
Neural Network Classification using Shannon’s
Entropy

Luis M. Silva1, J. Marques de Sá1,2 and Luis A. Alexandre1,3 ∗

1- INEB - Instituto de Engenharia Biomédica, Lab. Sinal e Imagem Biomédica
Campus da FEUP,Rua Dr. Roberto Frias, s/n, 4200-465 Porto - Portugal

2- Faculdade de Engenharia da Universidade do Porto - DEEC
Rua Dr. Roberto Frias, s/n, 4200-465 Porto - Portugal

3- IT - Networks and Multimedia Group
Covilhã - Portugal

Abstract. The last years have witnessed an increasing attention to
entropy-based criteria in adaptive systems. Several principles were
proposed based on the maximization or minimization of entropic cost
functions. We propose a new type of neural network classifiers with
multilayer perceptron (MLP) architecture, but where the usual mean
square error minimization principle is substituted by the minimiza-
tion of Shannon’s entropy of the differences between the MLP’s out-
put and the desired target. The backpropagation algorithm is op-
timized with a variable learning rate and tested in five well known
datasets. The results show a very good performance of MLPs trained
with Shannon’s entropy when compared with the mean square error
and cros-entropy criteria.

1 Introduction

The most commonly used cost function for adaptive systems has been the mean
square error (MSE). The choice is justified by the assumption that most real-life
random processes can be explained by the Gaussian distribution and its first and
second order statistics. However, this Gaussianity assumption is very restrictive.
This has led to the search for more appropriate criteria taking advantage of high-
order statistical behaviours. Entropy was introduced as a measure of average
information contained in a distribution. For a continuous random variable X ,
(differential) entropy is defined as

H(X) = −
∫ ∞

−∞
f(x) log f(x)dx (1)

where f is the probability density function of X . Entropy and the related con-
cepts of mutual information and Kulback-Leibler divergence have been used
in learning systems (supervised or unsupervised) in several ways. Recently,
Pŕıncipe and co-workers, proposed new approaches to using entropic criteria

∗This work was supported by the Portuguese FCT-Fundação para a Ciência e a Tec-
nologia (project POSI/EIA/56918/2004). First author is also supported by FCT’s grant
SFRH/BD/16916/2004.



[1, 2], in particular, the minimization of the Rényi’s second order entropy of
the difference between the MLP output and the desired target (the error). The
minimization of error entropy implies a reduction of the expected information
contained in the error, which leads to a maximization of the mutual informa-
tion between the desired target and the model output [1]. This means that the
network is learning the target variable. This procedure was applied sucessfuly
in regression, time series prediction and feature extraction by Pŕıncipe and co-
workers. Santos et al. [3, 4], proposed the use of this idea to neural network
classifiers. Their results showed that entropy generally performs better than
MSE in terms of minimum classification test error. In this paper we propose
the use of Shannon’s entropy in the same setting as the work of Santos et al..
The benefits of using Shannon’s entropy arise from the well-known information
meaning as well as its unique information measure properties.

2 Shannon entropy for multi-layer perceptrons

Consider an MLP with one hidden layer with output y and a target variable
(class membership for each example in the dataset), t. For each example we
measure the error using e(n) = t(n) − y(n), n = 1, . . . , N where N is the
total number of examples. We only consider the two-class problem; thus, as in
[3] we set t ∈ {−1, 1} and a single output unit with y ∈ [−1, 1]. The proposed
backpropagation algorithm does not use expression (1) directly as a cost function,
but, instead it uses a Shannon’s entropy estimator with mean square consistency
[5], given by

Ĥ(E) = − 1
N

N∑
n=1

log f̂(e(n)) (2)

where E is the error (difference) random variable. Note that expression (1) can
be seen as the expected value of log f(x), thus the approximation of the integral
by the mean value over a sample. Also, as we don’t know the distribution of the
error variable, we must rely on nonparametric estimates. For the estimation of
f(x) we use the nonparametric kernel estimator

f̂(e(n)) =
1

Nh

N∑
l=1

K

(
e(n) − e(l)

h

)
(3)

where h is the smoothing parameter of the standard Gaussian kernel K given
by

K(x) =
1√
2π

exp
(
−1

2
x2

)
(4)

In order to use the steepest descent training rule and the backpropagation al-
gorithm, we need to derive an analytic expression for the gradient. Using the
usual notation where ∂Ĥ

∂wkj
is the partial derivative of Ĥ related to the weight



connecting neuron j in a previous layer to neuron k in the next layer, we have

∂ĤS

∂wkj
= − 1

N

∑
n

∂

∂wkj
log(f̂(e(n))) = − 1

N

∑
n

1

f̂(e(n))

∂f̂(e(n))
∂wkj

Now,

∂f̂(e(n))
∂wkj

=
N∑

l=1

1√
2π

∂

∂wkj
exp

(
−1

2

(
e(n) − e(l)

h

)2
)

=
N∑

l=1

1
h2

K

(
e(n) − e(l)

h

)
(e(n) − e(l))

[
∂e(n)
∂wkj

− ∂e(l)
∂wkj

]

Thus

∂Ĥ

∂wkj
=

1
N2h2

N∑
n=1

N∑
l=1

1
hK

(
e(n)−e(l)

h

)
f̂(e(n))

(e(n) − e(l))
[
∂e(n)
∂wkj

− ∂e(l)
∂wkj

]
(5)

The computation of ∂e(n)
∂wkj

is as usual for the backpropagation algorithm. We
just have to take care if wkj is an input-hidden or an hidden-output neuron.
Having determined (5) for all network weights, the weight update is given, for
the m-th iteration, by the gradient descent rule

w
(m)
kj = w

(m−1)
kj − η

∂ĤE

∂wkj

2.1 Optimization

The algorithm has two parameters that one should optimaly set: the smoothing
parameter, h, of the kernel density estimator (4) and the learning rate, η.
As the training process evolves, it is expected that the errors get closer, which
means that one should need a decreasing smoothing parameter h. Experimental
results led to the conclusion that this is a highly sensitive parameter. Indeed,
decreasing h as the training evolves (for example, proportional to the variance
of the errors in each epoch), leads to an unstable behaviour of the algorithm. In
order to cope with this unstability, one should run experiments with several h
values and determine the best for each dataset and network configuration.
We also investigated the benefits of adjusting η along the training process. Figure
1 shows the training curves for variable and fixed learning rate, where each curve
is a mean over 25 repetitions of the corresponding experiment (for the sonar
dataset mentioned later). As we can see, with a typical value of η = 0.1 (dashed-
dot line) the convergence is very slow when compared with the variable learning
rate curve (dotted line). The solid line, for η = 2 shows a fast convergence
but an unstable behaviour during the training process1. Thus, the procedure of
variable learning rate not only solves the problem of choosing η, but also ensures
a stable training.

1Remember that each curve is an average curve.



0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

%
 T

ra
in

in
g 

E
rr

or

variable η
η = 0.1
η = 2

Fig. 1: Training error curves for variable and fixed learning rates.

We used the update rule and values u = 1.2 and d = 0.2 suggested in [4]

η(m) =
{

u η(m−1) Ĥ(m) ≤ Ĥ(m−1) , 0 < d < 1 ≤ u

d η(m−1) ∧ restart otherwise

If entropy does not increase from one epoch to another, the algorithm is in the
right direction, so η is increased by a factor u in order to speedup convergence.
However, if η is large enough to increase entropy, then the algorithm makes
a restart step and decreases η by a factor d to ensure that entropy is being
minimized. This restart step is just a return to the weights of the previous
epoch.

3 Simulations

We performed experiments with five well known two-class datasets obtained from
the UCI repository [6]: sonar, liver, ionosphere, wdbc and pima.
Table 1 shows a brief description of each dataset.

Datasets #Instances #Features

sonar 208 60
liver 345 6
wdbc 569 30

ionosphere 351 34
pima 768 8

Table 1: Description of the five UCI datasets used in the experiments.



For each dataset we trained several one hidden layer MLP configurations, varying
the number of hidden units. The following procedure (holdout) was performed
20 times: divide the data in two subsets, half for training and half for testing;
train the network during 150 epochs and compute the test set error; interchange
the roles of the training and test sets; perform training and test again. This
procedure was applied for the Shannon entropy (SE), MSE and cross-entropy
(CE) [7] cost functions. The results obtained are shown in Table 2.

sonar liver ionosphere
hid SE MSE CE SE MSE CE SE MSE CE
2 23.3(2.1) 22.0(2.8) 24.9(2.6) 30.6(1.5) 30.3(1.9) 32.3(2.3) 12.4(1.7) 13.7(1.9) 11.7(2.0)
3 23.2(2.6) 21.4(3.4) 24.1(2.8) 31.3(1.9) 29.7(2.0) 32.8(1.9) 12.2(1.4) 13.1(1.6) 11.7(1.7)
4 22.1(3.0) 21.4(2.5) 23.7(3.1) 30.4(2.1) 30.4(1.8) 30.7(2.2) 12.0(1.2) 13.2(1.6) 12.7(2.2)
5 22.3(2.3) 21.7(2.4) 23.5(2.8) 30.4(2.4) 30.3(3.0) 30.4(1.9) 12.2(1.2) 13.5(1.8) 12.5(1.8)
6 21.1(1.9) 21.9(2.7) 22.8(2.8) 30.4(1.7) 31.1(2.1) 30.4(1.8) 12.2(1.4) 13.3(1.2) 12.5(1.7)
7 21.6(2.6) 22.2(2.4) 21.9(3.1) 30.9(2.2) 30.9(2.4) 30.0(1.4) 12.1(1.3) 12.7(1.7) 12.1(1.5)
8 21.1(2.2) 20.9(3.2) 22.0(2.8) 30.4(1.6) 30.9(2.3) 29.7(1.8) 12.4(1.3) 13.4(2.0) 12.1(1.6)
9 21.6(2.2) 22.1(2.2) 23.4(2.9) 29.7(1.7) 29.9(2.0) 30.0(1.8) 12.1(1.3) 13.1(1.5) 12.1(1.4)
10 20.9(2.5) 20.8(2.6) 22.4(2.4) 30.3(2.1) 29.9(2.1) 30.3(1.6) 12.4(1.2) 13.9(3.1) 11.4(1.4)
11 20.8(2.3) 21.1(2.9) 23.7(2.4) 30.0(2.1) 31.1(1.9) 30.8(2.0) 12.6(1.7) 13.5(1.9) 12.2(1.3)
12 20.0(2.2) 20.9(2.9) 21.5(2.6) 30.2(1.6) 30.4(1.6) 30.8(2.5) 12.2(1.4) 13.2(1.2) 12.2(1.5)
hid 12 10 12 9 3 8 4 7 10
% 20.0(2.2) 20.8(2.6) 21.5(2.6) 29.7(1.7) 29.7(2.0) 29.7(1.8) 12.0(1.2) 12.7(1.7) 11.4(1.4)

wdbc pima
hid SE MSE CE SE MSE CE
2 3.40(0.59) 3.80(0.85) 3.53(0.94) 24.5(1.2) 26.9(1.5) 24.4(1.1)
3 3.49(0.47) 3.34(0.65) 3.86(0.90) 24.9(0.8) 26.5(1.0) 24.8(1.2)
4 3.34(0.88) 3.35(0.63) 3.59(0.54) 25.6(1.5) 26.2(1.2) 24.8(1.3)
5 3.36(0.59) 3.54(0.73) 3.61(0.54) 25.5(0.9) 26.4(1.4) 24.7(0.9)
6 3.34(0.91) 3.52(0.67) 3.67(0.80) 25.7(1.0) 26.6(1.3) 24.8(0.9)
7 3.36(0.53) 3.30(0.70) 3.66(0.74) 25.6(1.0) 26.6(1.2) 24.3(1.0)
8 3.29(0.66) 3.59(0.62) 4.10(0.78) 25.8(1.3) 26.4(1.2) 24.2(0.9)
9 3.08(0.57) 3.26(0.61) 3.71(0.74) 25.8(1.3) 26.0(1.1) 24.3(1.2)
10 3.32(0.77) 3.58(0.72) 3.44(0.62) 25.6(1.1) 26.2(1.4) 24.1(0.9)
11 3.29(0.50) 3.40(0.72) 3.60(0.66) 25.8(1.2) 26.7(1.3) 23.6(1.0)
12 3.29(0.51) 4.36(4.45) 3.44(0.58) 25.9(1.4) 26.5(1.2) 23.4(0.7)
hid 9 9 10 2 9 12
% 3.08(0.57) 3.26(0.61) 3.44(0.62) 24.5(1.2) 26.0(1.1) 23.4(0.7)

Table 2: Test error (%) and standard deviations (in brackets) for the five UCI
datasets using Shannon’s entropy (SE), MSE and cross-entropy (CE) cost func-
tions. The number of hidden units is denoted hid. The last two lines correspond
to the best results.

As one can see, SE performs very well when compared to MSE and CE. In
ionosphere and pima datasets, all the SE results are better than the best MSE
result, being the latter obtained with higher hid values than the best SE results.
CE performed very well here, with lower error but higher hid. For sonar and
liver, the best MSE results are obtained with smaller hid values; still, the
smallest misclassification error and/or standard deviation are obtained with SE.
Moreover, CE performed poorly in sonar. wdbc is the only dataset where the
best results were achieved with equal number of hidden units, both for SE and
MSE, but again SE outperforms MSE. Also, only two MSE results are better for



wdbc (hid=3,7). Again, CE has a worse performance. One can also see that,
in general, SE has lower standard deviations which could mean a more stable
learning procedure.

4 Conclusion

We proposed neural network classification using as cost function Shannon’s en-
tropy of the error. The principle, named EEM in [3], minimizes error entropy in
order to maximize the mutual information between the output and the desired
target of a neural network. When applied to five real datasets, EEM with Shan-
non entropy performed very well when compared with MSE and CE. The results
show the effectiveness of entropic criteria, in particular Shannon’s entropy, as
cost functions in classification tasks. It has to be noticed that (2) is a double
estimator only consistent in the mean square sense. It is our purpose, in future
work, to study other estimators of entropy with stronger consistency properties,
with expected improvements on the results.
The problem of choosing the learning rate η was efficiently solved with an adap-
tive rule, by monitoring the entropy value at each epoch. Furthermore, specific
choices for u and d should also be studied.
It is also our purpose to study in more detail the issue of adaptive smoothing
parameter h of the density estimator, in particular, to derive a practical and
automatic rule for the adaptation of h during the training process.

References

[1] D. Erdogmus and J. Principe. Comparison of entropy and mean square error criteria in
adaptive system training using higher order statistics. In Intl. Conf. on ICA and Signal
Separation, pages 75–80, Helsinki, Finland, 2000.

[2] J. C. Principe, D. Xu, and J. Fisher. Information theoretic learning. In S. Haykin, editor,
Unsupervised Adaptive Filtering, vol. I: Blind Source Separation, pages 265–319. Wiley,
New York, 2000.

[3] J.M. Santos, L.A. Alexandre, and J. Marques de Sá. The Error Entropy Minimization
Algorithm for Neural Network Classification. In Int. Conf. on Recent Advances in Soft
Computing, Nottingham, United Kingdom, 2004.

[4] J.M. Santos, L.A. Alexandre, and J. Marques de Sá. Optimization of the Error En-
tropy Minimization Algorithm for Neural Network Classification. In C. Dagli, A. Buczak,
D. Enke, M. Embrechts, and O. Ersoy, editors, Intelligent Engineering Systems through
Artificial Neural Networks, volume 14, pages 81–86. ASME Press Series, 2004.

[5] I.A. Ahmad and P.E. Lin. A nonparametric estimation of the entropy for absolutely
continuous distributions. IEEE Trans. Information Theory, 22:372–375, 1976.

[6] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases
University of California, Irvine, Dept. of Information and Computer Sciences,
http://www.ics.uci.edu/∼mlearn/MLRepository.html 1998.

[7] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.


