Application of artificial neural networksto predict the
impact of traffic emissions on human health
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Abstract. Artificial Neural Networks (ANN) have been essallyi used as re-
gression models to predict the concentration of @anmore pollutants usually
requiring information collected from air qualityasibns. In this work we con-
sider a Multilayer Perceptron (MLP) with one hiddayer as a classifier of the
impact of air quality on human health, using omffic and meteorological da-
ta as inputs. Our data was obtained from a spagsiben area and constitutes a
2-class problem: above or below the legal limitspécific pollutant concentra-
tions. The results show that an MLP with 40 to &fdbn neurons and trained
with the cross-entropy cost function, is able thieee a mean error around
11%, meaning that air quality impacts can be ptedisvith good accuracy us-
ing only traffic and meteorological data. The uam ANN without air quality
inputs constitutes a significant achievement bezgasernments may therefore
minimize the use of such expensive stations.

Keywords: neural networks, air quality level, traffic volumemeteorology,
human health protection.

1 Introduction

Artificial Neural Networks (ANN) are powerful toolsspired in biological neural
networks and with application in several areas mfvedge. They have been com-
monly used to estimate and/or forecast air polfutevels using pollutant concentra-
tions, meteorological and traffic data as inputmtiet al. (2002) proposed an ANN
approach to estimate the air pollution levels ird84hours for sulphur dioxide (S
nitrogen oxides (NO, N§ NOy), total suspended particulate (M benzene (gHs),
carbon monoxide (CO) and ozoneg(Bince then, a lot of studies have been made
based on the prediction of one or more pollutahtagendra and Khare (2005)
demonstrate that ANN can explain with accuracyetfiects of traffic on the CO dis-
persion. Zolghadri and Cazaurand (2006) predictatrerage daily concentrations of
PM,obut to improve the results they suggest the ugeafffc emissions data. On the
other hand, Chan and Jian (2013) demonstrate #islity of ANN to estimate Pl
and PM,concentrations. They verified that the proposed ehadn accurately esti-
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mate not only the air pollution levels but alsoidentify factors that have impact in
those air pollution levels. Voukantsis et al. (2Dalso analyzed the PMand PM,
concentrations. However, they propose a combindigtween linear regression and
ANN models for estimating those concentrations.idproved performance in fore-
casting the air quality parameters was achievethége authors when compared with
previous studies. The same conclusions were olotaimna study conducted by Slini et
al. (2006) to forecast the Bptoncentrations. Nonetheless, Slini et al. (2006sst
the need to improve the model by including moreapaaters like wind profile, opaci-
ty and traffic conditions. Cai et al. (2009) usesAdN to predict the concentrations
of CO, NQ, PM and Q. The ANN predicts with accuracy the hourly air lptibn
concentrations with more than 10 hours in advamtgoarra-Berastegi et al. (2008)
make a more embracing analysis and proposes a nwopeddict five pollutants (SO
CO, NO, N@, and Q) with up to 8 hours ahead.

Literature review shows that ANN have been essintimed as regression models
using pollutant concentrations in two ways: (isfjras input variables to the model;
(i) and second, as variable(s) to be predicteddlls with up toh hours ahead). This
means that information of such concentrations babet collected, limiting the ap-
plicability of such models only to locals where girality stations exist. In this work
we propose two modifications. First, we rely justroeteorological and traffic data as
input variables to the ANN model, eliminating theewf pollutant concentrations and
consequently, the need for air quality station&ofid, we use an ANN as a classifier
(and not as a regression model) of the air quidirgl (below or above to the human
health protection limits, as explained in the fallog section). Such a tool will pro-
vide the ability to predict the air quality level any city regardless of the availability
of air quality measurements.

2 Material and Methods

2.1 Thedata

Hourly data from 7 traffic stations, a meteorol@gistation and an air quality sta-
tion, located in a congested urban area of Opdtyo(Bortugal), were collected for
the year 2004 (Figure 1). Traffic is monitored wihnsors located under the streets
and the meteorological station (at 10'23.9”N arfd33”21.6"W) was installed ac-
cording to the criteria of the World Meteorologi€@iganization (WMO, 1996). Table
1 presents the traffic and meteorological variabigsd as inputs in the ANN model
while Table 2 shows the air quality pollutants meead as well as the respective lim-
its of human health protection according to theeBlive 2008/50/EC. These pollutant
concentrations are just used to build our classifim problem as follows: an instance
belongs to class 1 if all the pollutant concentnagiare below those limits and to class
2 otherwise.
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Fig. 1 — Study domain (Oporto - Boavista zorj, traffation; % air quality station. The
meteorological station is located 2 km away froie Hrea.

For the year 2004, is expected that 8,784 houdtaimces with data from all of the
stations were available. However, due to the gayk raissing data existing in the
historical records and also those produced aftex pdiee-processing, the total number
of available instances for this year is 3,469. Thus have a two-class problem orga-
nized in a data matrix with 3,469 lines correspogdp the number of instances and 8
columns corresponding to the 7 input variables himrget variable, coded O (class 1)
and 1 (class 2). Table 3 shows the sampling detdilsach meteorological and air
quality variables.

Table 1. Input variables for the ANN.

Variables Abbreviation Units
Hour H -
Month M -
Traffic volumes \Y, Vehicles
Wind speed WS m/s
Meteorological ~ Wind direction WD °
variables Temperature T °C

Solar radiation SR Witn




Table 2. Air quality limits of human health protection acdimg to Directive 2008/50/EC.
Human health

Abbreviation Units Time reference . . -
limit protection
Nitrogen Dioxide NQ pg/nt Hourly 200
Carbon Monoxide CcO pgfn Octo-hourly 10,000
Particles PMc pg/n? Daily 50
Ozone Q pg/n? Hourly 180
Sulphur Dioxide S@ pg/n? Hourly 350
Table 3. Details of the monitoring instruments
Variables R%ﬁgon Accuracy Range Technique
WS n.a. 0.1 m/s 0-20 m/s Anemometer
Meteo- |WD n.a. +4° 0-360° Anemometer
rology T 30-60 s 0.2 °C -50to 70 °C Temperature sensor
SR 10 ps 1% 0-3,000 W.m Pyranometer
NO, <5s na. 0-500 pg.h Chemiluminescence
analyzer
Air CcO 30s 1% 0~ 0.05-200 ppm Infrared photometry
quality [PMy| 10-30s n.a. 6 0.05-10,00Qug/n® |Beta radiation
05 30s 1.0 ppb 0-0-110 ppm UV photometric
SO, 10s 0.4 ppb 0-0.1 UV fluorescence

2.2 Themodel

We considered the most common architecture of ai AlRe Multilayer Percep-
tron (MLP). In general, an MLP is a nonlinear mottedt can be represented as a
stacked arrangement of layers, each of which isposed of processing units, also
known as neurons (except for the input layer, whias no processing units). Each
neuron is connected to all the neurons of the ¥olg layer by means of parameters
(weights) and computes a nonlinear signal of aalir@mbination of its inputs. Each
layer serves as input to the following layer iroasard basis. The top layer is known
as output layer (the response of the MLP) and apgrlbetween the input and output
layer is called hidden layer (its units are desigdaidden neurons). In this work we
restricted to the case of a single hidden layefath, as Cybenko (1989) shows, one
hidden layer is enough to approximate any funcpoovided the number of hidden
neurons is sufficient. The MLP architecture is.f;,:1, that is, it has 7 inputs, corre-
sponding to the 7 variables described in Tabler Ta¢t, normalized versions of those
variables, see Section 2.3),,, hidden neurons and one output neuron. Figure 2 de-
picts the architecture used.
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Fig. 2 — MLP architecture used: 7i3,;4-1 with ny;; varying from 5 to 50 in steps of 5.

In a formal way, the model can be expressed as:
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where:
wj(z) — Weight connecting hidden neurpto the output neuron;
h; — Output of hidden neurgn
b® — Bias term connected to the output neuron;
W,S.) — Weight connecting inpltto hidden neurof
x;, — kthinputvariable;
b].(l) — Bias term connected to hidden neujon
nyq  — Number of hidden neurons

andg, andg, are the hyperbolic tangent and sigmoid activafiamctions, respec-
tively, responsible for the non-linearity of the ded:
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Parameter (weights) optimization (also known asni@g or training) is performed
by the batch backpropagation algorithm (applyirg gnhadient descent optimization),
through the minimization of two different cost ftions: the commonly used Mean
Square Error (MSE) and the Cross-Entropy (CE) (&isH1995), expressed as
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Here,n is the number of instances,e {0,1} is the target value (class code) for in-
stancel andy; € [0,1] is the network output for instanceThe MLP predicts class 1
(code 0) whenevey; < 0.5 and class 2 (code 1) otherwise. We have also ased
adaptive learning rate with an initial value of @ QMarques de Sa et al., 2012).

For a comprehensive approach on ANN please ref&igbop (1995) or Haykin
(20009).

2.3  Experimental Procedure

The experimental procedure was as follows. For eachbemn,,;; of hidden neu-
rons tested, we performed 30 repetitions of:

1. Randomization of the whole dataset;

2. Splitin training, validation and test sets (50%%®2and 25% respectively
of the whole dataset) maintaining class proportions

3. Normalization of these sets, such as to have inpitktszero mean and
unit standard deviation (validation and test setsw@rmalized using the
parameters of the training set);

4. Training the MLP (initialized with small random vgits) during 50,000
epochs.

To assess the accuracy of the trained models, e tkack of the training, valida-
tion and test set misclassifications during therieey process. Graphs such as the one
shown in Figure 3 where produced and used as felltive validation error is used to
perform “early stopping” by choosing the numbeepbcham where its mean error is
minimum. The mean misclassification error and staddleviation over the 30 repeti-
tions at epoctm are then recorded for the training, validation &est sets (see Sec-
tion 3). Computations were performed using MATLABathWorks, 2012).
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Fig. 3 — Training, validation and test set mean miscfsdions during the learning process of
an MLP with 45 hidden neurons and using the crosopy cost.

3 Results and discussion

Table 4 presents the estimates of the mean (oveef@titions) misclassification
errors and standard deviations both for the MSEG@HRdost functions. As explained
in the previous section, these records corresportet epoch number (also given in
Table 4) where the mean validation set error waallem

At a first glance we may observe that the use fiémdint cost functions has im-
portant impacts in the results. In fact, CE rev@atebe a more efficient cost function
in the sense that for the same architectures, tarbgeneralization error is achieved
with the use of fewer training epochs when compaoedSE. This is in line to what
is known about CE for which several authors rembrterked reductions on conver-
gence rates and density of local minima (Matsuaich ¥, 1991; Solla et al., 1988).

Experimental results show that an MLP with 40 tohidden neurons and trained
with CE is able to achieve a mean error around IMlé.standard deviations are also
small showing a stable behavior along the 30 repe&. This suggests that the air
quality level can be predicted with good accurasing only traffic and meteorologi-
cal data. This is significant as governments mayetore minimize the use of expen-
sive air quality stations.

If the algorithm is applied in a densely urban retwof traffic counters the air
quality levels could be quickly obtained with a tmigpatial detail. This represents an
important achievement because the implementatiathisftool can contribute to as-
sess the potential benefits of the introductiommfactuation plan to minimize traffic
emissions in a real-time basis.



Table 4. Mean misclassification errors (in %) for differenimber of hidden neurons and dif-
ferent cost functions.

M SE CE
Nnia |Epochs Mean error (standard deviatiom%poch Mean error (standard deviation)
(m) Train | Validation Test Train | Validation Test

5 49,900| 33,00(4.32) 33.97(3.82) 33.63(4.29) 31,800 18.39(0.81) 19.30(1.53) 19.46(1.47)
10 | 50,000| 22.49(2.15) 25.29(2.01) 25.74(2.55) 25,700| 15.05(0.87) 17.77(1.58) 16.96(1.23)
15 | 50,000| 14.59(2.28)19.46(1.53) 19.60(2.90) 10,300| 12.70(0.72) 16.47(1.53) 16.07(1.14)
20 | 50,000|10.18(1.74)17.10(1.55) 17.06(1.38) 35,600| 9.85(0.89)| 15.34(1.35)15.40(1.29)
25 | 50,000 7.06(1.34) 15.54(1.15) 14.94(1.46) 19,000| 7.93(0.77)| 13.99(1.31)14.40(1.33)
30 | 49,900 4.56(0.72) 13.78(1.21) 13.47(0.95) 21,400| 5.28(0.80)| 13.07(1.44)13.03(1.03)
35 | 49,700 4.25(1.13) 13.70(1.57) 13.84(1.08) 40,000| 1.83(0.68)| 11.43(1.13)11.88(0.08)
40 | 49,800| 9.76(1.17)| 13,67(1.63) 12.86(1.12) 23,700| 1.64(1.06)| 11.33(0.97)L1.28(0.08)
45 | 47,800| 9.79(0.63)| 13.27(1.30) 13.46(1.32) 30,000| 4.60(0.38)| 11.07(1.13)10.77(1.05)
50 | 49,700\ 9.47(0.57) 13.08(1.07)13.14(1.28) 30,500| 3.70(0.36)| 11.02(1.22).0.68(1.08)

4 Conclusions

In this paper, a multilayer perceptron with onedeid layer was applied to automate
the classification of the impact of traffic emigsgoon air quality considering the hu-
man health effects. We found that with a model withto 50 hidden neurons and
trained with the cross-entropy cost function, weyraghieve a mean error around
11% (with a small standard deviation) which we cansider as a good generaliza-
tion. This demonstrates that such a tool can bk &dod used to inform citizens in a
real time basis. Moreover, governments can batieess the potential benefits of the
introduction of an actuation plan to minimize tr@afémissions as well as reducing
costs by minimizing the use of air quality statioRature work will be focused on the
use of more data from urban areas, as well asfdata other environmental types
like suburban and rural areas. We will also seelaézuracy improvements by apply-
ing other learning algorithms to this data, sucts@sport vector machines and deep
neural networks.
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