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Abstract

Transfer Learning (TL) aims to transfer knowledge acquired in one problem,
the source problem, onto another problem, the target problem, dispensing
with the bottom-up construction of the target model. The TL approach has
gained significant interest in the Machine Learning (ML) community since it
paves the way to devise intelligent learning models that can easily be tailored
to many different domains of applicability. As it is natural in a fast evolving
area, a wide variety of TL settings and nomenclature have been proposed so
far. During this grant we presented, together with a survey of the literature
on the majority of TL methods, a unifying view of the many TL settings
with a common nomenclature suitable to classification problems.

Another work that was conducted was related to the performance assess-
ment of automatic Computer Vision (CV) tools for immunogold particles
detection. Our approach based on Laplacian of Gaussian (LoG) filter was
applied and compared against the Spot Detector (SD) publicly available as
part of the Icy bioimaging software. Two datasets were created for this study:
a first dataset for benchmarking purposes and a second dataset to validate
our method. Our approach (LoG detector) outperformed in almost every
scenario the SD approach. On the second dataset, LoG attained more than
86.9% of accuracy. The automatic CV tool significantly aids in the detection
of immunogold particles, performing better than its counterpart and also
has few parameters, making it intuitive for a researcher unfamiliar to CV
to handle this tool. This procedure allowed us to pave the way for TL on
biomedical applications with Stacked Denoising Autoencoders (SDAs).
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Chapter 1

Introduction

1.1 Research Plan and Document Structure
For this grant we had as objectives the study of the reusability capacity of
Deep Neural Networks (DNNs) (such as auto-encoders or Convolutional Neu-
ral Networks (CNNs)) known as Transfer Learning (TL). It was also purpose
of this work the development of new TL strategies to improve accuracy on
classification problems and to propose a clear framework for TL terms and
methods.

Based on the material that was developed during this grant, and its
achievements, this document is structured as follows: Chapter 2 presents
the installation procedures that we have conducted for the setup of our High
Performance Computer (HPC). Chapter 3 presents a survey on TL and a
unifying view of the many TL settings with a common nomenclature suit-
able to classification problems. In Chapter 4 we delve the possibility of
automatic detection of immunogold particles in Transmission Electron Mi-
croscopy (TEM) imaging. This preliminary work allowed us to determine
the possibility of the exploration of Stacked Autoencoder (SAE) or Stacked
Denoising Autoencoder (SDA) approaches for the recognition of organalles.
Finally, in Chapter 5 we present a summary of our work and our future
research plan.

1.2 Contributions and Scientific Indicators
The work conducted during this research grant can be summarized as follows:

• Submission of a journal paper to IEEE Transactions on Neural Net-
works and Learning Systems (Impact Factor (IF): 4.37) on TL termi-
nology and its current status;
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• A study of immunogold particle detection was conducted. This prelim-
inary research paves the way for TL with biomedical applications.

In doing so, we were able to conduct the following scientific proposals:

• A clear presentation of the learning problem of TL and its implications;

• A survey on TL on its recent advancements;

• A system for the detection and quantification of immunogold particles.

These proposals are currently being evaluated by our peers.
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Chapter 2

High Performance Computer
Setting

Before starting reading this chapter it is expected that the reader is familiar
with linux and its command line environment. If you do not feel comfort-
able with this, you should skip this Chapter or start by reading ‘The Linux
Documentation Project’ (TLDP): http://www.tldp.org/.

2.1 HPC Configuration
About the system:

• Core i7 3770K, 3.50Ghz;

• 16Gb;

• 2Tb Disk;

• 2 × GPU Nvidia GTX 770.

And specifications of the Operating System (OS) and filesystem structure:

• debian, 7.5;

• filesytem structure:

Filesystem Size Used Avail Use% Mounted on
rootfs 909G 205G 658G 24% /
/dev/sda1 2.4G 4.0K 2.4G 1% /boot/efi
/dev/sda6 909G 24G 839G 3% /opt
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• directory structure: /opt/datasets is the folder for repositories and
/opt/sources for hand compiled system libraries.

Important NOTES:

• Truetype font (lstlisting) means command line instruction or result;

• A # symbol preceding a given sentence means that the command was
executed with root privileges.

• Same compiler versions:

g++ --version
gcc --version
gfortran --version

2.1.1 Users

Each user will have a specific account but will belong to the same group
(users). In /etc/adduser.conf, USERGROUPS=yes was changed to USER-
GROUPS=no

2.2 Python, LAPACK, OpenBlas, and Theano
Configuration

2.2.1 Python

Control version system software: # apt-get install git subversion
and for coding purposes: # apt-get install g++ gfortran

Some requirements: # apt-get install python-dev

PIP is mandatory:

$ git clone https://github.com/pypa/pip
$ python setup.py build
# python setup.py install

Install now pyparsing, cython and pillow (other dependencies):

# pip install pyparsing
# pip install cython
# pip install pillow
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2.2.2 OpenBLAS

You need basic linear algebra subprograms (blas) and other routines/li-
braries. We have opt to use openblas for three very strong reasons: 1) system
binaries are architecture independent and therefore not very well optimized;
2) for some particular reason, atlas was not linking with numpy and other
libraries; 3) openblas is far more easy to compile/install and is as fast as
atlas.

# git clone https://github.com/xianyi/OpenBLAS.git
# cd OpenBLAS
# make FC=gfortran BINARY=64 USE_THREAD=1 DYNAMIC_ARCH=0
# make PREFIX=/usr/local/ install
# ldconfig

Do not forget to change your $~/.bashrc file (standard configuration at
/etc/bashrc.bashrc):

export OPENBLAS_NUM_THREADS=8
export BLAS=/usr/local/lib/libopenblas.a
export LAPACK=/usr/local/lib/libopenblas.a
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/

export PATH=$PATH:$HOME/usr/bin:/usr/local/cuda/bin

2.2.3 NumPy

git clone https://github.com/numpy/numpy
cd numpy

Edit site.cfg file so that:

[openblas]
libraries = openblas
library_dirs = /usr/local/lib
include_dirs = /usr/local/include

Do not forget to check your configurations, and only afterwards you
should build and install.

$ python setup.py config
$ python setup.py build
# python setup.py install

test numpy with this:
https://gist.github.com/raw/3842524/df01f7fa9d849bec353d6ab03eae0c1ee68f1538/

test_numpy.py
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$ OPENBLAS_NUM_THREADS=1 python build/test_numpy.py
$ OPENBLAS_NUM_THREADS=8 python build/test_numpy.py

In this system, results should be around 0.07 and 0.02 seconds, respectively.
# OPENBLAS_NUM_THREADS=1 python numpy/build/test_numpy.py
FAST BLAS
version: 1.9.0.dev-f80ccb0
maxint: 9223372036854775807

dot: 0.0710162162781 sec

# OPENBLAS_NUM_THREADS=8 python numpy/build/test_numpy.py
FAST BLAS
version: 1.9.0.dev-f80ccb0
maxint: 9223372036854775807

dot: 0.0227558135986 sec

2.2.4 SciPy

We proceed now to the installation of the scipy. The installation instructions
are as follows:
$ git clone https://github.com/scipy/scipy
$ cd scipy

Edit site.cfg file so that:
[DEFAULT]
library_dirs = /usr/local/lib/
include_dirs = /usr/local/include/

and then:
$ python setup.py config
$ python setup.py build
# python setup.py install

test scipy with this:
https://gist.github.com/osdf/3842524#file_test_scipy.py

# python test_scipy.py
cholesky: 0.0181890010834 sec
svd: 0.37500538826 sec

2.2.5 Nose

Proceed similarly for the installation of the nose package:
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$ git clone https://github.com/nose-devs/nose/
$ python setup.py config
$ python setup.py build
# python setup.py install

2.2.6 Theano

Finaly, theano:

git clone https://github.com/Theano/Theano.git
git pull
python setup.py develop

One simple test:

$ python ‘python -c "import os, theano; print os.path.dirname(theano
.__file__)"‘/misc/check_blas.py

And now the final tests. Do not compare with the results from theano
website. With different numpy/scipy versions, new tests are continuously
being added. You should obtain the following times for each package test.

NumPy (~30s): python -c "import numpy; numpy.test()"
SciPy (~132s): python -c "import scipy; scipy.test()"
Theano (~30m): python -c "import theano; theano.test()"

.theanorc configuration flags (/etc/theanorc.theanorc)

# if device is cpu, use floatX=float64
# otherwise leave it as floatX=float32

[global]
device = gpu
floatX = float32
cxx = g++
mode = FAST_RUN
optimizer = fast_run
linker = cvm_nogc
allow_gc = False
base_compiledir = /tmp/theanocompiledir_rsousa/

[gcc]
cxxflags = -O3 -ffast-math

[unittests]
rseed = 0
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[cuda]
root = /usr/local/cuda/

[nvcc]
fastmath = True

# for cpu execution
[blas]
ldflags = -L/usr/local/lib/ -lopenblas -lgfortran -lpthread -lm

2.2.7 Matplotlib

It is time to install matplotlib, but first we need some libraries:
# apt-get install libfreetype6-dev libpng12-dev

Now we are ready to proceed with the installation of the matlaplotlib

$ git clone https://github.com/matplotlib/matplotlib
$ cd matplotlib
$ python setup.py build
# python setup.py install

We may need to install some dependencies:
# pip install distribute

2.3 BLAS and Theano Benchmark
We should check if our installation was conducted properly. For this, please
conduct the following benchmarks. For theano with BLAS bindings:

python ‘python -c "import os, theano; print os.path.dirname(theano.
__file__)"‘/misc/check_blas.py

... with GPU ...
Total execution time: 0.11s on GPU.
... CPU, with one thread ...
Total execution time: 5.41s on CPU (with direct Theano binding to

blas).
... CPU, with eight threads ...
Total execution time: 1.47s on CPU (with direct Theano binding to

blas).

floatX=float32 and with floatX=float64 makes an huge difference, so care-
fully set your settings for your experiments.
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$ python check1.py
Using gpu device 0: GeForce GTX 770
[Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)]
Looping 1000 times took 3.87985801697 seconds
Result is [ 1.23178032 1.61879341 1.52278065 ..., 2.20771815

2.29967753
1.62323285]

Used the cpu
$ python check1.py
Using gpu device 0: GeForce GTX 770
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>),

HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.287859916687 seconds
Result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813

2.29967761
1.62323296]

Used the gpu

The same behavior is obtained when you use CPU.

$ python check1.py
[Elemwise{exp,no_inplace}(<TensorType(float32, vector)>)]
Looping 1000 times took 44.3791029453 seconds
Result is [ 1.23178029 1.61879337 1.52278066 ..., 2.20771813

2.29967761
1.62323284]

Used the cpu
$ python check1.py
[Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)]
Looping 1000 times took 4.33928704262 seconds
Result is [ 1.23178032 1.61879341 1.52278065 ..., 2.20771815

2.29967753
1.62323285]

Used the cpu

with floatX=float64 (float32 raises an error)

$ python check3.py
Using gpu device 0: GeForce GTX 770
time spent evaluating both values 0.170000 sec
time spent evaluating one value 0.080000 sec

Run check4.py and check5.py to check if the results are the same.

$ python check6.py
Using gpu device 0: GeForce GTX 770
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>)]
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Looping 1000 times took 0.169833898544 seconds
Result is <CudaNdarray object at 0x6033fb0>
Numpy result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813

2.29967761
1.62323296]

Used the gpu

Change to Borrow=True

rsousa@nnigroup:~/shared_folder/theano_simple_tests$ python check6.
py

Using gpu device 0: GeForce GTX 770
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>)]
Looping 1000 times took 0.0119159221649 seconds
Result is <CudaNdarray object at 0x72aee30>
Numpy result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813

2.29967761
1.62323296]

Used the gpu

python logistic_sgd.py
....
Optimization complete with best validation score of 7.500000 %,with

test performance 7.489583 %
The code run for 74 epochs, with 28.682171 epochs/sec
The code for file logistic_sgd.py ran for 2.6s

First, download the dataset.

git clone https://github.com/yaoli/GSN
http://deeplearning.net/data/mnist/mnist.pkl.gz

$ python run_gsn.py
.... < some compilation messages > ...
1 Train : 0.60719 Valid : 0.366995 Test : 0.364948 time : 14.83045

...
2 Train : 0.304251 Valid : 0.277751 Test : 0.27737 time : 14.95894

...
3 Train : 0.285826 Valid : 0.267526 Test : 0.268914 time : 15.27624

...
4 Train : 0.268297 Valid : 0.264869 Test : 0.266583 time : 15.09365

...
5 Train : 0.266338 Valid : 0.264188 Test : 0.265794 time : 15.19850

...
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2.4 Other resources
If you wish, you can use the up-to-date pytest scripts that will bind more
properly with theano.

apt-get install mercurial-git

Clone pytest

hg clone https://bitbucket.org/hpk42/pytest/
python setup.py install
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Chapter 3

Classifier Transfer Learning: A
Survey Towards A Unifying View

3.1 Introduction
One common difficulty arising in practical machine learning applications is
the need to redesign the classifying machines (classifiers) whenever the re-
spective probability distributions of inputs and outputs change, even though
they may relate to similar problems. For instance, classifiers that perform rec-
ommendations of consumer items for the Amazon website cannot be straight-
forwardly applied to the IMDB website [4,11]. In the same way, text classifi-
cation for the Wikipedia website may not perform appropriately when applied
to the Reuters website, even though the texts of one and the other are writ-
ten in the same idiom with only moderate changes of the text statistics. The
reuse of a classifier designed for a given (source) problem on another (target)
problem, presenting some similarities with the original one, with only minor
operations of parameter tuning, is the scope of Transfer Learning (TL).

The following aspects have recently contributed to the emergence of TL:

– Considerable amount of unlabeled data: TL relaxes the necessity of ob-
taining large amounts of labeled data for new problems [1, 4]. TL can be
advantageous since unlabeled data can have severe implications in some
fields of research, such as in the biomedical field [32,51];

– Good generalization: TL often produces algorithms with good generaliza-
tion capability for different problems [4, 27];

– Less computational effort: TL provides learning models (classifier models)
that can be applied with good performance results in different problems
and far less computational effort (see e.g., [4, 24, 25]).

14



The following definitions clarify what we believe should be meant by TL. We
use “model” as a general designation of a classifier or regressor, although in
the present Chapter we restrict ourselves to the reusability of classifiers.

Definition 1 (MK): Model Knowledge, or simply knowledge when no con-
fusion arises, means the functional form of a model and/or a subset of its
parameters.

Definition 2 (TL): TL is a Machine Learning (ML) research field whose
goal is the development of algorithms capable of transferring knowledge from
the source problem model in order to build a model for a target problem.

Although (portions of) these ideas have been around in the literature [51],
it has never been clearly defined as Definition 2. Most of the times the
concept of TL has been mixed in the literature with active, online [7] and
even sequential learning [7,40]; also, concepts from classical statistical learn-
ing theory have not been used to properly define all possible TL scenarios.
TL in fact encompasses ideas from areas such as dataset shift [40] where the
distribution of the data can change over time, and to which sequential algo-
rithms may be applied; or covariate shift [4] where data distributions of two
problems differ but share the same decision functions. Overall, the afore-
mentioned discrepancies (e.g., terminology mixture) contribute to obscuring
the TL field and hindering its proper consideration.

The Chapter is structured as follows: Section 3.2 presents an historical
overview on the developments of TL; Section 4.2 describes the fundamental
concepts of TL and their derivations followed by our proposal towards the
unification of TL. Section 3.4 concludes this manuscript by summing up and
discussing all main ideas.

3.2 A Review on TL
TL has been around since the 80’s with considerable advancements since
then (see e.g., [4, 13, 20, 33, 37, 46, 47] and references therein). Probably, the
foremost work that envisioned the concept of TL was the one of Mitchel
in [33] where the idea of bias learning was presented.

An early attempt to extend these ideas was soon performed by Pratt et
al. in [39] where Neural Networks (NNs) were used for TL. In a simple
way, layer weights trained for the source problem were reused and retrained
to solve the target problem. At the time, Pratt and her collaborators [39]
adopted entropy measures to assess the quality of the hyperplanes tailored
for the target problem and to define stopping criteria for training NNs for
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TL. Soon after, Intrator [23] derived a framework to use (abstract) internal
representations generated by NNs on the source problem to solve the target
problem.

After these pioneer works, a significant number of implementations and
derivations of TL started to appear. In [45] a new learning paradigm was
proposed for TL where one would incrementally learn concept after con-
cept. Thrun [45] envisioned this approach to how humans learn: by stacking
knowledge upon another (as building blocks) resulting in an extreme nested
system of learning functions. At that time, a particular case of [45], coined
Multi-Task Learning (MTL), was presented [3, 12]. However, this approach
does not hold for our definition of TL (see Definition 2) since it learns a
common representation for all problems (multiple target problems addressed
simultaneously).

In the year 2000 the concept of covariate shift was introduced by Shi-
modaira [43]. Although initially not contextualized in the domain of TL, his
theoretical conclusions on how to learn a regression model on a target prob-
lem based on a source problem had a significant impact later to be realized.
Shimodaira described a weighted least squares regressor based on the prior
knowledge of the densities of source and target problems. At the time, he only
addressed the case of marginal distributions being different and equal poste-
rior leading to what he termed covariate shift. Other authors [5, 13, 16] fol-
lowed with different algorithms to address the limitations of Shimodaira’s [43]
work such as the estimation of data densities leading to the rise of the do-
main adaptation.1 In the work of Sugiyama et al. [44] an extension of
Shimodaira’s work was presented so that it could cope with the leave-one-
out risk. The success of covariate shift is mostly associated to solving many
Natural Language Processing (NLP) problems [5, 8, 14, 18]. In fact, many
other works were dedicated to this subject–see e.g., [9, 11, 21, 22, 29, 42, 53]
and references therein. Recently, an overview on TL was presented by Pan et
al. in [36] with a vast but horizontal analysis of the most recent works that
tackle classification, regression and unsupervised learning for TL. Orabona
and co-workers [27] provided fundamental mathematical reasonings for TL by
devising: 1) generalization bounds for max-margin algorithms such as SVMs
and 2) their theoretical bounds based on the leave-one-out risk [10]. This
was afterwards extended by Ben-David et al. in [6]. The work of Orabona
et al. [27] was the first to identify a gap in the literature of the theoretical
limitations of algorithms on TL.

The majority of the aforementioned works assume equal number of classes
1Domain adaptation has similar principles to covariate shift. We stick to the latter

designation.
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both for source and target problems. A significant contribution to the un-
constrained scenario of the class set was presented in [46] expanding the work
of Thrun [45].

With the recent re-interest on NNs and the availability of more computa-
tional power along with new and faster algorithms, NNs with deep architec-
tures started to emerge to tackle TL. In [20] a framework for covariate shift
with deep networks was presented; In [1, 2, 24, 25] the research line of [39]
was widened by addressing the following questions: How can one tailor Deep
Neural Networks (DNNs) for TL? How does TL perform by reusing layers
and using different types of data?

The immense diversity of TL interpretations and definitions gave rise to
concerns on how to unify this area of research. To this respect, Patricia et
al. proposed in [37] an algorithm to solve covariate shift and other types of
TL settings. In what follows we present a theoretical framework that ties
together most of the work presented so far on TL for classification problems.

3.3 Transfer Learning

3.3.1 Classification: Notation and Problem Setting

A dataset represented by a set of tuples D = {(xi, yi)}Ni=1 is given to a
classification learning machine. The set XN = {x1, ...,xN} contains N in-
stances (realizations) of a random vector X whose codomain is X = Rd;
it will be clear from the context if X denotes a codomain or a random
vector. Any instance x ∈ X is a d-dimensional vector of real values x =
[x1, x2, . . . , xj, . . . , xd]

t. Similarly, the set YN = {y1, . . . , yN} contains N in-
stances of a one-dimensional random variable Y whose codomain is w.l.o.g.
Y = Z, coding in some appropriate way the labels of each instance of
XN [31].

The (xi, yi) tuples are assumed to be drawn i.i.d. according to a cer-
tain probability distribution P(x, y) on X × Y [15, 31, 48]. We also have a
hypothesis space H consisting of functions h : X → Y and a loss function
L(y, h(x)) quantifying the deviation of the predicted value of h(x) from the
true value y. For a given loss function one is able to compute the average
loss, or classification risk, R(h), as an expected value of the loss. For abso-
lutely continuous distributions on X the classification risk (a functional of
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h) is then written as:

R(h) ≡ EX×Y [L(Y , h(X))]

=
∑
y∈Y

∫
X

P(x, y)L(y, h(x))dx. (3.1)

For discrete distributions on X the classification risk is:

R(h) ≡ EX×Y [L(Y , h(X))] =
∑
y∈Y

∑
x∈X

P(x, y)L(y, h(x)). (3.2)

Our aim is to derive a hypothesis h(x) that minimizes R(h). In common
practice P(x, y) is unknown to the learner. Therefore, R(h) would be esti-
mated using Eq. (3.1) or Eq. (3.2) above using an estimate of P(x, y). As
an alternative, one could also opt to minimize an empirical estimate of the
risk, R̂(h), R̂(h) = 1

N

∑N
i=1 L(yi, h(xi)). Note that if we use an indicator loss

function, L(y, h(x)) = 1y 6=h(x), the risk given by Eq. (3.1) or Eq. (3.2) cor-
responds to the probability of error. Finding the function h that minimizes
R(h) corresponds then to finding the hypothesis — also known as decision
function — that minimizes the probability of error. Similarly, R̂(h) corre-
sponds to an empirical estimate of the probability of error. Finally, when
minimizing Eq. (3.1), h is given according to a parametric form h(x,w) with
w ∈ A,A ⊂ Rn. Finding the appropriate function means finding its corre-
sponding parameters [48]. When clear from the context we will omit w to
define the hypothesis h(x).

3.3.2 TL: A Unifying View

The first requirement is to set the scope of TL. To assess if we can perform
TL we need to know the data distribution of our source, PS, and target, PT ,
problems. We will use subscript S and T to refer to the source and target
problems, respectively. Suppose we have two functions, h∗S and h∗T , each one
solving by Direct Learning (DL) the source and target problems, respectively.
While DL uses a random initial parameterization, TL, by contrast, uses h∗S
as a seed to reach h∗T . This is illustrated in Figure 3.1.

In the work of Shimodaira [43] a weighted maximum likelihood estimate
is devised to handle different data distributions for regression problems. One
can assess this issue theoretically by deriving the target risk w.r.t. the source
hypothesis as follows. We start by writing down the risk of the source prob-
lem:

ES[L(Y , hS(X))] =
∑
y∈Y

∫
X

PS(x, y)L(y, hS(x))dx, (3.3)
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Figure 3.1: A representation of Transfer Learning (TL) when we have the
same number of classes on both source and target problems. When directly
solving the source and target problems — Direct Learning (DL) — one usu-
ally starts with a random parameterization (open bullets) until attaining the
optimal solution, h∗S or h∗T , respectively. TL uses h∗S as a starting point to
reach h∗T , instead of a random parameterization.

where ES[L(Y , hS(X))], ES for short, is the same as EX×Y under the distri-
bution PS(x, y), and we assume that a one-to-one correspondence between
source and target spaces exists, denoting the common space by X × Y .
The risk minimization process will select an optimal hypothesis, h∗S, with a
minimum risk:

RS(h∗S) ≡ ES[L(Y , h∗S(X))]

=
∑
y∈Y

∫
X

PS(x, y)L(y, h∗S(x))dx

=
∑
y∈Y

∫
X

PS(x, y)

PT (x, y)
PT (x, y)L(y, h∗S(x))dx

= ET

[
PS(X,Y )

PT (X,Y )
L(Y , h∗S(X))

]
≡ RW

T (h∗S), (3.4)

where W stands for weighted. The equations for discrete distributions are
obtained by simple substitutions of the integrals by the appropriate sum-
mations. Assessing the TL advantage corresponds to assessing a “distance”
between the initial solution with risk h∗S(x) and the optimal solution one
would obtain by DL (see Figure 3.1). An appropriate “distance” is the de-
viation of the corresponding risks. How to assess TL has been intensively
pursued in psychology. Of most interest is how to measure gains of TL. This
phenomenon was addressed in [38] where concepts of positive and negative
transfer are introduced.

Definition 3 (Transference): Transference is a property that allow us to
measure the effects of a TL framework (e.g., performance).
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– Positive Transference: is a TL method that results on improving the per-
formance on a target problem w.r.t. the best model obtained by DL on the
target problem;

– Negative Transference: the opposite of positive transference that is, when
a TL method results on degrading performance on a target problem.

3.3.3 Categorizations of TL

Based on the joint probability and by the Bayes rule,

P(x, y) = P(y|x)P(x), (3.5)

for the source and target problems, we now generate all TL possibilities.
This choice is related to the decision functions and data distribution changes
that can occur on the source and target problems. Take the example of
covariate shift. If we generate datasets for the source and target marginal
distributions, PS(x) and PT (x), according to two Gaussian distributions with
different means and covariances, and superimpose the same decision function
such that a coding y for an instance, x, x ∈ R2, is assigned according to the
rule d = (x1− 0.5)(x2− 0.5) with y = −1, d < −1 and y = +1 otherwise, we
are then able to obtain the source and target datasets shown in Figure 3.2.

Figure 3.2: A possible scenario for covariate shift. Data for the marginal
distributions PS(x) and PT (x) was generated from two Gaussian distribu-
tions with µS = (0, 0)t and ΣS =

[
0 1
1 0

]
and µT = (1, 2)t and ΣT =

[
1 0.2
0.8 1

]
.

The following decision rule was superimposed: d = (x1 − 0.5)(x2 − 0.5), y =
−1, d < −1 and y = +1 otherwise.

Inspired by the covariate shift setting, we may then impose conditions on
the marginal and posterior distributions (Eq. (3.5)), in order to arrive at all
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possible TL categories presented in Table 3.1. Note that under a practical
perspective it makes sense to use marginal and posterior distributions for TL
categorization. Marginal distributions are easy to estimate and histogram
inspection may hint of whether or not the posteriors are the same. A practical
assessment of the TL category at hand is then achievable.
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It is now clear that if PS(x, y) = PT (x, y) there is no reason to perform
TL. The interesting TL settings correspond to PS(x, y) 6= PT (x, y) leading
to three possible categories:

Covariate Shift: PS(x) is different from PT (x) and PS(y|x) equal to PT (y|x)

Response Shift: PS(x) is equal to PT (x) and PS(y|x) different from PT (y|x)

Complete Shift: PS(x) is different from PT (x) and PS(y|x) different from
PT (y|x)

Different attempts have been made to stratify these approaches [16, 36, 42].
While this stratification can lead to different terminologies, attempts to bring
them together seem insufficient. In a recent work, Zhang et al. [52] have
proposed to categorize Eq. (3.4) but based on the class prior, P(y), and
likelihood, P(x|y), distributions. Their rationale is not related to the decision
surfaces as ours leading to a different analysis. Moreover, they require further
assumptions on the data distributions [52] than the ones presented in this
Chapter.

3.4 Conclusions
A survey towards a unifying formalism for TL has been presented in this
Chapter. We conducted a review of classical and state-of-the-art work on
TL by enumerating key aspects of each one. Based on the work in covariate
shift we could devise three categories of TL: covariate shift, response shift
and complete shift.
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Chapter 4

Automatic Detection of
Immunogold Particles from
Electron Microscopy Images

4.1 Introduction
Immunogold electron microscopy is a high-resolution method for the selec-
tive localization of biological molecules at the subcellular level. Antibodies
coupled to particles of colloidal gold, which are visible in the transmission
electron microscope, can reveal the localization and distribution of the bio-
logical molecules of interest. In this particular work, this technique was used
to determine the composition of cell wall uneven thickenings that ultimately
differentiate into reticulate and flange ingrowths of maize (Zea mays L.) en-
dosperm transfer cells [34]. These cells are essential for the assimilate flow
into the endosperm, thus having a significant impact on kernel yield. Im-
munogold particle detection is a time-consuming task where a single image
containing almost a thousand particles can take several hours to annotate [41]
(Figure 4.1). An automatic detection tool can reduce the time consumed in
such analysis and improve its accuracy.

In this Chapter we describe and compare two methods that permit the
automatic detection of immunogold particles. We show that our method
(Laplacian of Gaussian (LoG)) is tolerant to different sizes of immunogold
particles and to noise that may occur. Our algorithm is compared to the
well-known Spot Detector (SD) method available on the Icy bioimaging soft-
ware [17] and outperforms it in most tested situations.

This Chapter is structured as follows: we start by briefly describing pre-
vious works on this subject immediately followed by the description of our
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Figure 4.1: Representative images of our datasets illustrating different struc-
tures that can interfere in the detection of the immunogold particles due
to: cellular overlapping, tissues and background noise. Each image has
4000×2600 pixels of dimension with particles diameter ranging from 8 to
20 pixels. (a) Example of a sample with a magnification of 15000 (1µm,
particles with a diameter of 8 pixels—red line); (b) magnification of 20000
(0.5µm, 12 pixels diameter particles); (c) magnification of 30000 (0.5µm, 15
pixels diameter particles); and, (d) magnification of 50000 (200nm, 20 pixels
diameter particles).

proposal (see Section 4.2).

4.2 Immunogold Particles Detection
Fisker et al. in [19] explores the possibility to automatically estimate particle
sizes in immuno-microscopy imaging. Their approach is based on deformable
models that can be fitted to the prior known shape of the particles. With
the same goal as Fisker, a different approach was presented by Mallic et al.
in [30] by using cascade of classifiers. Inspired in the conventional face de-
tection challenges where recognition with ensemble of weak classifiers have
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proven to be effective, this straightforward strategy may be computation-
ally complex due to the amount of immunogold particles that may occur in
electron microscopy images. In [41] an insight review is presented by moti-
vating the advantages of Computer Vision (CV) for the processing of images
generated by electron microscopies. Finally, in [49, 50] a Difference of Gaus-
sian (DoG) and LoG filters are applied to aid the detection of particles (e.g.,
organelles) on cryo-electron microscopy images. In these works DoG or LoG
were used as a first step to detect more complex biological structures and
were not tailored neither evaluated on immunogold particles.

A major difference is that in the aforementioned proposals all particles
structures were shallow, irregular in shapes and intensities. Our work will
be focused on the detection of immunogold particles with regular spherical
shape, thus avoiding the adoption of a highly parameterized formalism for
its detection.

4.2.1 Icy bioimaging software: Spot Detector

For the detection of biological structures, there is the publicly available
SD [35] algorithm that is included in the well-known Icy bioimaging soft-
ware [17]. Icy (in short) is an open source software with resources to visual-
ize, annotate and quantify bio-imaging data. The SD enables the detection
of spots that can organelles or other biological similar structures in noise
images 2D or 3D and is based on the non-decimated wavelet transform [35].
This approach aggregates a response for each resolution and scale of the im-
age providing detailed information of the objects. As a generic form of spot
detection it includes a set of parameters that need to be defined for an appro-
priate detection. It requires the identification of a trade-off between particles
and background; the definition of a scale and sensibility that controls both
size of the particles to be detected and a threshold for noise removal.

4.2.2 Immunogold Particles Detection using LoG Filter

For the task of immunogold particles detection we used the LoG filter, which
is based on the image scale-space representation to enhance the blob like
structure as introduced by Lindeberg [28]. Given an input image I(x, y), the
Gaussian scale space representation at a certain scale t is:

L(x, y, t) = g(x, y, t) ∗ I(x, y), where g(x, y, t) =
1

2πt
e

x2+y2

2t , (4.1)
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Figure 4.2: LoG based cell detection: left) Original image (crop from an
image with magnification of 50000); center) LoG response; right) Detections
overlaid in the original image.

where ∗ is the convolution operation. The scale normalized LoG operator is
then defined as:

O2L(x, y, t) = t2(Lxx(x, y, t) + Lyy(x, y, t)), (4.2)

where Lxx and Lyy are the second derivatives of the input image in x and
y respectively, and t is the scale parameter so that t = r/1.5 for a particle
radius r [28]. We set the scale of the filter (t) given the expected range
of the immunogold particles radius (Figure 4.1). We perform detection of
immunogold particles by detecting local maxima of LoG response (Figure 4.2
- center) in the input image (Figure 4.2 - left). The detected maxima enable
us to estimate the position of immunogold particles (Figure 4.2 - right).

4.3 Conclusion
We have presented a study on different methodologies for automatic detection
of immunogold particles in different magnifications. We found that the LoG
automatic detection algorithm outperformed in the almost tested scenarios
the SD approach. In the future we will study the applicability of Deep Neural
Networks [1, 26] for nanoparticle detection.
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Chapter 5

Conclusion and Future work

During this grant we have addressed two important subjects: (a) the proposal
of a clear framework for Transfer Learning (TL) and (b) the study of the
detection of immunogold nanoparticles.

This pivotal work allowed us to identify a significant amount of opportu-
nities for Machine Learning (ML) and Computer Vision (CV) methodologies
with applications on several biomedical fields. Thereby, although not initially
foreseen, we had also the opportunity to propose a new research project that
extends and widens the research lines that we have initiated. In summon,
we have proposed to develop an intelligent system capable of processing and
analyzing Transmission Electron Microscopy (TEM) images of the Nervous
System (NS) and Plants (PTs). We have identified the importance of this
system for helping in understanding the underlying biological principles and
processing massive data storages. Cellular structure and ultrastructure (the
latter only seen through TEM imaging) was identified to be explored in order
to devise Deep Neural Networks (DNNs) capable of automatically extract-
ing information that contribute into new approaches for the analysis of the
NS in development and disease paradigms, improvement of plant yield and
plant response to abiotic stress. Ultimately, this framework can provide a
ubiquitous support for TEM technology by conveying a fundamental intelli-
gent system to answer pressing biological matters with significant social and
economic impact.

5.1 Future Work
In the future, we will continue to research new methodologies to improve
accuracy of the DNNs on biomedical problems. More concretely, we will
apply the knowledge gained so far:
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1. To devise and assess the impact of TL algorithms for the recognition
of immunogold particles in Maize images acquired through TEM with
different magnifications;

2. Towards the development of new TL methodologies capable of coping
new (bigger) datasets for the analysis of images of Collagen;

3. For the morphometric analysis of microglia cells using Stacked Denois-
ing Autoencoders (SDAs);

4. To develop new image processing algorithms for the analysis of images
of C.elegans.
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Appendix A

Appendix

A.1 Acronyms
CNN Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CV Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

DL Direct Learning

DNN Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

DoG Difference of Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

HPC High Performance Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

IF Impact Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LoG Laplacian of Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

ML Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

MTL Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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NN Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

NLP Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SAE Stacked Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SDA Stacked Denoising Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

SD Spot Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

TEM Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

TL Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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