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Abstract We present a Transfer Learning (TL) framework based on
Stacked Denoising Autoencoder (SDA) for the recognition of immuno-
gold particles. These particles are part of a high-resolution method for
the selective localization of biological molecules at the subcellular level
only visible through Transmission Electron Microscopy (TEM). Four new
datasets were acquired encompassing several thousands of immunogold
particles. Due to the particles size (for a particular dataset a particle
has a radius of 4 pixels in an image of size 4008×2670) the annotation
of these datasets is extremely time taking. Thereby, we apply a TL ap-
proach by reusing the learning model that can be used on other datasets
containing particles of different (or similar) sizes. In our experimental
study we verified that our TL framework outperformed the baseline (not
involving TL) approach by more than 20% of accuracy on the recognition
of immunogold particles.

1 Introduction

Common Machine Learning create new classifiers whenever the respective prob-
ability distributions of inputs and outputs change, even though they may relate
to similar problems. The reuse of a classifier designed for a given (source) prob-
lem on another (target) problem, presenting some similarities with the original
one, with only minor operations of parameter tuning, is the scope of Transfer
Learning (TL).

This paper proposes a TL framework for the recognition of immunogold par-
ticles on datasets with different magnifications. The structure of this framework
is as follows: (i) a Stacked Denoising Autoencoder (SDA) model is built to rec-
ognize particles of a specific size; (ii) in order to ease the burden of image an-
notation and aiming for an effective particle recognition a robust SDA obtained
through TL is developed. To the best of our knowledge this work is the first TL



framework of its kind for immunogold particle recognition. Furthermore, we also
make publicly available a new dataset that can be used as benchmark on future
works.

Immunogold electron microscopy is a high-resolution method for the selective
localization of biological molecules at the subcellular level. Antibodies coupled
to particles of colloidal gold, which are visible through Transmission Electron
Microscopy (TEM), can reveal the localization and distribution of the biological
molecules of interest. In this particular work, this technique was used to deter-
mine the composition of cell wall uneven thickenings that ultimately differentiate
into reticulate and flange ingrowths of maize (Zea mays L.) endosperm transfer
cells [15]. These cells are essential for assimilate flow into the endosperm, thus
having a significant impact on kernel yield.

Immunogold particle counting is a time-consuming task where a single image
containing almost a thousand particles can take several hours to annotate [19]
(Figure 1). Moreover, recent technological improvements in microscopy have
made easier and faster to acquire large volumes of data of biological samples
at very high, Electron Microscopy (EM)-level, magnifications. To add, images
are usually recorded with different magnifications for a better analysis of the bi-
ological tissues. Conducting this analysis on a daily basis is not only a tiresome
task but is also very time consuming. An automatic recognition tool can reduce
the time consumed in such analysis and improve its accuracy (by removing the
bias of a manual annotation) thus being of paramount importance. Ultimately,
through TL we can relax the necessity of obtaining large amounts of labeled
data for new problems [2, 5] (such as new magnifications); and, less computa-
tional effort by providing new learning models that can be applied with good
performance results in different problems and far less computational effort (see
e.g., [5, 10,11]).

This paper is structured in the following way: we start by briefly describing
previous works on the recognition of cellular structures aided by automatic sys-
tems (Section 2). In Section 3 we present our TL framework for the recognition
of immunogold particles. In Section 4 we present the results and the conclusions
are drawn in Section 5.

2 Previous Work

Fisker et al. in [8] explores the possibility to automatically estimate particle sizes
in immuno-microscopy imaging. Their approach is based on deformable models
that can be fitted to the prior known shape of the particles. With the same goal
as Fisker, a different approach was presented by Mallic et al. in [13] by using
cascade of classifiers. Inspired in the conventional face detection challenges where
recognition with ensemble of weak classifiers have proven to be effective, this
straightforward strategy may be computationally complex due to the amount
of immunogold particles that may occur in electron microscopy images. In [19]
an insight review is presented by motivating the advantages of Computer Vision
(CV) for the processing of images generated by electron microscopies. Finally,



Figure 1: Representative images of our datasets illustrating different structures
that can interfere in the recognition of the immunogold particles due to: cellular
overlapping, tissues and background noise. Each image has 4008 × 2670 pixels
of dimension with particles diameter ranging from 8 to 20 pixels. (a) Example
of a sample with a magnification of 15000 (1µm, particles with a diameter of 8
pixels—red line); (b) magnification of 20000 (0.5µm, 12 pixels diameter parti-
cles); (c) magnification of 30000 (0.5µm, 15 pixels diameter particles); and, (d)
magnification of 50000 (200nm, 20 pixels diameter particles).

in [23, 24] a Difference of Gaussian (DoG) and Laplacian of Gaussian (LoG)
filters are applied to aid the detection of particles (e.g., organelles) on cryo-
electron microscopy images. On these papers, DoG or LoG were used as a first
step to detect more complex biological structures and were not tailored neither
evaluated on immunogold particles. For the detection of biological structures,
there is the publicly available Spot Detector (SD) [17] algorithm that is included
in the well-known Icy bioimaging software [7]. Authors state that SD enables the
detection of spots that can be organelles or other biological similar structures in
noisy 2D or 3D images [17].

A major difference is that in the aforementioned proposals all particle struc-
tures were shallow, irregular in shape and intensity. Our work will be focused
on the recognition of immunogold particles with regular spherical shape, thus
avoiding the adoption of a highly parameterized formalism for its recognition.
Furthermore, the creation of different models, each one developed for a specific



problem, can be cumbersome due to the time that is needed to label the data.
For this purpose TL is presented as an appealing alternative.

TL has been around since the 80’s with considerable advancements since then
(see e.g., [9, 14, 18, 21] and references therein). With the recent re-interest on
Neural Networks (NNs) and the availability of more computational power along
with new and faster algorithms, NNs with deep architectures started to emerge
to tackle TL. In [12] (and work referenced therein) the authors have widened the
research line on TL by addressing the following questions: How can one tailor
Deep Neural Networks (DNNs) for TL? How does TL perform by reusing layers
and using different types of data? For the application of Microscopy Imaging a
TL categorization was presented in [4] for the recognition of mitochondria. With
the exception of [16] where an adaboost and TL framework is proposed for the
detection of cells with different features (e.g., shape, size), there are very few
works that address the possibility of TL on biomedical data, specifically for the
recognition of immunogold particles.

Current approaches are not tailored for immunogold particle detection and
recognition and thus are prone to error by erroneously estimating a microstruc-
ture organelle or an artifact as immunogold particle due to the criteria of the
filter responses: circular shape and radius dimension. To this end a robust mech-
anism is required to handle possible false detections that can occur in this kind
of images. In the following Sections we will present a SDA-based TL mechanism
as an effective approach for immunogold particle recognition.

3 A TL framework for the Recognition of Immunogold
Particles using SDAs

Our proposal comprises the following two steps:

– a SDA is first trained to distinguish immunogold particles from cluttered
background;

– the (learning) model is then reused onto another dataset (with particles of
a different size).

In the following sections we will thoroughly describe the methods (for a self-
contained reading) and the framework here proposed.

3.1 SDAs for the Recognition of Immunogold Particles

An autoencoder is a simple NN with one hidden layer designed to reconstruct
its own input, having, for that reason, an equal number of input and output
neurons. The reconstruction accuracy is obtained by minimizing the average re-
construction error between the original and the reconstructed instances. Hence,
these methods are governed by the objective of capturing relevant information
of the underlying distribution of the samples [20]. The encoding and decoding
feature sets (input-hidden and hidden-output weights, respectively) may option-
ally be constrained as transpose of each other, in which case the autoencoder is



said to have tied weights. For a variant of the autoencoders, Denoising Autoen-
coder (DAE), input data is corrupted to train a model in order to rebuild the
original data. Such is achieved by means of the minimization of some reconstruc-
tion loss and allows the DAEs to avoid a direct copy of the data [22]. Stacking
autoencoders, gives the model the advantage of hierarchical features with low-
level features represented at lower layers and higher-level features represented at
upper layers [6,22, Section 3]. The unsupervised training of the SDAs is usually
referred to as pre-training. We then add to the top of the network a logistic layer
and the entire network is “fine-tuned” in order to minimize some classification
loss function [1, 6].

SDAs robustness makes it a very promising learning tool for the recognition
of the circular shaped immunogold particles. A representative sample of the
images that were used to train the SDA is depicted in Figure 2. Given the

(a)

(b)

Figure 2: different types of patches in the dataset with magnification of 50000
(a): background and artifact patches (two top rows); and, patches containing at
least one immunogold particle (two bottom rows); and, (b) analogous for the
patches in the dataset with magnification of 15000.

similarity of the immunogold particles, it is expected that a SDA can capture
relevant features from these samples and easily discriminate from the remaining
artifacts or cellular structures. A far more complex scenario occurs when multiple
immunogold particles are comprised in the same patch (see Figure 2), especially
in low magnifications such as the magnification of 15000. In this case the SDA
has to be able to deal with a variable number of particles in the same image.
Besides this, it also has to be robust to the different particle sizes.

Although it may seen unsual to capture images in different magnifications,
the automatic analysis in lower magnifications (magnification of 15000) helps a
direct identification of regions of interest and its direct quantification as opposed
to when using higher magnifications. By directly exploring images obtained at
lower magnifications we can attain reduced experimentation costs, image acqui-
sition and labelling times. However, the performance of an automatic learning
model for these images is prone to misclassify a great number of images due to
the noise and artifacts present in the dataset. For this, we can build a learning
model using a dataset from higher magnifications, such as magnification of 50000



(containing immunogold particles well defined), and transfer it to a magnification
of 15000.

Therefore, a TL setting for the recognition of immunogold particles without
requiring the learning of new models from scratch (e.g., by initializing the layer
weights at random) is important.

3.2 TL: reusability of SDA models

TL aims to transfer models acquired in one problem, the source problem, onto
another problem, the target problem, dispensing the bottom-up construction of
the target model. TL algorithms embedded in DNNs have already shown inter-
esting features such as better generalization capabilities and reduced training
times as shown in other works [10] (and references therein). In here we extend
these studies of model reusability to the recognition of immunogold particles in
images of maize endosperm transfer cells. A dataset for a given magnification is
identified as the source problem and the (source) learning model will be built
upon this data. TL is then applied by reusing the source model on the target
problem (in this case, a dataset with a different magnification). Putting it simply,
layer weights for the target model are initialized with the values of the source
model. Learning (of the target problem) can be conducted in several ways: (a)
by fixing the layer weights of the network or let them readjust through the min-
imization of the reconstruction error (also known as pre-training); (b) by fixing
or letting the network relearn and thus letting it readjust the decision function
(fine-tune); or (c) a mixture of both [2, 3, 6, 10,11] (and references therein).

For the purpose of this work, we have reused the source model on the target
problem by letting it readjust the decision function to the target problem. In
our experimental work we have analyzed the impact of the reusability of the
different hidden layers. In fact, and for the immunogold particle recognition, one
may argue that the major changes will occur at a feature level thanks to the
changes of the magnification of the immunogold particles. Looking carefully at
Figure 1 we can see that this seems to be the case. Therefore, the recognition
performance of the immunogold particles through TL would have significant
impacts by relearning only the first layers of the network. The analysis of the
effects of relearning specific parts of the network architecture will be addressed
in more detail in Section 4.

4 Methodology and Results Discussion

4.1 Dataset

All images were acquired using a Transmission Electron Microscope JEOL JEM
1400 with a GATAN Orius SC10000A2 CCD and were recorded in four different
magnifications: 15, 20, 30 and 50 thousand times from different biological sam-
ples. See Figure 1 for a brief illustration of this dataset. For each magnification we
recorded 25 digital images. Each image contains 500 to 200 particles annotated
by a trained expert (localization on the image of an immunogold particle).



4.2 Experimental Study

Dataset for SDA Models Construction: For a given image we extracted
all immunogold particles and the same amount of background, cellular struc-
tures or artifacts patches with 20× 20 pixels (the latter at random positions). A
patch could contain more than one particle or portions of several other particles
(see Figure 2). Finally, patches were labeled as containing at least one immuno-
gold particle if the Euclidean distance between the patch central position (on
the image) and the annotation position was below 10 pixels (half of the size
of the patch width). Moreover, we ensure that there is a one-to-one mapping
between the patch location and the ground-truth.8 This procedure thus results
on a dataset (for a given magnification) containing several thousand patches of
immunogold particles and background, cellular structures or artifacts.

Training Procedure: The experimental procedure for the construction of the
baseline models was conducted as follows. For a given resolution we randomly
split the data into training and test data: 60% to train our SDA (60 images in
total, 15 samples per resolution) and the remaining for testing purposes. Pixel
intensity values of all patches were normalized to be within [0, 1]. To find the
best SDA model parameterization we have performed a grid search on the pre-
training learning rate (0.01 and 0.001) and fine-tuning learning rate (0.1 and
0.01) by carrying out a three-fold cross-validation in the training set. The input
layer had 400 neurons (for handling the patches size of 20 × 20). The number
of hidden layers was fixed to 3 and the number of neurons per layer was fixed
to 500. The corruption level was set to 0.1 across all hidden layers. Regarding
TL, we proceeded similarly in order to find the best fine-tune learning rate. Due
to the different amount of samples, we also performed a cross-validation over
the batch-size. Finally, to assess the variability of our methods’ performance the
experiment was repeated 20 times by randomly shuffling the data.

TL evaluation: The procedure described above, conducted for a single magni-
fication, allows us to obtain our baseline (without TL) model. For this particular
study, such was conducted for the dataset with magnification of 15000 (target
problem). Then, we have proceeded with the TL approach. A learning model is
trained on the dataset with magnification of 50000 (source problem). Images of
this dataset were resized to half (keeping the aspect ratio) of our source prob-
lem, but maintaining the size of the patches (20× 20). This led to immunogold
particles with a radius around 7 pixels (recall that the radius size of immunogold
particles on the dataset with magnification of 15000 was 4 pixels). The model
obtained in the source problem was then reused for learning the dataset with a
magnification of 15000 (target problem).

In our framework, TL can be conducted by reusing the first layer of the
model and by fine-tuning only the remaining layers to the target problem (coded
[011]); another possibility is reusing the first and second layers and fine-tuning
8 A given manual position will not result on more than one patch.



the last layer ([001]). By reusing the full network ([000]) the model would not
suffer changes, and thus would have not been fine-tuned to the target problem.
Results are presented in Table 1.

Method Source Target Reusability and Fine-
Tuning (TL) Setting

Accuracy (± std. dev)

Baseline - 15000 - 0.65± 0.17

TL 50000 15000 [011] 0.88± 0.01
TL 50000 15000 [001] 0.86± 0.02

TL 50000 15000 [110] 0.90± 0.01
TL 50000 15000 [100] 0.88± 0.01

TL 50000 15000 [111] 0.91± 0.01

Table 1: Results of the application of TL to the recognition of immunogold
particles. The baseline model was trained in a standard ML way on the dataset
with magnification of 15000 (target problem). A model trained for the dataset
with magnification of 50000 (source problem) was obtained and it was reused
on the target problem. Overall, all TL approaches achieved an improvement of
more than 20%. Each layer-wise TL strategy is illustrated in the column TL
setting (see main text).

Discussion: Considering the results shown in Table 1 we see that by apply-
ing any of the TL settings we can indeed improve the baseline results (65%).
First, we speculate that the reason for the low accuracy rate of the baseline
is concerned with the high variability location of the particles. Having smaller
sizes (radius of 4 pixels), and given the unconstrained approach of the dataset
construction (see Section 3.1), the network will be biased to underperform on
the immunogold recognition. Second, the dataset with magnification of 15000
contains a significant number of clusters of immunogold particles increasing the
difficulty of processing patches from this dataset. Moreover, this dataset is also
comprised of a significant amount of artifacts (see Figure 1). Therefore, by learn-
ing a more well defined (source) problem (dataset with magnification of 50000),
though still acquired through an unconstrained approach, a better starting point
for learning the target problem is provided. Transferring the model and letting
all layer weights be fine-tuned ([111]) to the target problem achieved the best
result (91%). Another result from our experimental study is concerned with the
relevance of the feature representation that the network has captured. From Ta-
ble 1 we can infer that the first layers are the most relevant. In fact, letting
the first two layers of the network be re-learnt and fixing only the last layer
(reusability setting [110]) achieved a higher performance (90%) in comparison
with only re-learning the last layer ([001] with an accuracy of 86%).



5 Conclusions

Current approaches for the quantification and analysis of histological datasets
of transfer cells are essentially manual processes. This procedure is highly time-
consuming, prone to error and is suitable for an automated processing by a com-
puter. For the immunogold particles quantification there are no algorithms that
claim to be able to automate tasks such as the immunogold labelling. Moreover,
recent technological improvements in microscopy have made easier and faster the
acquisition of large volumes of data of biological samples at very high, Electron
Microscopy (EM)-level, magnifications. Its automatic recognition is therefore of
paramount importance.

In this work we have presented a Transfer Learning (TL) framework based
on Stacked Denoising Autoencoder (SDA) for automatic classification of im-
munogold particles with different magnifications. Our results have shown the
robustness of the SDA given the amount of noise present in TEM images from
Maize samples (see Figure 2). We have also illustrated the robustness of the
possible TL settings for the reusability of the networks by attaining accuracy
improvements of more than 20% in comparison to the baseline approach. We
were also able to show the relevance of the features that were learnt in the first
layer so that the network could be tailored to the new (target) problem.

For future work we plan to assess the reusability of the network on other
datasets with immunogold particles with more drastic differences of sizes. This
would allow us to assess the robustness of the SDA with respect to the invariance
of particle size. This will be accomplished by exploring the remaining magnifi-
cations. In the future, we will also consider other Deep Neural Network (DNN)
architectures.
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