Maximizing the Zero-Error Density for RTRL *

Luis A. Alexandre
Department of Informatics, University of Beira Interior and
IT-Networks and Multimedia Group
Covilha, Portugal
email: luis.alexandre @ubi.pt

Abstract

A new learning principle was introduced recently called
the Zero-Error Density Maximization (Z-EDM) and was
proposed in the framework of MLP backpropagation. In
this paper we present the adaptation of this principle to on-
line learning in recurrent neural networks, more precisely,
to the Real Time Recurrent Learning (RTRL) approach. We
show how to modify the RTRL learning algorithm in order
to make it learn using Z-EDM criteria by using a sliding
time window of previous error values. We present experi-
ments showing that this new approach improves the conver-
gence rate of the RNNs and improves the prediction perfor-
mance in time series forecast.

1 Introduction

Recently [3] a new principle for learning in neural net-
works was proposed: since the network learns as the errors
converge to zero, the learning is made such that the zero-
error density is maximized. Hence the name Zero-Error
Density Maximization (Z-EDM). It has been shown to be a
good alternative to learning according to the minimization
of the mean squared error and cross entropy [3, 4].

In this paper we adapt the idea of Z-EDM to learning in
recurrent neural networks. We show how an online learn-
ing algorithm for RNN, the Real Time Recurrent Learning
(RTRL) [5] can make use of the Z-EDM principle.

In the experiments section we present two applications:
a symbolic prediction problem and a time series forecast
problem (Mackey-Glass chaotic time series). In both cases
the new approach brings advantages when compared to the
original RTRL.

The rest of the paper is organized as follows: the next
section presents Z-EDM, the following section discusses

*This work was supported by the Portuguese FCT-Fundag@o para
a Ciéncia e a Tecnologia, POS_Conhecimento and FEDER (project
POSC/EIA/56918/2004).

978-1-4244-3555-5/08/$25.00 ©2008 IEEE

RTRL and section 4 shows how to incorporated Z-EDM
into the RTRL algorithm. Section 5 presents the experi-
ments and the last section contains the conclusions.

2 Z-EDM

The Z-EDM was proposed in [3]. Minor modifications
were introduced in [4].

The idea is that when training a learning machine, in our
case a NN, the random variable error, e, will tend to increase
its density at the origin, as more and more patterns are cor-
rectly predicted. So, instead of taking the usual approach of
defining an error surface (usually based on MSE error) and
use gradient descend to search for the weights that minimize
that error, in the Z-EDM approach, we define the density of
the error variable and, also using the gradient descent, look
for the weights that maximize the error density at the ori-
gin. We will now formalize these ideas. We consider here
the original Z-EDM. The online version proposed in this
paper is described below.

For a training set of size N, the error r.v. e(i) = d(i) —
y(¢) represents the difference between the desired output
vector d(4) and the actual output y(¢), for a given pattern <.
Since as the training proceeds we expect that the values of
e(i) = 0 for most ¢, we will in fact use the following rule to
search for the desired weights:

w" = arg max F(0;w) (1)

where f(0;-) stands for the density of the errors at the ori-
gin, and w represents the network weights. The weight de-
pendency of the error density was made explicit in the above
expression. To apply this expression we need the error den-
sity, which is normally unknown. So we estimate it using
the Parzen window non-parametric estimator:

N .
oW = YK (O_he(z)> @

i=1

80

where h represents the bandwidth of the kernel K and p is
the dimension of e (the number of network outputs).

The kernel used is the Gaussian kernel with zero mean
and unit covariance given by

1 T
M@zV%prﬂ;> 3)

By replacing this in expression (2) we get the our esti-
mator for the error density

£ 3 e(i)Te(i)> 4)

1
W) = TN ;QXP (_ TE

Due to reasons discussed in [4] related to the speed of
convergence of the Z-EDM, instead of using expression (4)
we shall use the following simplification

N ol
fow) =1) e <_e(2h§()> 5)
i=1

and given that the difference relies only on constant terms,
we know that the same extrema will be found.
We are now interested in the gradient of (5):

Since we are searching for the weights yielding the max-
imum of the error density at 0, the network weight update
shall be made by

af(0;
Aw=n4%¢ﬁz)

where 7 stands for the learning rate.

3 RTRL

The RTRL algorithm for training fully recurrent neural
networks (NNs) was originally proposed in [5]. Many mod-
ifications to this original proposal have been made.

In this section we will follow the notation of [1]. Con-
sider the fully recurrent neural network of figure 1. It con-
tains ¢ neurons, m inputs and p outputs.

The state-space description is given by the following
equations

x(t+1) = [p(WTE(D), .., o(wTE(t)]
where X represents the state vector, ¢ stands for the time,
and ¢ is the activation function. The (¢ + m + 1)-by-1
vector w; contains the weights of neuron j and £(t) is an-
other (q +m + 1)-by-1 vector defined by [x(t), u(t)]". The

®)

978-1-4244-3555-5/08/$25.00 ©2008 IEEE

71l |-
LN)
71l |-
71l |-
LN]

X (t)

Bias

Figure 1. A fully recurrent one hidden layer
neural network. The notation is explained in
the text.

(1+m)-by-1 vector u(t) contains in the first position 1 (the
bias fixed input value) and in the remaining positions the m
network inputs. The equation that gives the p-by-1 vector
of network outputs, y, is

y(t) = Cx(t) ©)

where C is a p-by-¢q matrix that is used to select which neu-
rons produce the network output.

The idea is to use the instantaneous gradient of the error
to guide the search for the optimal weights that minimize
this error. The algorithm works by computing the following
for each time ¢:

Aj(E+1) = B() (WL (OA, () +U;(0) (10)
e(t) =d(t) — Cx(t) (11)
Aw; = n (e(t)"CA;(t))" (12)

where A; contains the partial derivatives of x w.r.t. the
weight vector w;, ® is a diagonal matrix with the partial
derivatives of the activation function w.r.t. its arguments,
W, contains part of the network weights and Uj is a zero

81

y ()

matrix with the transpose of vector £ in its jth row (please
see [1] for details). e is the error and d the desired output.

4 Application of Z-EDM to RTRL

To use the Z-EDM approach in a RNN, we chose to adapt
the RTRL algorithm. The idea of finding the maximum of
the density now can’t be done using a static set of N error
values.

We propose to use the previous L values of the error to
build a dynamic approximation to the error-density. This
will use a time sliding window that will allow us to define
the density in an online formulation of the learning problem.

This adaptation of the Z-EDM will change expression
(6) above to

0 f 0,t;w)

ow

3% (S0 oy (20
(13)

where instead of computing the density over the N data
points of a training set, we are computing it over the last
L errors of the RNN. Notice that the dependency on time of
the gradient of the density is now explicit.

This approach is an approximation to the real gradient
of the density since it uses error values from different time
steps to create an estimate of the error density. Given that
learning is online and the weights are adjusted on each time
step, the construction of a density from errors at different
time steps is valid if L is not too large since then it would
include error information from a very different weight state
and L can’t be too small otherwise the density estimation
will suffer from the lack of samples.

The modification to the RTRL will be on equation (12)
which contains the weight update rule:

Aw; =
L A Te(t i
n ; exp (_e(t;hs(t)) (e(t _ Z')TCA]«(t _ Z.))T
(14)

The negative sign on expression 13 cancels with the neg-
ative sign we would insert on the Aw; given that we now
want to maximize instead of minimize.

S Experiments

In this section we present experiments to evaluate the
performance of the proposed method. We compare the ob-
tained results against the original RTRL on the same RNNs.

978-1-4244-3555-5/08/$25.00 ©2008 IEEE

First we should refer that the activation function we used in
the RNNs is the standard sigmoid. Also worth mention-
ing is the initialization values of the following matrices:
x(0)=0,A;(0)=0,j=1,...,q

5.1 First experiment

The first problem consists in predicting the next sym-
bol of the sequence: 0 1 0 0 1 0 0 0 1 0 0 0 O
1 ..., up to twenty zeros, always followed by a one. We
record how many symbols did the network need to see to
correctly make the remaining predictions until the end of
the sequence. The sequence is composed of 230 symbols.

We made 100 repetitions starting with random initial-
ization of the weights, varied the learning rate, 7, in
{2,3,4,5,6}, varied the kernel bandwidth, h, in {1, 2,3}
and the size of the sliding window for the temporal esti-
mation of the density, L, in {8, 10,12}. The results are in
figures 2 (for a network with 4 neurons) and figure 3 (for a
network with 6 neurons).

Each point in these figures represents the percentage of
convergence on 100 experiments versus the correspondent
average number of symbols necessary for learning the prob-
lem (NS), for the standard RTRL (circle) and the RTRL with
Z-EDM (star). The different points were obtained by chang-
ing the parameters: 7, L, and h (in the case of standard
RTRL only 7 is used).

We only plotted the cases where at least one of the 100
repetitions converged.

The figures show that standard RTRL is not able to ob-
tain more than 30% convergence, but the RTRL with Z-
EDM can reach 100% convergence.

We can also observe that for a given value of NS, the
RTRL with Z-EDM is able to obtain higher percentages of
convergence than the original RTRL.

An advantage of the original RTRL over the new pro-
posal is that it is able to learn the problem with fewer sym-
bols: around 20 (although with very small percentage of
convergence) while the new method needs around 50 sym-
bols to learn.

5.2 Second experiment

In this experiment 3000 points of the Mackey-Glass time
series [2] are used. The first 2000 are ignored (we consider
that the network is still adapting to the signal) and the last
1000 are used for evaluation. We use the mean squared error
(MSE) between the true value of the series and the predic-
tion as the measure for prediction quality. The predictions
are 1-step ahead.

To see how good these predictions are, we found the
MSE for the naif predictor: next value is equal to the pre-
vious. We call this the MSE, and its value is 0.00109. So,

82

100

100

ok

RTRL O % K %
RTRL with Z-EDM X *
90 sk
*
80 X %
% *
70
*
3 60 * *
5 * *
=
2 s0 13
2
S * *
53
40 ¥
* ¥ *
30 s X
¥ O x * O
X x ¥ 0] *
20 4
[©] * ¥
o) ¥ * >§§
10 g o0 %
o
& O DO a@ o «

NS

Figure 2. Percentage of convergence on 100
experiments versus the correspondent aver-
age nhumber of symbols necessary for learn-
ing the problem (NS), for the standard RTRL
and the RTRL with Z-EDM. Network with 4
neurons. First experiment.

good predictors should have smaller MSE than MSE,.

Each point in figures 4 and 5 represents the percentage of
convergence on 100 experiments versus the correspondent
average MSE, for the standard RTRL (circle) and the RTRL
with Z-EDM (star). The different points were obtained by
changing the parameters: 7, L, and & (in the case of stan-
dard RTRL only 7 is used). Both figures have the same scale
to facilitate comparisons.

Figure 4 contains the results for a network with 4 neu-
rons and figure 5 for a network with 6 neurons. We did not
continue to expand the number of neurons since there was
not a considerable difference in performance by increasing
the number of neurons in either approach.

Note that we only represented the results when the av-
erage MSE for the 100 repetitions was smaller than MSE,
(the total number of experiments conducted was over 500,
but only a small portion had the required MSE value). This
means that the number of points from RTRL is not the same
as the number of points from RTRL with Z-EDM. Notice
also that since the approach with Z-EDM has 3 parameters
(excluding the number of neurons) versus only one param-
eter for the standard RTRL, we had to make many more
experiments for the approach with Z-EDM to search for ap-
propriate parameters than the number of experiments done
for the standard RTRL.

By looking at the figures we find that the RTRL with Z-
EDM is always able to obtain smaller values of MSE than
the standard RTRL and that the difference is significative.

978-1-4244-3555-5/08/$25.00 ©2008 IEEE

RTRL O
RTRL with ZEDM__ % %
90
*
80 W .
70 X %
* O
@
g %
5
<
g 50 S Kx *
2
8 *
2 40 X,
30
X ¥ * o x
20 2 X
Yo K X * o o ©
*
10) X
*
@O o O% 0] o)

50 100 150 200
NS

Figure 3. Percentage of convergence on 100
experiments versus the correspondent aver-
age number of symbols necessary for learn-
ing the problem (NS), for the standard RTRL
and the RTRL with Z-EDM. Network with 6
neurons. First experiment.

Another important aspect is that only the RTRL with Z-
EDM was able to obtain MSE smaller than MSE, and also
have 100% convergence. This is more significative for the
case of 6 neurons since the best convergence here for the
standard RTRL is 4%. In the case of 4 neurons, the standard
RTRL is able to reach 82% convergence (although with not
as good MSE as the best 100% convergence RTRL with Z-
EDM).

6 Conclusions

In this paper a new learning algorithm for RTRL was
introduced: RTRL with Z-EDM.

We presented experiments on symbol prediction and
time series prediction.

This shows that it is possible to use the concept of Z-
EDM in recurrent neural network training; that this ap-
proach is beneficial since the percentage of the time that
the RNN converges was increased in the experiments we
presented; and in the time series prediction experiment, the
proposed method has much better prediction capabilities
than the original.

The possible drawbacks are a slight increase in compu-
tational time and the need to set two more parameters: the
kernel bandwidth h and the size of the window used for
keeping previous error values, L. In our experiments we
did not find it difficult to find adequate parameters with a
standard grid search.

83

References

(1]

(2]

(3]

(4]

(5]

S. Haykin. Neural Networks: A Comprehensive Foun-
dation, 2nd edition. Prentice Hall, 1999.

M.C. Mackey and L. Glass. Oscillation and chaos in
physiological control systems. Science, 197:287-289,
1977.

L.M. Silva, L.A. Alexandre, and J. Marques de SA&.
Neural network classification: Maximizing zero-error
density. In Third International Conference on Advances
in Pattern Recognition - ICAPR 2005, volume LNCS
3686, pages 127-135, Bath, United Kingdom, August
2005. Springer.

L.M. Silva, L.A. Alexandre, and J. Marques de S4. New
developments of the Z-EDM algorithm. In 6th Inter-
national Conference on Intelligent Systems Design and
Applications - ISDA 2006, volume 1, pages 1067-1072,
Jinan, China, October 2006. IEEE Computer Society
Press.

R.J. Williams and D. Zipser. A learning algorithm
for continually running fully recurrent neural networks.
Neural Computation, 1:270-280, 1989.

978-1-4244-3555-5/08/$25.00 ©2008 IEEE

9% convergence

9% convergence

100

¥
*
*
b

ol
*

RTRL O
RTRL with Z-ED EX
o
80 .
s
*¥
i
60
o
40
20
%
& *
*
* *
¥ % N ¥E K K

0
0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009
MSE

0.001

Figure 4. Percentage of convergence on 100
experiments versus the correspondent av-
erage MSE, for the standard RTRL and the
RTRL with Z-EDM. Network with 4 neurons.
Second experiment.

0.0011 0.0012

100 SRH—K K=K
RTRL O
RTRL with Z-ED| *
*
80
60
*
*
40
*
K
20
X
B *
B o
QD KX

0
0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.00.
MSE

=

Figure 5. Percentage of convergence on 100
experiments versus the correspondent av-
erage MSE, for the standard RTRL and the
RTRL with Z-EDM. Network with 6 neurons.
Second experiment.

84

0.0011 0.0012

