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Abstract. Artificial Neural Networks (ANN) have been essentially used as re-
gression models to predict the concentration of one or more pollutants usually 
requiring information collected from air quality stations. In this work we con-
sider a Multilayer Perceptron (MLP) with one hidden layer as a classifier of the 
impact of air quality on human health, using only traffic and meteorological da-
ta as inputs. Our data was obtained from a specific urban area and constitutes a 
2-class problem: above or below the legal limits of specific pollutant concentra-
tions. The results show that an MLP with 40 to 50 hidden neurons and trained 
with the cross-entropy cost function, is able to achieve a mean error around 
11%, meaning that air quality impacts can be predicted with good accuracy us-
ing only traffic and meteorological data. The use of an ANN without air quality 
inputs constitutes a significant achievement because governments may therefore 
minimize the use of such expensive stations. 
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1 Introduction 

Artificial Neural Networks (ANN) are powerful tools inspired in biological neural 
networks and with application in several areas of knowledge. They have been com-
monly used to estimate and/or forecast air pollution levels using pollutant concentra-
tions, meteorological and traffic data as inputs. Viotti et al. (2002) proposed an ANN 
approach to estimate the air pollution levels in 24-48 hours for sulphur dioxide (SO2), 
nitrogen oxides (NO, NO2, NOX), total suspended particulate (PM10), benzene (C6H6), 
carbon monoxide (CO) and ozone (O3). Since then, a lot of studies have been made 
based on the prediction of one or more pollutants. Nagendra and Khare (2005) 
demonstrate that ANN can explain with accuracy the effects of traffic on the CO dis-
persion. Zolghadri and Cazaurand (2006) predict the average daily concentrations of 
PM10 but to improve the results they suggest the use of traffic emissions data. On the 
other hand, Chan and Jian (2013) demonstrate the viability of ANN to estimate PM2.5 
and PM10 concentrations. They verified that the proposed model can accurately esti-



mate not only the air pollution levels but also to identify factors that have impact in 
those air pollution levels. Voukantsis et al. (2011) also analyzed the PM2.5 and PM10 
concentrations. However, they propose a combination between linear regression and 
ANN models for estimating those concentrations. An improved performance in fore-
casting the air quality parameters was achieved by these authors when compared with 
previous studies. The same conclusions were obtained in a study conducted by Slini et 
al. (2006) to forecast the PM10 concentrations. Nonetheless, Slini et al. (2006) stress 
the need to improve the model by including more parameters like wind profile, opaci-
ty and traffic conditions. Cai et al. (2009) uses an ANN to predict the concentrations 
of CO, NOx, PM and O3. The ANN predicts with accuracy the hourly air pollution 
concentrations with more than 10 hours in advance. Ibarra-Berastegi et al. (2008) 
make a more embracing analysis and proposes a model to predict five pollutants (SO2, 
CO, NO, NO2, and O3) with up to 8 hours ahead.  

Literature review shows that ANN have been essentially used as regression models 
using pollutant concentrations in two ways: (i) first, as input variables to the model; 
(ii) and second, as variable(s) to be predicted (usually with up to h hours ahead). This 
means that information of such concentrations has to be collected, limiting the ap-
plicability of such models only to locals where air quality stations exist. In this work 
we propose two modifications. First, we rely just on meteorological and traffic data as 
input variables to the ANN model, eliminating the use of pollutant concentrations and 
consequently, the need for air quality stations. Second, we use an ANN as a classifier 
(and not as a regression model) of the air quality level (below or above to the human 
health protection limits, as explained in the following section). Such a tool will pro-
vide the ability to predict the air quality level in any city regardless of the availability 
of air quality measurements. 

2 Material and Methods 

2.1 The data 

Hourly data from 7 traffic stations, a meteorological station and an air quality sta-
tion, located in a congested urban area of Oporto city (Portugal), were collected for 
the year 2004 (Figure 1). Traffic is monitored with sensors located under the streets 
and the meteorological station (at 10’23.9’’N and 8º 37’’21.6’’W) was installed ac-
cording to the criteria of the World Meteorological Organization (WMO, 1996). Table 
1 presents the traffic and meteorological variables used as inputs in the ANN model 
while Table 2 shows the air quality pollutants measured as well as the respective lim-
its of human health protection according to the Directive 2008/50/EC. These pollutant 
concentrations are just used to build our classification problem as follows: an instance 
belongs to class 1 if all the pollutant concentrations are below those limits and to class 
2 otherwise. 

 
   



 
Fig. 1 – Study domain (Oporto - Boavista zone):  traffic station;  air quality station. The 
meteorological station is located 2 km away from this area. 

 
For the year 2004, is expected that 8,784 hourly instances with data from all of the 

stations were available. However, due to the gaps and missing data existing in the 
historical records and also those produced after data pre-processing, the total number 
of available instances for this year is 3,469. Thus, we have a two-class problem orga-
nized in a data matrix with 3,469 lines corresponding to the number of instances and 8 
columns corresponding to the 7 input variables and 1 target variable, coded 0 (class 1) 
and 1 (class 2). Table 3 shows the sampling details of each meteorological and air 
quality variables. 

Table 1. Input variables for the ANN. 

Variables Abbreviation Units 

Hour H - 
Month M - 
Traffic volumes V Vehicles 

Meteorological  
variables 

Wind speed WS m/s 
Wind direction WD º 
Temperature T ºC 
Solar radiation SR W/m2 

 
 



Table 2. Air quality limits of human health protection according to Directive 2008/50/EC. 

 Abbreviation Units Time reference 
Human health 

 limit protection 
Nitrogen Dioxide NO2 µg/m3 Hourly 200 
Carbon Monoxide CO µg/m3 Octo-hourly 10,000 
Particles  PM10 µg/m3 Daily 50 
Ozone O3 µg/m3 Hourly 180 
Sulphur Dioxide SO2 µg/m3 Hourly 350 

 
Table 3. Details of the monitoring instruments. 

Variables 
Reaction 

time 
Accuracy Range Technique 

Meteo-
rology 

WS n.a. ±0.1 m/s 0-20 m/s Anemometer 
WD n.a. ±4° 0-360° Anemometer 
T 30-60 s ±0.2 °C −50 to 70 °C Temperature sensor 

SR 10 µs ±1% 0-3,000 W.m-2 Pyranometer  

Air  
quality 

NO2 < 5s n.a. 0-500 µg.m-3 
Chemiluminescence 
analyzer 

CO 30 s 1% 0 ∼ 0.05-200 ppm Infrared photometry 

PM10 10-30 s n.a. 0 ∼ 0.05-10,000 µg/m3 Beta radiation  
O3 30 s 1.0 ppb 0-0.1∼10 ppm UV photometric 

SO2 10 s 0.4 ppb 0-0.1 UV fluorescence  
 

2.2 The model 

We considered the most common architecture of an ANN, the Multilayer Percep-
tron (MLP). In general, an MLP is a nonlinear model that can be represented as a 
stacked arrangement of layers, each of which is composed of processing units, also 
known as neurons (except for the input layer, which has no processing units). Each 
neuron is connected to all the neurons of the following layer by means of parameters 
(weights) and computes a nonlinear signal of a linear combination of its inputs. Each 
layer serves as input to the following layer in a forward basis. The top layer is known 
as output layer (the response of the MLP) and any layer between the input and output 
layer is called hidden layer (its units are designated hidden neurons). In this work we 
restricted to the case of a single hidden layer. In fact, as Cybenko (1989) shows, one 
hidden layer is enough to approximate any function provided the number of hidden 
neurons is sufficient. The MLP architecture is 7: ��	
:1, that is, it has 7 inputs, corre-
sponding to the 7 variables described in Table 1 (in fact, normalized versions of those 
variables, see Section 2.3), ��	
 hidden neurons and one output neuron. Figure 2 de-
picts the architecture used.  

 



 
Fig. 2 – MLP architecture used: 7- ��	
-1 with ��	
 varying from 5 to 50 in steps of 5. 

 
 
In a formal way, the model can be expressed as: 
 

y = φ� �� ��(�)ℎ�
����
��� + �(�)� 

= φ� �� ��(�)φ� �� � �(�)! 
"

 �� + ��(�)#����
��� + �(�)�, 

 
(1) 

 
where: ��(�) – Weight connecting hidden neuron j to the output neuron; ℎ� – Output of hidden neuron j; 

  �(�) – Bias term connected to the output neuron; 
 � �(�) – Weight connecting input k to hidden neuron j; 

 !  – k-th input variable; 
 ��(�) – Bias term connected to hidden neuron j; 
 ��	
 – Number of hidden neurons 

 
and φ� and φ� are the hyperbolic tangent and sigmoid activation functions, respec-
tively, responsible for the non-linearity of the model: 

 

φ�(a) = &�' − 1&�' + 1 

 

 
(2) 

φ�(a) = 11 + &)' 

 
(3) 

Parameter (weights) optimization (also known as learning or training) is performed 
by the batch backpropagation algorithm (applying the gradient descent optimization), 
through the minimization of two different cost functions: the commonly used Mean 
Square Error (MSE) and the Cross-Entropy (CE) (Bishop, 1995), expressed as 

 

Input layer 

Hidden layer 

Output layer 

(…) 

H          M            V          WS         WD           T          SR        bias 



MSE = 1� �(t. − y.)�/
.�� ,  

(4) 
 

CE = − � 1	 log(1	) + (1 − 1	) log(1 − 1	)/
.�� . (5) 

 
Here, n is the number of instances, 6	 ∈ {0,1} is the target value (class code) for in-
stance i and 1	 ∈ [0,1] is the network output for instance i. The MLP predicts class 1 
(code 0) whenever 1	 ≤ 0.5 and class 2 (code 1) otherwise. We have also used an 
adaptive learning rate with an initial value of 0.001 (Marques de Sá et al., 2012). 

For a comprehensive approach on ANN please refer to Bishop (1995) or Haykin 
(2009). 

2.3 Experimental Procedure 

The experimental procedure was as follows. For each number ��	
 of hidden neu-
rons tested, we performed 30 repetitions of: 

1. Randomization of the whole dataset; 
2. Split in training, validation and test sets (50%, 25% and 25% respectively 

of the whole dataset) maintaining class proportions; 
3. Normalization of these sets, such as to have inputs with zero mean and 

unit standard deviation (validation and test sets are normalized using the 
parameters of the training set); 

4. Training the MLP (initialized with small random weights) during 50,000 
epochs. 

To assess the accuracy of the trained models, we keep track of the training, valida-
tion and test set misclassifications during the learning process. Graphs such as the one 
shown in Figure 3 where produced and used as follows: the validation error is used to 
perform “early stopping” by choosing the number of epochs m where its mean error is 
minimum. The mean misclassification error and standard deviation over the 30 repeti-
tions at epoch m are then recorded for the training, validation and test sets (see Sec-
tion 3). Computations were performed using MATLAB (MathWorks, 2012). 



  
Fig. 3 – Training, validation and test set mean misclassifications during the learning process of 
an MLP with 45 hidden neurons and using the cross-entropy cost.  

3 Results and discussion 

Table 4 presents the estimates of the mean (over 30 repetitions) misclassification 
errors and standard deviations both for the MSE and CE cost functions. As explained 
in the previous section, these records correspond to the epoch number (also given in 
Table 4) where the mean validation set error was smaller.  

At a first glance we may observe that the use of different cost functions has im-
portant impacts in the results. In fact, CE revealed to be a more efficient cost function 
in the sense that for the same architectures, a better generalization error is achieved 
with the use of fewer training epochs when compared to MSE. This is in line to what 
is known about CE for which several authors reported marked reductions on conver-
gence rates and density of local minima (Matsuoka and Yi, 1991; Solla et al., 1988). 

Experimental results show that an MLP with 40 to 50 hidden neurons and trained 
with CE is able to achieve a mean error around 11%. The standard deviations are also 
small showing a stable behavior along the 30 repetitions. This suggests that the air 
quality level can be predicted with good accuracy using only traffic and meteorologi-
cal data. This is significant as governments may therefore minimize the use of expen-
sive air quality stations.  

If the algorithm is applied in a densely urban network of traffic counters the air 
quality levels could be quickly obtained with a high spatial detail. This represents an 
important achievement because the implementation of this tool can contribute to as-
sess the potential benefits of the introduction of an actuation plan to minimize traffic 
emissions in a real-time basis. 
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Table 4. Mean misclassification errors (in %) for different number of hidden neurons and dif-
ferent cost functions. 

��	
 

MSE CE 

Epochs 
(m) 

Mean error (standard deviation) 
Epochs 

Mean error (standard deviation) 

Train Validation Test Train  Validation Test 

5 49,900 33,00(4.32) 33.97(3.82) 33.63(4.29) 31,800 18.39(0.81) 19.30(1.53) 19.46(1.47) 

10 50,000 22.49(2.15) 25.29(2.01) 25.74(2.55) 25,700 15.05(0.87) 17.77(1.58) 16.96(1.23) 

15 50,000 14.59(2.28) 19.46(1.53) 19.60(2.90) 10,300 12.70(0.72) 16.47(1.53) 16.07(1.14) 

20 50,000 10.18(1.74) 17.10(1.55) 17.06(1.38) 35,600 9.85(0.89) 15.34(1.35) 15.40(1.29) 

25 50,000 7.06(1.34) 15.54(1.15) 14.94(1.46) 19,000 7.93(0.77) 13.99(1.31) 14.40(1.33) 

30 49,900 4.56(0.72) 13.78(1.21) 13.47(0.95) 21,400 5.28(0.80) 13.07(1.44) 13.03(1.03) 

35 49,700 4.25(1.13) 13.70(1.57) 13.84(1.08) 40,000 1.83(0.68) 11.43(1.13) 11.88(0.08) 

40 49,800 9.76(1.17) 13,67(1.63) 12.86(1.12) 23,700 1.64(1.06) 11.33(0.97) 11.28(0.08) 

45 47,800 9.79(0.63) 13.27(1.30) 13.46(1.32) 30,000 4.60(0.38) 11.07(1.13) 10.77(1.05) 

50 49,700 9.47(0.57) 13.08(1.07) 13.14(1.28) 30,500 3.70(0.36) 11.02(1.22) 10.68(1.08) 

4 Conclusions 

In this paper, a multilayer perceptron with one hidden layer was applied to automate 
the classification of the impact of traffic emissions on air quality considering the hu-
man health effects. We found that with a model with 40 to 50 hidden neurons and 
trained with the cross-entropy cost function, we may achieve a mean error around 
11% (with a small standard deviation) which we can consider as a good generaliza-
tion. This demonstrates that such a tool can be built and used to inform citizens in a 
real time basis.  Moreover, governments can better assess the potential benefits of the 
introduction of an actuation plan to minimize traffic emissions as well as reducing 
costs by minimizing the use of air quality stations. Future work will be focused on the 
use of more data from urban areas, as well as data from other environmental types 
like suburban and rural areas. We will also seek for accuracy improvements by apply-
ing other learning algorithms to this data, such as support vector machines and deep 
neural networks. 
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