCI repository, [3]: balance, car (evaluation), Cleveland heart disease (2 classes),

dermatology, E-coli, glass, image segmentation, ionosphere, led (display), page blocks, Pima

(indian) diabetes, (E-coli) promoter gene (sequences), (New York) thyroid (database),

Wisconsin diagnostic breast cancer, yeast and zoo. We removed classes "omL", "imL" and

"imS" from the E-coli dataset because of their low number of instances (respectively, 5, 2, 2).

For the same reason we removed class "erl" from yeast (5 instances). We disregarded the 6

instances (out of the original 303) of the Cleveland HD2 dataset that have missing data. We

also disregarded 2 features (out of 8) of the yeast dataset which clearly have no discriminative

value (constant value in all or almost all instances).

1
 The Matlab implementation of the MEE algorithm is available at http://paginas.fe.up.pt/~nnig/.

15

Table 1. Datasets. The number of categorical features is given inside parentheses.

 Balance Breast Breast4 Car Clev. HD2 Colon

No. cases 625 106 106 1278 297 62

No. features 4 (4) 9 (0) 9 (0) 6 (6) 13 (8) 2000 (0)

No. classes 3 6 4 4 2 2

 CTG Dermatol. E-coli E-coli4 Glass Image Seg.

No. cases 2126 358 327 327 214 2310

No. features 21 (0) 34 (33) 5 (0) 5 (0) 9 (0) 18 (0)

No. classes 10 6 5 4 6 7

 Ionosphere Led Leukemia Page blks Pb12 P. Diabetes

No. cases 351 200 72 5473 608 768

No. features 34 (0) 7 (7) 7129 (0) 10 (0) 2 (0) 8 (0)

No. classes 2 10 2 5 4 2

 P. Gene Spect-Heart Thyroid Wdbc Yeast Zoo

No. cases 106 267 215 569 1479 101

No. features 57 (57) 22 (22) 5 (0) 30 (0) 6 (0) 16 (16)

No. classes 2 2 3 2 9 7

The colon and leukemia datasets are from the Kent Ridge Biomedical Dataset

(http://datam.i2r.a-star.edu.sg/datasets/krbd); they are described in detail respectively in [1]

and [13]. The pb12 dataset is from [14]. The breast (tissue) and CTG datasets are available

and described in [18]. As shown in this work classes "fad", "mas" and "gla" of the breast

dataset have a large overlap and cannot be discriminated in any reasonable way; this led us to

merge them and set up the breast4 dataset. The same reason led us to set up the E-coli4

dataset by merging classes "im" and "imU" of E-coli.

All algorithms were run with unit misclassification costs (tree costs are error rates),

estimated priors and the same minimum number of instances for a node to be split: 5. The

CART and MEE algorithms were run with Cost-Complexity Pruning (CCP) with the ‘min’

criterion and 10-fold cross-validation ([4]). The C4.5 algorithm was run with Pessimistic

Error Pruning (PEP) at 25% confidence level ([9]).

Besides of resubstitution error estimates we also applied the leave-one-out (LOO)

cross-validation procedure which is known to be asymptotically unbiased and converging

from above towards the theoretically optimal error rate. Confusion matrices and estimates of

the probability of error were computed as well as statistics regarding the tree sizes (number of

nodes).

4.3 Results

All results obtained for the five methods (CART-Gini, CART-Information-Gain and CART-

Twoing algorithms are from now on simply denoted Gini, Info Gain and Twoing,

respectively) were compared as recommended in [7], namely using the nonparametric

Friedman test and when a significant p < 0.05 was found with a post-hoc Bonferroni multiple

comparison test.

4.3.1 Error Rates

Table 2 presents the LOO estimates of the error rate, Pe. For c > 3 Table 2 lists the best MEE

solution that was found for class unions up to [c/2] (see section 2.3.3). The Friedman test did

not detect significant differences (p = 0.628) for these 24 datasets. The mean ranks for the five

methods (following from now on the Table 2 order) are: 2.875, 2.688, 2.917, 3.313 and 3.208.

16

Table 2. LOO estimates of Pe.

 Balance Breast Breast4 Car Clev. HD2 Colon

Gini 0.1955 (0.016) 0.3610 (0.047) 0.1892 (0.038) 0.0422 (0.006) 0.2121 (0.024) 0.2258 (0.053)

Info Gain 0.2848 (0.018) 0.2925 (0.044) 0.0849 (0.027) 0.0417 (0.006) 0.2256 (0.024) 0.1935 (0.050)

Twoing 0.2208 (0.017) 0.3585 (0.047) 0.0849 (0.027) 0.0446 (0.006) 0.2290 (0.024) 0.2258 (0.053)

C4.5 0.2256 (0.017) 0.4151 (0.048) 0.1415 (0.034) 0.0475 (0.006) 0.1919 (0.023) 0.2581 (0.056)

MEE 0.3056 (0.018) 0.4340 (0.048) 0.1321 (0.033) 0.0764 (0.007) 0.2222 (0.024) 0.1613 (0.047)

 CTG Dermatol. E-coli E-coli4 Glass Image Seg.

Gini 0.1604 (0.008) 0.0587 (0.012) 0.1713 (0.021) 0.0948 (0.016) 0.3178 (0.032) 0.0437 (0.004)

Info Gain 0.1811 (0.008) 0.0587 (0.012) 0.1896 (0.022) 0.1040 (0.017) 0.3458 (0.033) 0.0273 (0.003)

Twoing 0.1712 (0.008) 0.0698 (0.013) 0.1988 (0.022) 0.0979 (0.016) 0.2944 (0.032) 0.0372 (0.004)

C4.5 0.1750 (0.008) 0.0754 (0.014) 0.2110 (0.023) 0.0979 (0.016) 0.3458 (0.033) 0.0363 (0.004)

MEE 0.1839 (0.008) 0.0726 (0.014) 0.1407 (0.019) 0.0856 (0.015) 0.3084 (0.032) 0.0584 (0.005)

 Ionosphere Led Leukemia Page blks Pb12 P. Diabetes

Gini 0.1140 (0.017) 0.3600 (0.034) 0.1944 (0.047) 0.0322 (0.002) 0.0888 (0.012) 0.2370 (0.015)

Info Gain 0.1054 (0.016) 0.0315 (0.033) 0.1944 (0.047) 0.0338 (0.002) 0.0921 (0.012) 0.2331 (0.015)

Twoing 0.1111 (0.017) 0.3150 (0.033) 0.2361 (0.050) 0.0311 (0.002) 0.0921 (0.012) 0.2331 (0.015)

C4.5 0.1339 (0.018) 0.3450 (0.034) 0.2500 (0.051) 0.0322 (0.002) 0.0954 (0.012) 0.2617 (0.016)

MEE 0.1311 (0.018) 0.3100 (0.033) 0.2222 (0.049) 0.0360 (0.003) 0.1447 (0.014) 0.2760 (0.016)

 P. Gene Spect-Heart Thyroid Wdbc Yeast Zoo

Gini 0.4245 (0.048) 0.2210 (0.025) 0.0791 (0.018) 0.0756 (0.011) 0.4104 (0.013) 0.1188 (0.032)

Info Gain 0.3019 (0.045) 0.1723 (0.023) 0.0791 (0.018) 0.0685 (0.011) 0.4151 (0.013) 0.1188 (0.032)

Twoing 0.3868 (0.047) 0.2135 (0.025) 0.0837 (0.019) 0.0733 (0.011) 0.4023 (0.013) 0.1287 (0.033)

C4.5 0.2075 (0.034) 0.1648 (0.023) 0.0465 (0.014) 0.0562 (0.010) 0.4462 (0.013) 0.0792 (0.027)

MEE 0.1698 (0.036) 0.1436 (0.021) 0.0791 (0.018) 0.0668 (0.010) 0.5382 (0.013) 0.0990 (0.030)

Reference [5] reports a superiority of CCP (min) over other pruning methods,

including PEP. Reference [9] also confirms the good performance of CCP and shows that the

PEP method has a tendency to underprune. Based on these findings one may suspect that the

C4.5 error rates may be slightly optimistic compared to those found by the other methods.
Besides of the LOO estimates of Pe we also computed the respective resubstitution

estimates. We were therefore able to appreciate the generalization ability of the three methods
in the 24 datasets. Denoting by eR and eLOO respectively the resubstitution and LOO error
rates, and their standard deviations by sR and sLOO, we have computed the
ratio seeD LOOR /−= using the pooled standard deviation 2/)(22

LOOr sss += . D reflects the
generalization ability of the classifiers, since it reflects the studentized spread between the
optimistic eR (on average terms) and the pessimistic eLOO (on average terms).

The Friedman test found a significant difference (p=0.004) of the methods for the D
values (mean ranks: 3.000, 2.521, 3.438, 3.792 and 2.250), the post-hoc test revealing a
significant difference between MEE and C4.5 (and also Twoing if we relax the test
significance to p=0.09). A better generalization of MEE relative to C4.5 in the 24 datasets
seems therefore evident (see Figure 10).

1.5 2 2.5 3 3.5 4 4.5

5

4

3

2

1

D ranks

Fig. 10. Multiple comparison Bonferroni post-hoc test for the D ranks (methods are numbered as: 1=Gini;

2=Info Gain; 3=Twoing; 4=C4.5; 5=MEE).

4.3.2 Tree Sizes

Table 3 presents the computed tree size statistics in the LOO experiments. In what concerns

average tree size the MEE algorithm achieved the smallest value 14 times; in contrast the

17

other algorithms produced the smallest values 8, 2, 3 and 1 time, respectively for Gini, Info

Gain, Twoing and C4.5. The Friedman test found a significant difference (p ≈ 0) with column

mean ranks (2.583, 3.042, 2.854, 2.208 and 4.313) also hinting at smaller tree sizes for MEE.

The post-hoc comparison test found that C4.5 produced sizes significantly different (larger).

Table 3. Mean (standard deviation; range) of the tree sizes in the leave-one-out experiments.

 Balance Breast Breast4 Car Clev. HD2 Colon

Gini 26.6 (7.8; 100) 9.8 (2.0; 10) 7.3 (1.1; 6) 62.1 (7.2; 34) 9.0 (2.2; 8) 3.1 (0.6; 4)

Info Gain 33.5 (9.8; 108) 9.9 (1.0; 12) 7.5 (1.4; 6) 62.6 (9.8; 50) 9.0 (2.3; 12) 3.4 (1.2; 6)

Twoing 30.0 (8.1; 102) 10.3 (2.8; 14) 7.8 (1.7; 6) 63.0 (8.5;42) 9.0 (2.3; 12) 3.1 (0.7; 6)

C4.5 45.3 (4.1; 12) 15.2 (1.0; 8) 10.8 (0.9; 4) 71.0 (0.3; 8) 19.1 (1.4; 10) 6.9 (0.5; 2)

MEE 118.5 (23.4; 122) 10.3 (1.3; 6) 7.0 (0.0; 0) 106.9 (12.1; 56) 26.1 (11.7; 46) 3.2 (0.6; 2)

 CTG Dermatol. E-coli E-coli4 Glass Image Seg.

Gini 70.6 (11.2; 82) 13.2 (0.6; 6) 10.5 (2.2; 14) 7.8 (1.7; 8) 14.3 (3.5; 22) 88.9 (17.1; 86)

Info Gain 77.6 (19.3; 84) 16.8 (1.1; 6) 10.6 (3.3; 16) 7.8 (1.4; 8) 17.2 (4.1; 24) 66.6 (8.7; 54)

Twoing 72.6 (12.3; 62) 15.9 (1.2; 6) 10.3 (3.1; 16) 7.6 (1.4; 8) 16.2 (3.9; 26) 77.3 (17.7; 86)

C4.5 158.9 (1.4; 22) 13.0 (1.4; 2) 20.5 (4.4; 14) 9.1 (0.3; 2) 35.6 (2.6; 16) 63.0 (0.6; 16)

MEE 65.5 (3.0; 28) 11.1 (0.3; 2) 9.0 (0.3; 2) 7.0 (0.3; 2) 16.9 (1.9; 10) 30.2 (1.8; 6)

 Ionosphere Led Leukemia Page blks Pb12 P. Diabetes

Gini 5.2 (1.5; 18) 22.2 (5.3; 24) 3.1 (0.3; 2) 24.2 (8.4; 42) 30.9 (6.0; 28) 7.0 (6.4; 36)

Info Gain 5.2 (1.4; 12) 22.9 (6.3; 26) 3.0 (0.2; 2) 24.2 (8.8; 36) 34.4 (5.8; 28) 7.0 (6.2; 42)

Twoing 5.1 (0.6; 8) 23.8 (5.9; 22) 3.0 (0.2; 2) 25.7 (7.9; 34) 30.7 (5.9; 26) 7.2 (6.7; 42)

C4.5 18.6 (3.1; 14) 22.8 (0.9; 6) 4.7 (0.7; 2) 51.0 (0.4; 12) 33.0 (0.7; 10) 24.7 (1.6; 16)

MEE 9.9 (1.1; 4) 22.8 (1.2; 4) 3.0 (0.0; 0) 21.3 (1.3; 8) 17.0 (0.3; 4) 3.0(0.1; 4)

 P. Gene Spect-Heart Thyroid Wdbc Yeast Zoo

Gini 10.0 (3.3; 14) 11.9 (8.1; 46) 9.3 (3.1; 12) 10.0 (2.1; 12) 21.9 (3.3; 26) 11.1 (0.6; 6)

Info Gain 7.9 (3.3; 14) 13.7 (7.8; 36) 8.5 (1.8; 12) 10.9 (3.5; 16) 24.2 (5.2; 44) 10.9 (0.4; 2)

Twoing 9.9 (3.6; 16) 11.8 (7.7; 42) 9.3 (3.2; 14) 9.9 (2.1; 14) 24.6 (6.5; 34) 11.0 (0.7; 8)

C4.5 11.3 (1.5; 8) 14.9 (0.4; 2) 9.0 (0.3; 4) 15.3 (1.3; 8) 154.3 (5.3; 54) 11.0 (0.0; 0)

MEE 7.8 (1.5; 6) 3.0 (0.0; 0) 5.0 (0.2; 2) 6.2 (1.0; 2) 27.3 (1.8; 12) 11.0 (0.0; 0)

Using Table 3 results one may also compute an "average node efficiency" − representing how
efficient a node is on average in contribution to the correct classification rate −, as

TPN e /)1(−= , where T is the average tree size. The Friedman test found a significant
difference (p ≈ 0) for the N scores, with column mean ranks (3.375, 3.000, 3.000, 1.708 and
3.917) hinting at MEE being more efficient. As shown in Figure 11a the post-hoc comparison
test found C4.5 as being significantly less efficient.

Finally, we analyzed the tree size ranges, R = max(tree size) – min(tree size). A

significant difference (p ≈ 0) was found by the Friedman test with column mean ranks (3.458,

3.958, 3.875, 2.083 and 1.625) hinting at MEE being more stable. The post-hoc comparison

test revealed, as shown in Figure 10b, the MEE and C4.5 designs as being significantly more

stable ([16]).

a 1 1.5 2 2.5 3 3.5 4 4.5 5

5

4

3

2

1

N ranks

 b 1 1.5 2 2.5 3 3.5 4 4.5 5

5

4

3

2

1

R ranks

Fig. 11. Multiple comparison Bonferroni post-hoc test (methods are numbered as: 1=Gini; 2=Info Gain;

3=Twoing; 4=C4.5; 5=MEE): a) Tree efficiency; b) Tree size ranges.

18

5 The Pruning Issue

Tree pruning is a means of dealing with overfitted tree designs that are too biased by the

training set. By removing subtrees at deep levels simpler trees are obtained with better

generalization capabilities. Several authors (notably [4] and [21]) have expressed the idea that

the split criteria are not very influential on the final tree solution and that one should instead

concentrate on the pruning operation. In that line of thought even a random rule selection has

been proposed and argued that when used with pruning it does not make much difference

from other elaborate splitting criteria ([21]). However, one should consider such statements

with caution. As a matter of fact, it is shown in [5-6, 17] that there may exist large differences

of performance depending on the splitting rule (with a particular bad behavior of the random

splitting rule). In [17] it is again confirmed that the choice of splitting rule can be important

for certain types of datasets. Our results in section 4.3.1 also show that there are indeed

significant differences not explainable by the pruning routine alone. We have also carried out

experiments with the random split and the PE splitting rules and found much worse results,

particularly bad for the random split (very long and badly performing trees even when

pruned). On the other hand, it has been abundantly shown by comparative works on tree

pruning (see namely [9]) that there are no safe pruning methods; all may lead to underpruning

or overpruning depending on the dataset.

Tree pruning wouldn't in principle be needed if one employed a splitting rule favoring

the most discriminative (higher significant p) features at an early stage and would stop tree

growing as soon as a node with large class overlaps is reached. Now, the MEE algorithm

given the influence of PE on EE shown in section 3, favors high discriminative features. At

the same time, as we have also seen in section 2, the EE curves will lead to MEE split points

at feature interval ends when the classes are overlapped; this often affords an easy method to

stop tree growing before overfitting could creep in.

We now point out three reasons why the MEE algorithm is not very sensitive to

pruning.

1. Test set error curves

Overfitting of tree classifiers can often be detected during the design phase by setting

aside an independent test set and looking to the test set error rate during tree growing;

overfitting will be revealed by an inflexion of the error curve, which goes upward after

reaching a minimum error point. We have performed a large number of experiments with the

MEE algorithm designing the tree with 85% of randomly chosen cases and testing it in the

remaining 15%, and plotted the mean and mean ± standard deviation of the training and the

test set error estimates along the tree level for 20 repetitions of the tree design. The results

obtained are mostly exemplified by those of Figure 12; no symptoms of overfitting are

apparent. In only a few datasets (3 out of 24) we obtained sometimes curves with overfitting

symptoms (always in the last one or two levels).

19

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level

Pe Breast, MEE2

 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level

Pe Iono, MEE0

1 2 3 4 5 6 7 8 9 10 11 12
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Level

Pe Yeast, MEE3

 2 4 6 8 10 12 14 16 18 20 22

0.2

0.3

0.4

0.5

0.6

0.7

Level

Pe

CTG, MEE2

Fig. 12. Mean (solid line) and mean±±±±std (dashed line) of the training set error (black, thick line) and test set error

(grey, thin line) in 20 experiments on trees designed with 85% of the cases (randomly drawn) and tested in the

remaining cases. The MEE suffix number means the number of merged classes in class unions (0, if no class unions

are used).

2. Best level statistics

The pruning CCP routine used by the MEE algorithm allows one to know the best

pruning level counted from the tree bottom. As shown in Table 4, 66.7% of the times the CCP

routine didn't find the need to prune. Moreover, for the 'best level' equal to 1 or 2 we found

that the tree solutions had equal or close error rates.

Table 4. Number of occurrences of best-level (pruning) values.

Best level 0 1 2 ≥3

counts 16 3 2 3

% 66.7 12.5 8.3 12.5

3. Error rates with and without pruning
Table 5 presents the LOO estimates of the error rate obtained with the MEE algorithm

with and without pruning for the 24 real-world datasets. A Wilcoxon signed rank test applied
to the "w/" and "wo/" values confirms what simple visual inspection would have hinted: no
significant difference (p = 0.93) between both groups of values.

20

Table 5. LOO estimates of MEE Pe with (w/) and without (wo/) pruning.

 Balance Breast Breast4 Car Clev. HD2 Colon CTG Dermatol.

w/ 0.3056 0.4340 0.1321 0.0764 0.2222 0.1613 0.1839 0.0726

wo/ 0.2832 0.3962 0.1321 0.1146 0.2896 0.0645 0.1811 0.0615

 E-coli E-coli4 Glass Image Seg. Ionosphere Led Leukemia Page blks

w/ 0.1407 0.0856 0.3084 0.0584 0.1311 0.3100 0.2222 0.0360

wo/ 0.1407 0.0826 0.3037 0.0576 0.1311 0.3250 0.2222 0.0402

 Pb12 P. Diabetes P. Gene Spect-Heart Thyroid Wdbc Yeast Zoo

w/ 0.1447 0.2760 0.1698 0.1436 0.0791 0.0668 0.5382 0.0990

wo/ 0.1447 0.2760 0.2547 0.1685 0.0791 0.0668 0.5348 0.0990

6 Conclusions

The basic rationale of the MEE approach is that it searches for splits concentrating the error

distribution at zero. For the classic impurity criteria (and other criteria as well) what the split

is doing in terms of the node error distribution is unclear.

We have seen that the entropy-of-error function has a concave behavior resembling in

this respect the classical impurity functions, Gini diversity index and information measure.

There is, however, an important distinction as explained in detail in section 3.2: whereas these

impurity functions are insensitive to the error rate the EE function is influenced by it and is

thus able to make more reasonable decisions at node level, specifically with more balanced

errors of competing classes. Moreover, we have also seen that the MEE criterion will not

work for distributions that are too largely overlapped, providing a natural way of when to stop

tree growing.

The experiments carried out in 24 real-world datasets show that the MEE approach to

tree design competes well with the popular CART-Gini, CART-Information-Gain, CART-

Twoing and C4.5 algorithms, producing in some cases improved solutions. The real strength

of the MEE approach seems however to lie in the following four issues: short trees; better

generalization; stable designs; reduced sensitivity to pruning.

In what concerns tree size we have provided experimental evidence that the MEE

algorithm will often produce shorter trees than the other competing approaches (section

4.3.2). The difference was found to be statistically significant in post-hoc comparison tests

when comparing the MEE against the C4.5 algorithm. (One must bear in mind that C4.5 is

more intricate than the simple CART-style approach followed by MEE, producing highly

performing trees at the expense of increased complexity.)

Regarding the generalization issue MEE trees seem to generalize better than (at least)

those produced by C4.5 and CART-Twoing, when judging by the LOO and resubstitution

error rate estimates obtained for the 24 datasets (section 4.3.1). This characteristic is of course

a consequence of the shorter trees produced by the MEE algorithm.

During the process of obtaining LOO estimates of the error rate one is performing a

(usually large) set of designs with largely overlapped training sets (in fact as large as

possible). Stable design methods produce by definition very close solutions for mild input

changes, implying necessarily small tree size variations in LOO experiments. Now, judging

from the tree size ranges the LOO experimental evidence presented in section 4.3.2 ranks

together the MEE and C4.5 algorithms as equally stable and significantly more stable than the

other methods.

Finally, we have also presented results in section 5 showing that the MEE algorithm is

not very sensitive to pruning, at least when cost-complexity pruning is used. With this pruning

method we found that the solutions with or without pruning were not significantly different

and as a matter of fact they were coincident in many cases.

21

References
1. Alon U et al. (1999) Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and

Normal Colon Tissues Probed by Oligonucleotide Arrays. PNAS, 96:6745-6750.

2. Argentiero P, Chin R, Beaudet P (1982) An Automated Approach to the Design of Decision Tree

Classifiers. IEEE Tr. PAMI, vol. 4, 1:51-57.

3. Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/

~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and

Computer Science.

4. Breiman L, Friedman JH, Olshen RA, Stone CJ (1993) Classification and Regression Trees. Chapman

& Hall/CRC.

5. Buntine WL (1990) A Theory of Learning Classification Rules. PhD Thesis. Univ. of Technology,

Sidney.

6. Buntine W, Niblett T (1992) A Further Comparison of Splitting Rules for Decision-Tree Induction.

Machine Learning, 8, pp. 75-85.

7. Demšar J (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. J. of Machine Learning

Research, 7:1-30.

8. Devroye L, Giörfi L, Lugosi G (1996) A Probabilistic Theory of Pattern Recognition. Springer-Verlag.

9. Esposito F, Malerba D, Semeraro G (1997) A Comparative Analysis of Methods for Pruning Decision

Trees. IEEE Tr. PAMI, vol. 19, 5, pp: 478-491.

10. Fu KS (1968) Sequential Methods in Pattern Recognition and Machine Learning. Academic Press.

11. Gelfand SB, Ravishankar CS, Delp EJ (1991) An Iterative Growing and Pruning Algorithm for

Classification Tree Design. IEEE Tr. PAMI, vol.13, 2:163-174.

12. Geman D, Jedynak B (2001) Model-Based Classification Trees. IEEE Tr. IT, vol.47, 3:1075-1052.

13. Golub TR et al. (1999) Molecular Classification of Cancer: Class Discovery and Class Prediction by

Gene Expression Monitoring. Science, 286:531-537.

14. Jacobs R, Jordan M, Nowlan S, Hinton G (1991). Adaptive Mixtures of Local Experts. Neural

Computation, 3:79-87.

15. Kulkarni AV (1978) On the Mean Accuracy of Hierarchical Classifiers. IEEE Tr. C, vol. 27, 8:771-776.

16. Li R-H, Belford GG (2002) Instability of Decision Tree Classification Algorithms. Proc. 8th ACM

SIGKDD Int Conf on Knowledge Discovery and Data Mining, pp. 570-575.

17. Loh W-Y, Shih Y-S (1997) Split Selection Methods for Classification Trees. Statistica Sinica, 7:815-

840.

18. Marques de Sá JP (2007) Applied Statistics Using SPSS, STATISTICA, MATLAB and R (2nd edition).

Springer-Verlag.

19. Marques de Sá JP, Gama J, Sebastião R, Alexandre LA (2009) Decision Trees Using the Minimum

Entropy-of-Error Principle. Proc. CAIP 2009 (Xiaoyi Jiang, Nicolai Petkov eds), Springer LNCS, pp.

799-807.

20. Maszczyk T, Duch W (2008) Comparison of Shannon, Renyi and Tsallis Entropy used in Decision

Trees. In L. Rutkowski et al. (Eds) Artificial Intelligence and Soft Computing-ICAISC 2008, pp. 643-

651, Springer Verlag.

21. Mingers J (1989) An Empirical Comparison of Selection Measures for Decision-Tree Induction.

Machine Learning, 3, pp. 319-342.

22. Quinlan JR (1986) Induction of Decision Trees. Machine Learning, 1: 81-106.

23. Quinlan JR (1990) Decision Trees and Decisionmaking. IEEE Tr. Syst. Man and Cybernetics, vol.20,

2:339-346.

24. Quinlan JR (1993) C4.5 Programs for Machine Learning. Morgan Kaufmann

25. Raileanu LE, Stoffel K (2004) Theoretical Comparison Between the Gini Index and Information Gain

Criteria. Annals of Mathematics and Artificial Intelligence, 41: 77-93.

26. Safavian SR, Landgrebe D (1991) A Survey of Decision Tree Classifier Methodology. IEEE Tr. SMC,

vol. 21, 3: 660-674.

27. Silva L, Felgueiras CS, Alexandre L, Marques de Sá J (2006) Error Entropy in Classification Problems:

A Univariate Data Analysis. Neural Computation, 18, 2036-2006.

28. Silva LM, Embrechts M, Santos JM, Marques de Sá J (2008) The Influence of the Risk Functional in

Data Classification with MLPs. Proc. ICANN 2008 (eds. V. Kurková et al.), Springer LNCS, pp. 185-

194.

29. Stoller D (1954) Univariate Two-Population Distribution-Free Discrimination. Journal of the American

Statistical Association, 49:770-777.

30. Swain PH (1977) The Decision Tree Classifier: Design and Potential. IEEE Tr. GE, vol.15, 3:142-147.

