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Abstract

The concept of entropy and related measures has been applied in learning sys-

tems since the 1980s. Several researchers have applied entropic concepts to

independent component analysis and blind source separation. Several previous

works that use entropy and mutual information in neural networks are basically

related to prediction and regression problems.

In this thesis we use entropy in two different perspectives: first as a cost

function in neural networks (multi-layer perceptrons - MLP) for supervised clas-

sification problems; and second, as the basis for a new entropic measure for

unsupervised classification (clustering).

Related with the new entropic cost function we show in the present work

how to use Rényi’s quadratic entropy of the errors between the output of an

MLP and the desired targets as a cost function in classification problems: the

Error Entropy Minimization Algorithm (EEM). We present several optimiza-

tion procedures for this algorithm, namely: how to use an appropriate adaptive

learning rate; how to tune the smoothing parameter when performing entropy

gradient computation; and, the conditions to apply a batch-sequential algorithm

for training with the EEM algorithm.

Regarding unsupervised classification, we present a clustering algorithm based

on a new entropic dissimilarity matrix. This matrix is the basis for a new clus-

tering process, based on layered entropic subgraphs, which we call LEGClust.

We also used this algorithm to perform task decomposition in modular neural

networks for classification problems.
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Resumo

Desde os anos 80 que o conceito de entropia e medidas relacionadas se aplicam

a sistemas de aprendizagem tendo-se assistido à aplicação destes a problemas

de independent component analysis e blind source separation. Trabalhos pos-

teriores que usam a entropia e a informação mútua em redes neuronais estão

fundamentalmente relacionados com problemas de regressão e predição.

No trabalho que aqui apresentamos, usamos a entropia de duas formas dis-

tintas: primeiro, como função de custo em redes neuronais (perceptrão multi-

camada) para problemas de classificação; segundo, como base para um nova

medida entrópica para classificação não supervisionada (clustering).

Relativamente à nova função de custo, mostramos como usar a entropia

quadrática de Rényi dos erros entre a saída do perceptrão multi-camada e as

respectivas etiquetas, como função de custo em problemas de classificação: o

algoritmo de minimização da entropia do erro (EEM). Apresentamos também

um conjunto de optimizações para este algoritmo, nomeadamente: a adopção de

uma taxa de aprendizagem variável; a afinação do parâmetro de suavização para

estimação do gradiente da entropia; as condições para o uso de um algoritmo

"batch-sequential" para treino das redes neuronais com o algoritmo EEM.

No que respeita à classificação não supervisionada, apresentamos um algo-

ritmo de clustering baseado numa nova matriz entrópica de dissemelhança que

serve como base para um novo processo de clustering, ao qual chamamos LEG-

CLust. Também usamos este novo algoritmo para efectuar a decomposição de

tarefas para redes neuronais modulares em problemas de classificação.
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Résumé

Le concept d’entropie et les mesures relationnés s’appliquent à des sistémes

d’apprentissage depuis les années 80, principalement à des problèmes d’analyse

de components independents et de séparation aveugle de sources. Des travaux

postérieurs qui usent l’entropie et l’information mutuelle en réseaux de neurones

artificiels sont relationnés avec la régression et la prédiction.

Dans cette thèse, on use l’entropie avec deux perpectives distinctes: comme

une fonction de coût des réseaux de neurones (perceptron multicouche) pour des

problèmes de classification supervisée, et comme base pour une nouvelle mesure

entropique pour des problèmes de classification non supervisée.

Relationné avec la nouvelle fonction de coût, on présente ici comme utiliser

l’entropie quadratique de Rényi des erreurs entre la sortie du réseaux de neu-

rones et les étiquettes comme fonction de coût: l’algorithme de la minimiza-

tion de l’entropie de l’erreur (EEM). Nous présentons aussi quelques méthodes

d’optimization de l’EEM, à savoir: comme utiliser un coefficient d’apprentissage

variable approprié; comme ajuster le facteur d’aplanissage en calculant le gradi-

ent de l’entropie; et les conditions pour appliquer un algorithme "batch-sequential"

pour l’entrainement du perceptron multicouche avec l’algorithme EEM.

Ce qui concerne la classification non supervisée, nous présentons un algo-

rithme pour "clustering" basé dans une nouvelle matrice de dissimilitude. Cette

matrice est la base pour la nouvelle méthode de "clustering" qu’on a nomée

LEGClust. On use aussi LEGCLust pour éffectuer la décomposition de tâches

dans les réseaux de neurones modulaires pour des problèmes de classification.
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Chapter 1

Introduction

One can probably state that the modern era of classification theory has its roots

on the work of Thomas Bayes and his famous theorem [16]. However, as we

know, any kind of progress is based on previous knowledge and new develop-

ments wouldn’t be possible without the accomplishments of our antecessors.

The foundations of classification can be viewed both from a philosophical and

mathematical point of view. Plato and Aristotle, who distinguish between an

"essential property" (which would be shared by all members in a class) from

an "accidental property" (which could differ among members in the class) [42]

were perhaps the firsts to attempt a coherent view of questions concerning hu-

man understanding that led to classification theory. Later, other philosophers

like William of Ockham with the concept that is now known as "Ockham’s ra-

zor" and René Descartes who added the rigor of mathematics by his strong

dependency upon deductive reasoning, provided the basis for the emergence of

classification theory to be developed by mathematicians. Given that the Bayes

theorem is a ratio of probability density functions, there is a connection between

classification and probability theory, whose initial development roughly span the

time of Pascal to Laplace. In Fig. 1.1 we can see a time window of the basic

foundations of modern classification theory.

Classification of objects is probably one of the most common and ancient

1
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Bayesian Analisys (1764)

Bayes Error Estimation

Probability Density Function Estimation

Parametric Techniques Histogram
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Parzen (1962)

Class Separability Measures

Mathematical Errors and Bounds
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Chernoff Bound (1952)

Entropy Measures (1949)

Intuitive Measures

Scatter Matrices

Figure 1.1: Time window of classification theory foundations.

decision tasks performed by humans. It can be seen as the ability of assigning

a specific object to a predefined group or class based on a number of observed

attributes of that object. The classification process was primarily related to our

natural senses: humans recognize or classify objects based on the data acquired

by their natural sensors. The technological evolution allowed us to develop

sophisticated sensors and the consequent acquisition of more complex signals.

On the other hand by using mathematical tools one can transform the original

data characteristics and obtain other derived features. In Fig. 1.2 we present

the different steps involved in a classification problem. The data collected by

the sensors is converted to specific features that are the input for the chosen

classification method.

New algorithms and new strategies for classification were necessary due to

the emerging of more challenging and computationally demanding applications

in several fields such as: bioinformatics; data mining; biometric identification;

speech recognition; document, image and video analysis and classification; in-

dustrial automation; credit scoring.

Nowadays there are a huge variety of data classification methods. The most
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Figure 1.2: Schematic view of the classification process.

Table 1.1: Some of the most used classification methods.

Based on probabilistic rules Not based on probabilistic rules

Fisher’s linear discriminant K-nearest neighbor
Naive Bayes classifier Fuzzy logic classifiers

Decision trees Support vector machines
Bayesian networks Neural networks
Markov models

common ones are presented in Table 1.1.

Neural networks (NN) have emerged as important tools for data classifica-

tion. The extensive use of these models has proved that they represent a valid

alternative to various conventional classification methods. Neural networks are

used in fields such as function approximation, regression analysis, time series

prediction, data processing, filtering, compression, blind signal separation or

clustering. The advantages of neural networks lie in the following aspects:

1. Neural networks are universal approximators [37].

2. Neural networks are (usually) highly nonlinear machines.
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3. Neural networks are adaptive, model-free machines.

4. Neural networks can estimate Bayesian a posteriori probabilities.

Neural networks have been successfully applied to real world classification tasks

in fields such as medical diagnosis, business, pattern recognition or bio-informatics.

They have also been applied to prediction and control problems.

Early works on neural networks were mainly concerned with investigating

the mean-square-error (MSE) and other second-order statistics as optimality

criteria. This was due to the fact that initial research on linear systems used

the second-order optimality criteria because its quadratic performance surface

permits to obtain analytical expressions for the optimal solution, allowing the-

oretical analysis of the learning process. The results obtained with MSE were

also very satisfactory when the scientific community started to apply it on non-

linear systems. These good results and the belief that the second-order criterion

was sufficient (supported by the central limit theorem), made this criterion the

main focus of interest for some decades. However, by the arising of more com-

plex problems like those involving blind source separation (BSS) or independent

component analysis (ICA), researchers understood that higher order statistics

should be used to describe properly these processes.

In 1948, Shannon [174] introduced what is considered one of the most im-

portant achievements in communication systems: the concept of information

entropy. His work was the foundation of a new research area currently known as

information theory. This appealing new branch of mathematics attracted sev-

eral researchers that produced contributions both in theoretical and practical

aspects. Alfred Rényi [154, 155] was probably the one producing the most im-

portant contribution by showing that Shannon’s information theoretic quantities

were special cases of a more general family of definitions: Rényi’s entropy and

Rényi’s mutual information.

Although the information measures were originally adopted in communica-

tion systems it is such a fundamental concept that it has been widely applied



1.1. MOTIVATION AND OBJECTIVES 5

in areas such as physics, chemistry, computer science, neuroscience, economics,

biology, psychology and linguistics. The application of Shannon’s information

theory to learning systems started in the late 1980s when Linsker presented the

principle of maximum information preservation (InfoMax) [122] that consists on

the maximization of the mutual information between the output and the input

of the network so that the information about the input is best preserved in the

output. In the 1990’s several researchers draw their attention to the application

of Shannon’s information-theoretic measures to ICA and BSS namely by intro-

ducing the principle of maximum entropy and the principle of minimum mutual

information [9, 18,118,201,202].

In the late 1990’s early 2000’s, Príncipe and his co-workers have applied

Rényi’s entropy and other related optimality criteria to problems of BSS, blind

convolution and equalization, feature reduction, ICA and time series prediction

[45,46,55,150–152,197].

1.1 Motivation and Objectives

It was the influence of the above mentioned works of Príncipe, Xu and Erdogmus,

that led us to the attempt of applying entropy to data classification problems.

Since we worked with neural networks we first tried to use the entropy as cost

function in multi-layer perceptrons (MLP). We knew that the usual MSE was

not the most appropriate for neural network classification problems since this

cost function assumes that the errors (difference between the output of the neural

network and the desired targets) are Gaussian distributed 1, and that is definitely

not the case in classification problems. By using the new entropic cost function

we expected to achieve better results in data classification since we were not

limited by the second-order statistics of the MSE.

In a later stage of our work we tried to apply entropy to unsupervised clas-

1This Gaussian distributed assumption is related with the maximum likelihood principle
and the central limit theorem.
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sification (clustering), in the form of a new clustering algorithm. We aimed to

develop this new clustering algorithm supported in a new dissimilarity matrix

not based on typical distance measures. As our final goal we intended to use

the developed algorithms in data classification with Modular Neural Networks

(MNN), namely by performing an entropic task decomposition and by using the

entropic cost function and the related optimization procedures in classification

problems.

1.2 Contributions

The main contributions of this research are:

• The use of Rényi’s quadratic entropy of the errors as cost function in clas-

sification problems with MLP’s, and the Error Entropy Minimization Algo-

rithm (EEM). A theoretical result is presented to this respect [164].

• Several optimization procedures for the EEM algorithm, namely:

– An appropriate adaptive learning rate [169].

– Tuning the smoothing parameter when performing entropy gradient

computation [167].

– A batch-sequential algorithm for neural network training with the EEM

algorithm [166].

• A new entropic dissimilarity matrix for clustering [168].

• A new clustering process based on the previous matrix, which we called

LEGClust [168].

• The application of the LEGClust algorithm to perform task decomposition

in modular neural networks for classification problems (illustrated with sev-

eral experiments) [165].
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1.3 Thesis Outline

In Chapter 2 we give an overview of the basis of neural networks and an intro-

duction to the concept of entropy and its estimation. We use this introduction

also to present some notation.

In Chapter 3, –Error Entropy Minimization Algorithm–, we present an algo-

rithm for neural network training (namely multi-layer perceptrons) based on an

entropic cost function for data classification. We also present some optimization

procedures to achieve a more accurate and faster convergence.

Unsupervised classification, or clustering, with entropic criteria is presented

in Chapter 4 where, after presenting an introduction to clustering and to the

most popular clustering algorithms, we introduce a new clustering algorithm

based on subgraphs with an entropic dissimilarity measure.

In Chapter 5 we apply, to classification problems, our new entropic clustering

algorithm for the task decomposition phase of modular neural networks.

The conclusions are drawn in Chapter 6, where we also present some future

research directions.

In Appendix A the most important characteristics of all the real data sets

used in this work are listed (artificial data sets are included in the running text).

A work on human clustering of bi-dimensional artificial data sets is presented

in Appendix B. This work served as motivation to develop our new clustering

algorithm.





Chapter 2

Definitions and Background

Since one of the purposes of this work is the application of neural networks with

entropic criteria to supervised classification, we start by presenting a review on

neural networks and on the most important topics related to them, followed

by an introduction to entropy, information theory and entropy estimation. In

Section 2.1 we present the basics of neural networks and in Section 2.2 the basics

of entropy and related concepts.

2.1 Basics of Neural Networks

Artificial Neural Networks or simply Neural Networks, also known as connection-

ist models, are based on the attempt to mimic our nervous system, namely by

using structures with a large number of identical and interconnected computa-

tional elements (neurons), trying to achieve similar problem solving strategies as

the human brain. Neural networks are model-free machines possessing universal

approximation capabilities. A possible definition of a neural network presented

by Haykin in [80] is:

A Neural Network is a massively parallel distributed processor made up

of simple processing units, which has a natural propensity for storing

experiential knowledge and making it available for use. It resembles

the brain in two respects:

9



10 CHAPTER 2. DEFINITIONS AND BACKGROUND

1. Knowledge is acquired by the networks from the environment through

a learning process.

2. Interneuron connection strengths, known as synaptic weights, are

used to store the acquired knowledge.

Neural networks have advantages over classical statistical approaches espe-

cially when the training set size is small compared with the dimensionality of

the problem to be solved and the underlying data distribution is unknown.

The first mathematical model of a neural network was presented by McCul-

loch and Pitts [132], a neurophysiologist and a logician, based on their under-

standing of the nervous system. This was a very simple model of the neuron

function. In the following years many researchers, following this model, tried to

use computer simulations to apply it. The close contact between engineers, neu-

rophysiologists and even psychologists, made possible some notable progresses

in the field. In 1958, Rosenblatt [158] introduced one of the fundamental foun-

dations of neural networks, the Perceptron. The perceptron was able to learn, to

connect or associate a given input to a random output unit. It had three layers,

with the middle one known as association layer. This innovation became clear

when Rosenblatt demonstrated the Perceptron Convergence Theorem [159]. This

theorem says that if there is a set of weighted connections of a perceptron, such

that the perceptron gives the desired responses for a set of stimulus patterns,

then after a finite number of presentations of the stimulus-response pairs and

applications of the training procedure, the perceptron will converge to that set

of weights which would enable it to respond correctly to each stimulus in the set.

Meanwhile in 1960, another system was developed by Widrow and Hoff [194] who

employed the Least Mean Square (LMS) learning rule: the ADALINE (ADAp-

tive LInear Element).

In 1969 Minsky and Papert [135], allegedly following a connectionists cam-

paign against the neural network followers, published a book in which they ar-

gued that there were a number of fundamental problems with perceptrons. They
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said that the perceptron was unable to perform certain tasks, such as the cal-

culation of topological function of connectedness (problem of telling connected

patterns from disconnected ones). These limitations proved to be particularly

significant, as they showed that a perceptron could not learn to evaluate the

logical function of exclusive-or (XOR). They also asserted that perceptrons and

their possible extensions were a "sterile" direction of research. This caused the

stagnation of neural network research and a consequent period of disrepute.

Despite the lack of funding for neural network research in the following

years some authors have presented a few new ideas. Examples are the works

by Amari [8], Little and Shaw [124], Paul Werbos [193], Hopfield [82, 83], Ko-

honen [112], Ackley, Hinton and Sejnowski [1], Grossberg [66, 67] and Rumel-

hart [161]. In fact, Rumelhart’s work was one of the most important events in

the renaissance of network models. He worked in the back-propagation algo-

rithm for multi-layer perceptrons first introduced by Paul Werbos in his 1974

PhD Thesis. Since then, a lot of research has been done in this field. Neural net-

works are, nowadays, extensively used in application fields such as Engineering,

Economics, Biology, Chemistry, Medicine, Social Sciences, etc.

2.1.1 The Neuron Model

As we said earlier, a neural network is a parallel distributed processor made up

of simple processing units. These basic information-processing units are known

as neurons. A diagram of a neuron is shown in Fig.2.1. This neuron is made of

three basic components:

1. A set of connections from the input signals to the summing junction, each

one with an associated weight. The connection between input signal xj and

neuron k is weighted by wkj . The first subscript of wkj will always refer

to the neuron and the second to the input signal origin of the connection.

These weights can have any positive or negative value.

2. The summing of the input signals weighted by the respective connections.
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Figure 2.1: A nonlinear model of a neuron.

3. An activation function, also known as squashing function, responsible for

limiting the amplitude of the output yk of the neuron. The usual amplitude

of the output neuron is a closed interval [−1, 1] or [0, 1].

The extra input signal x0 is permanently set to unity.

The neuron is described by the following equation:

yk(x) = ϕ(uk) = ϕ







n∑

j=1

wkjxj


 + wk0


 , (2.1)

where x1, x2, ..., xn are the input signals, wk1, wk2, ..., wkn are the weights of

neuron k, wk0 is the bias, ϕ(.) is the activation function and yk is the output

signal of the neuron. If we define w∗ as vector (wk1, wk2, ..., wkn)T and x∗ as

vector (x1, x2, ..., xn)T we can represent equation 2.1 as:

yk(x) = ϕ(uk) = ϕ
(
w∗Tx∗ + wk0)

)
. (2.2)

Equation 2.1 can be simplified if one includes wk0 in vector w∗. Let w =

(wk0, wk1, ..., wkn)T and x = (x0, x1, ..., xn)T . The output of the neuron is now

defined by:

yk(x) = ϕ(uk) = ϕ
(
wTx

)
. (2.3)
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The mentioned bias term, wk0, also known as threshold, (this bias has noth-

ing to do with the statistical bias) is used to allow the transformation of the

linear combination of the input signals and the weights. This transformation

determines the position of the hyperplane defined by the linear combination. In

Fig. 2.2 we can see an example of a linear decision boundary (hyperplane) in a

2-dimensional input space. The bias defines the position of the plane in terms

of its perpendicular distance to the origin.

1x

2x 0
)

(xy

*

0

w

w

*w

Figure 2.2: The weight vector w∗ defines the orientation of the decision plane
y(x) = 0, while the bias w0 defines the position of the plane in terms of its
perpendicular distance to the origin.

The simple neuron can be viewed as a simple discriminant function. One can

combine multiple neurons like in Fig. 2.3, to obtain a multi-class discriminant

function for a problem of c classes. In this case we get a combination of decision

boundaries that is always simply connected and convex.

2.1.2 Activation Functions

The activation function, ϕ(u), usually a monotonic and bounded function, is

just a function that is used to introduce nonlinearity in the network. Examples

of activation functions are presented in Fig. 2.4.
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Figure 2.3: A multiple output neural model.
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(b) Logistic sigmoid function
with a = 1.
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(c) Tanh sigmoid function
with a = 1.

Figure 2.4: The three most popular activation functions.

The step function, also known as Heaviside or threshold function is defined

by:

ϕ(u) =





1 if u ≥ 0

0 if u < 0
. (2.4)

With this activation function the output of the neural network is 1 if uk

is nonnegative, and 0 otherwise. The neuron model with the step function,

first introduced by McCulloch-Pits, and posteriorly developed by Rosenblatt, is

known as Perceptron.
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The logistic sigmoid function, defined as:

ϕ(u) = sig(u) =
1

1 + e−au
(2.5)

and the tanh sigmoid function, defined as:

ϕ(u) = tanh(u) =
eau − e−au

eau + e−au
, (2.6)

are both S-shaped curves and the two most used activation functions in neural

networks. Parameter a controls the slope of the curves. The outputs of the neural

networks having logistic and tanh activation functions are in the intervals [0, 1]

and [−1, 1], respectively. These two activation functions are differentiable in all

the domain with derivatives (for a = 1):

sig ′(u) =
e−u

(1 + e−u)2
= sig(u)(1− sig(u)) (2.7)

and

tanh ′(u) =
4

(eu + e−u)2
= 1− tanh2(u). (2.8)

Both sigmoidal functions possess a linear behavior near the zero crossing and

a similar behavior with the step function for higher values of u.

Functions such as tanh that produce both positive and negative values tend

to yield faster training than functions that produce only positive values such

as logistic sigmoid, because of better numerical conditioning. On the other

hand, logistic sigmoid activation function allows the output of the neural network

to be interpreted as posterior probabilities [21], providing more than a simple

classification.

In all our experiments with MLP’s we use the tanh activation function.

2.1.3 Neural Networks Architectures

The structure of a neural network is related to the way neurons are connected

to each other and with the learning algorithm. Depending on these different

characteristics we will have two main groups of neural networks: networks with
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only feedforward connections and networks with both feedforward and feedback

connections. In the first group we can include the single layer neural network,

the multi-layer neural network and the Kohonen network [112] and in the second

group we have the Hopfield networks and other types of so-called recurrent neural

networks.

Single-layer and multi-layer neural networks are organized in layers of neu-

rons. The most simple layered neural network is constituted by the input nodes

and a layer of output neurons. There are only connections between the inputs

and the output layer (not the opposite), hence information is processed from

the input to the output, reason for calling them feedforward neural networks.

In Fig. 2.3 we represented a feedforward neural network with multiple outputs.

This neural network has a single layer of neurons (single-layer feedforward neu-

ral network or single-layer perceptron). There are only connections from input

nodes to output neurons. The term "single-layer" refers to the layer of the pro-

cessing neurons. Input nodes are not considered to be a layer because they aren’t

involved in any processing.

One can have more complex layered neural networks by adding more layers of

neurons building a multi-layer feedforward neural network also known as multi-

layer perceptron (MLP). An example of such a neural network is depicted in

Fig. 2.5. This is a fully connected neural network since a neuron in any layer

of the network is connected with all the neurons/nodes of the previous layer.

The output signals from the first layer are the inputs for the output layer. The

layers between the input and output layers are known as hidden layers (neurons

in these layers are called hidden neurons). In this work we use the notation

[a : b : c] to denote the structure of a neural network with one hidden layer. In

this notation the first parameter, a, designates the number of inputs, the last

parameter, c, the number of output neurons and the intermediate parameter, b,

the number of hidden neurons in the hidden layer (for more than one hidden

layer we have more than one intermediate parameter).
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Figure 2.5: A [6:3:2] multi-layer perceptron with one hidden layer.

Multi-layer perceptrons are capable of more complex mappings than single-

layer perceptrons. In Fig. 2.6 we show the types of regions that one can get

from the use of different kinds of single- and multi-layer perceptrons having

threshold activation functions. A single-layer perceptron can only implement a

linear discriminant producing an hyperplane as decision boundary. A multi-layer

perceptron with one hidden layer is able to generate an open or closed convex

region in the input space, whose boundary are segments of hyperplanes. This

convex region is obtained with the ability of the hidden layer to perform an

AND operation. To get non-convex and/or disjoint regions we must add a layer

to perform the OR operation. Multi-layer perceptron with two hidden layers

and threshold activation functions are capable of defining arbitrary regions.

The explanation of the mapping capability of multi-layer perceptrons based

on the properties of the operation AND and OR is just a simple proof of their

ability to map any region of the input space. However, by relaxing some of the

conditions, any given arbitrary decision boundary can be approximated arbitrar-

ily close by a two-layer (one hidden layer) network having sigmoidal activation

functions [21]. For this reason we will use in all our experiments (if not stated

otherwise) this kind of multi-layer perceptrons with one hidden layer and sigmoid
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Figure 2.6: Types of decision regions that can be obtained with single- and
multi-layer perceptrons with one or two layers of hidden units. (from [123])

activation functions.

In the other group of neural networks the information processing can be

operated not only in a feedforward way but also with feedback connections.

Information processing can be made from the output to the input, as in the

Hopfield networks [82, 83] without self-feedback, or even with a self-feedback,

as in recurrent neural networks [7, 101, 195], with time-delay units. These time

delayed feedback connections allow the neural networks to exhibit a non-linear

dynamical behavior with memory properties.

2.1.4 Neural Network Learning

Learning is what defines a neural network, it’s the "reason" of its existence.

Neural networks are capable of learning from the environment and to improve

their performance through learning. The neural network learns from the input

data and, over time, and according with some measures, it adjusts its weights

and bias in order to achieve a better performance. The learning process starts

with the acquisition by the neural network of the data reflecting the environment.

Afterwards and according to some rules the neural network adjusts its weights in
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accordance to the inputs and a performance criteria. By continuously checking

the inputs and the learning state, the neural network is capable of reaching the

best possible performance for the family of functions it is able to implement. The

set of rules on which the neural network bases its learning is called the learning

algorithm. There is a variety of learning algorithms, each one offering its own

advantages. According to [80], there are five basic learning rules: error-correction

learning, memory based learning, Hebbian learning, competitive learning and

Boltzmann learning (error-correction learning is the one that we are going to

discuss with more detail). Learning can also be done in a supervised (learning

with a teacher) or unsupervised (learning without a teacher) way. Supervised

learning assumes that the desired output data (target data) is supplied together

with the input data.

2.1.4.1 Error-correction learning

Let us suppose we have a neural network like the one depicted in Fig. 2.7, having

one or more layers, and a single output neuron and that the desired response or

target for that output neuron is dk(n). Let us denote yk(n) the output signal of

neuron k at iteration n. Suppose that

)(nek

)(nyk

)(ndk

Figure 2.7: The error-correction learning.



20 CHAPTER 2. DEFINITIONS AND BACKGROUND

The error between the desired target dk(n) and the output signal yk(n) is:

ek(n) = dk(n)− yk(n). (2.9)

The learning process acts by adjusting the weights of the neural network

in such a way that the output of the neuron becomes more and more close to

the desired target. This adjustment can be made, for example, by doing the

minimization of an error function E(n) defined in terms of the error signal ek(n)

as:

E(n) =
1
2

e2
k(n). (2.10)

Learning is performed by adjusting the weights of the neural network until

we reach a steady state where the minimum E(n) is obtained. The minimization

of this error function can be achieved by applying the well known delta rule or

Widrow-Hoff rule [194]. Let us consider a single-layer neural network with linear

activation function where wkj(n) is the value of weight wkj of the connection

between neuron k and the element xj(n) of the input vector x(n) at step n. The

delta rule states that the adjustment ∆wkj(n) applied to weight wkj(n) at time

step n is defined by

∆wkj(n) = η ek(n) xj(n), (2.11)

where η is a positive constant determining the rate of learning when processing

from one learning step to another. Parameter η is known as the learning rate

parameter.

The update of the weight wkj , after computing ∆wkj(n), is obtained by

wkj(n + 1) = wkj(n) + ∆wkj(n). (2.12)

The learning rate is one of the most important parameters in the stability of

a closed-loop feedback system like the neural network depicted in Fig. 2.7. The

learning rate must be carefully chosen so that the convergence of the iterative

learning process is achieved.
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In the error-correction learning the weight adjustment can be made by propa-

gating backwards, layer by layer, the error signals originated at the output of the

neural network. This is done using the Back-propagation algorithm, probably the

most popular method for NN training, that we will discuss later. Other popular

methods used to perform NN learning (weight adjustment) are the conjugate-

gradient, the Levenberg-Marquardt and genetic algorithms.

2.1.4.2 Cost Functions

We saw in the previous section that the learning process can be made by adjust-

ing the weights of the neural network in order to minimize an error function E

defined in terms of the error signal e = d − y. Error functions are also known

as cost functions 1 or objective functions. There are several cost functions used

in NN, both for regression and classification problems. In the following list we

present the most used cost functions [21] (we are still considering a NN with a

single output neuron.):

Sum-of-squares error
1
2

N∑

i=1

e2
i (2.13a)

Minkowski error
N∑

i=1

|ei|R (2.13b)

Mean Squared error (MSE)
1
N

N∑

i=1

e2
i (2.13c)

Cross-entropy error −
N∑

i=1

[ti log yi + (1− ti) log(yi)] (2.13d)

1The term cost function is used in optimization and is related to the problem of finding an
optimal solution for a particular problem. This optimal solution is obtained by minimizing or
maximizing a real function (cost or objective function) by systematically choosing the values
of their real or integer variables.
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where ei = di − yi is the error for each element i. The sum-of-squares error is a

particular case of the Minkowski error (R=2).

In this work we will show how to use an entropic cost function in classification

problems. This entropic cost function is build by computing the entropy of the

errors ei as described in the following chapter.

The MSE is one of the most popular cost functions used in classification

problems with MLP’s. The MSE, along with other indexes based on the squared

error, is also used to evaluate the performance of a neural network. These

indexes are used to compare the performance of different neural network solu-

tions. The following list presents the most used performance indexes (besides

the MSE) [127]:

Error mean me =
1
N

N∑

i=1

ei (2.14a)

Absolute error mean m|e| =
1
N

N∑

i=1

|ei| (2.14b)

Relative error Erel =
1
N

N∑

i=1

ei

xi
(2.14c)

Root mean square (RMS) error ERMS =
√

MSE (2.14d)

The error standard deviation

σe =
1

N − 1

√√√√
N∑

i=1

(ei −me)2 (2.15)

is also used as a measure to evaluate the performance in regression problems.

2.1.4.3 The Back-propagation Algorithm

In neural networks with differentiable activation functions the error back-propagation

method [161] is the most used for updating the neural network weights. It is

a computationally efficient method [21] that uses the derivatives of the error
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function with respect to the network weights and biases. This method plays a

central role in the majority of the training algorithms for multi-layer networks.

Since we use this method in our experiments we now present a brief explanation.

We depict in Fig. 2.8, a simplified signal flow in a single-layer neural network

with sigmoidal activation function with focus on neuron k.

jx
kjw

)(nyk

)(ndk

)(nek

Figure 2.8: The signal flow and the back propagated error (dot line) in a
single-layer perceptron.

Let ek(n) = dk(n)− yk(n) be the error between the output of neuron k and

the desired target at step n. As we saw earlier, we need a cost function to

perform the learning task. Let us assume the squared error cost function defined

in 2.10. To update the neural network weights we use the delta rule, a gradient

descent learning rule, to move through the "weight space" of the neuron in steps

proportional to the gradient of the cost function with respect to each weight.

The delta rule for the wkj weight will be:

∆wkj(n) = −η
∂E

∂wkj
. (2.16)

Noting that E is a function of yk(n) which, on the other hand, is a function of

uk and therefore they depend on the weights (Equation 2.3), in order to compute

2.16, we apply the chain rule of derivation and obtain:

∆wkj(n) = −η
∂E(n)
∂wkj

= η δk(n) xj(n),
(2.17)

where the local gradient δk(n) is defined by

δk(n) = ek(n) ϕ′ (uk(n)) . (2.18)
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Let us now consider a two-layer perceptron with a simplified representation

in Fig. 2.9.

ix
jiw

)(ny j kjw )(nzk

)(ndk

)(nek

Figure 2.9: The signal flow and the back propagated errors (doted lines) in a
two-layer perceptron.

To compute the update for weight wkj , one must apply the same rule as for

the previous single-layer perceptron. For the update of weight wji, one needs not

only the error back propagated from neuron k, but also from all the neurons of

the output layer. The error signal for a hidden neuron is determined recursively

in terms of the error signals of all the output neurons to which the hidden neuron

is directly connected.

Let us start by defining the local gradient δj(n) for the hidden neuron j as:

δj(n) = −∂E(n)
∂yj(n)

ϕ′j (uj(n)) . (2.19)

To compute the partial derivative ∂E(n)
∂yj(n) using all the information from the

posterior neurons we must do

∂E(n)
∂yj(n)

=
∑

k

ek
∂ek(n)
∂yj(n)

, (2.20)

which, by applying the chain rule, is:

∂E(n)
∂yj(n)

= −
∑

k

ek(n)ϕ′k(uk(n))wkj(n)

= −
∑

k

δk(n)wkj(n).
(2.21)

Using 2.21 equation 2.19 can now be written as:

δj(n) = ϕ′j(vj(n))
∑

k

ek(n)ϕ′k(uk(n))wkj(n) (2.22)
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and the update of weight wji(n) can be finally obtained as follows:

∆wji(n) = η δj(n) xi(n). (2.23)

2.1.4.4 The Learning rate

We have already mentioned that the learning rate is one of the most important

factors when training a neural network. We also mentioned, in the previous sec-

tion, that the back propagation algorithm, by using a gradient descent approach,

performs, in each iteration, a local descent in the error surface. If the learning

rate is small, we will obtain small changes in the weights and, consequently, an

extremely smooth trajectory in the error surface. This can lead to a very slow

learning and, if the curvature of the error surface is very smooth and changing

with direction, the local gradient may not point towards the minimum, thus

producing an even slower learning. On the other hand, if we use a large learning

rate, we will have large changes in the weights causing big "jumps" in the trajec-

tory in the error surface producing a highly erratic learning. A suitable learning

rate parameter must be chosen for each experiment in order to avoid the men-

tioned problems. Strategies to optimize this learning procedure were made by

several authors, mainly with the assumption that the learning rate must change

along the learning process; in other words, one should use an adaptive learning

rate. The learning rate should be high in the beginning of the training process

and in the end one should use small learning rates in order to avoid getting out

of the region near the global minimum. The adaptive learning rate is usually

based on the following approaches:

1. Start with a small learning rate and increase it exponentially if successive it-

erations reduce the error, or rapidly decrease it if a significant error increase

occurs [13,192].

2. Start with a small learning rate and increase it if successive iterations keep

gradient direction fairly constant, or rapidly decrease it if the direction of
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the gradient varies greatly at each iteration [27].

3. An individual learning rate is given to each weight, which increases if the

successive changes in the weights are in the same direction and decreases

otherwise [92,156,177].

4. Use a closed formula to calculate a common learning rate for all the weights

at each iteration or a different learning rate for each weight [51,84,125,126].

In Chapter 3 we shall present adaptive learning rates based on the approaches

2 and 3, in the scope of neural networks trained with entropic cost functions.

2.1.4.5 Training in Sequential and Batch Mode

The training of a neural network with the back-propagation algorithm is per-

formed by presenting a set of training examples from the data set of a particular

classification problem to the network. During the training phase, one complete

presentation of the training set to the network is called an epoch. An usual prac-

tice to train a neural network is to maintain an epoch-by-epoch learning until

there is a stabilization of the neural network weights and the convergence of the

error function over the entire training set to a minimum value. However, and to

avoid over-fitting 2, this procedure must be done with some caution. To avoid

the loss of generalization capabilities we must not overtrain the network. Some

techniques to avoid this behavior are mainly based on early stopping 3; this

means that one should stop training before the neural network has over fitted

the training data.

2Over-fitting is related with the bias/variance dilemma. When training a neural network
one can get a model with too little flexibility having high bias or a model with too much
flexibility having a high variance. A tradeoff between these two proprieties as to be accomplish
to obtain a model with good generalization capabilities. An extensive discussion about the
bias/variance dilemma can be found in [60].

3We include a brief discussion about early stopping in the section "Practical Aspects of
Neural Network Implementation"
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When applying the back-propagation learning we can have two different

learning modes:

1. Sequential Mode. In this learning mode, also referred asOnline or Stochastic

the weights update is performed each time a new element from the training

set is presented to the neural network. For each new element x1, we compute

the error between the output y1 of the neural network and the desired target

d1, and we apply the back-propagation algorithm to update the weights of

the neural network. By doing this, we will have, for each epoch, as much

weights updates as the number of elements of the training set. The back-

propagation algorithm presented earlier was denoted as a sequential mode

algorithm.

2. Batch Mode. In this learning mode, the back-propagation weights update

is performed after presenting all elements of the training set to the neural

network and computing the respective error function. If using the mean

squared error E (2.14d) the delta rule, similar to 2.17, will be defined, for

the weight of the connection between node/neuron j and neuron k as:

∆wkj(n) = −η
∂E

∂wkj

=
η

N

N∑

n=1

δk(n) xj(n).
(2.24)

In batch mode learning we will have, for each epoch, a single update of the

weights.

Each of the presented learning modes have advantages and disadvantages;

with batch mode, by estimating accurately the gradient vector, the convergence

to, at least, a local minima is guarantied. Also the algorithm is more easily

parallelized. On the other hand, for the sequential mode, it is more difficult to

establish theoretical conditions for convergence due to its stochastic nature. The

sequential mode, however, requires less computational memory, being preferred

for large data sets, and it is also preferred for data sets with some redundance.
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2.1.5 Practical Aspects of Neural Network Implementation

We will present in this subsection some of the practical aspects related to the

real implementation of neural networks. We will discuss the normalization of the

data set, the splitting of the data set in training and test sets, the architecture of

the neural network, the stopping criteria and several other practical conditions.

Let us assume that the original data set was already pre-processed and that

problems with missing values and noise or outliers were already treated. In

other words, we assume that our data set is a "clean" data set. The work on

data preparation for neural network data analysis in [203] presents a study on

several aspects regarding data pre-processing.

The first thing that usually one must do to this clean data set is to perform

a data normalization, or standardization, to avoid that higher inputs assume

a more important role in the learning process than small inputs. The usual

normalization processes transform the data so that:

• every feature of the data is scaled in the interval [0, 1] or [−1, 1], or

• every feature is standardized to have zero mean and unitary standard devi-

ation.

The next step is to choose the architecture of the neural network. There is

no rule specifying the number of hidden layers and the number of neurons in

each hidden layer. We mentioned earlier that a neural network with one hid-

den layer can approximate arbitrarily close any decision boundary, so, for most

problems, a two-layer neural network will be sufficient. A three-layer network

can be considered if a data set is particularly hard to train. Although there

are some works suggesting formulas for determining the number of neurons in

the hidden layer (examples are [26, 59, 157, 170, 205]), we still think that there

is nothing like experimentation. Experiments should be performed with a range

of values for the number of hidden neurons that must be chosen taking into ac-

count the complexity of the problem. There are also some techniques consisting
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on starting with a high complex neural network and then, during training, per-

forming a pruning by eliminating those weights with small influence (very low

value) [61,105,173,182].

As for the initial values for the weights and bias, we should use random small

values 4. This is done to prevent the possibility that some of the initial output

values could be in the saturation region of the activation function. As activation

functions we use, in our experiments, the hyperbolic tangent in all neurons.

After choosing the architecture of the neural network and the initial weights,

and before starting the training phase we will split the data set in two different

subsets: the training set and the test set (some authors consider the partition of

the data set in training set, validation set and test set, however, we use the test

set for validation and test). Training will be performed over the training set. The

test set will be used, in our experiments, for validation and testing. The 10-fold

cross validation and the leave-one-out are the most used methods for splitting

the data set. In the first one, the data set is randomly split in 10 subsets being,

in each experiment, nine of them used for training and one used for testing. The

experiment is repeated 10 times, each time one of the 10 subsets being used as

test set. In the second method, the leave-one-out, all the data except one element

is used for training and the remain element is used for testing (the training is

repeated N times). In all our experiments we use a different splitting method:

a 2-fold cross validation (this was made for comparison purpose with the results

obtained by the other elements of our research group). In this method, each

time, half of the data set is randomly chosen for training and the other half for

testing. Then the data sets are used with inverted roles (the original training set

became the test set and the original test set became the training set). We must

point out that, different splitting will, probably, originate different final results.

Classification errors using the 2-fold cross validation will, probably, be higher

than using the 10-fold cross validation.
4In our experiments we use random values from a normal distribution with zero mean and

unitary standard deviation, multiplied by 0.1.



30 CHAPTER 2. DEFINITIONS AND BACKGROUND

There are several ways of stopping the training of a neural network. We

may stop training when the error reaches a predefined small value, however, we

will probably have a neural network model too much fitted to the training data

and that does not possess the generalization capability. To stop the training

phase before this happens, we validate the model with the test set. In Fig. 2.10

we represent the learning curves for training and testing/validation. Usually the

neural network model does not do as well in the test set as it does in the training

set used to build it. The training error curve decreases monotonically, as usual,

as we increase the number of epochs (theoretically we can get zero training error

if the network has enough complexity). The model is validated periodically in

the test set. The test error curve will monotonically decrease until a certain

point and then it will start increasing as training continues. Training should be

stopped in a epoch around the minimum test error. Early stopping is related to

Figure 2.10: Train error versus test error and the early stopping rule.

the bias/variance trade-off referred earlier.

After training the neural network one has to test the obtained model on the

test data (if using test data for validation, the test is performed simultaneously

with the training). In order to avoid the possibility of having reached a local

minima in the training phase we will make several runs with different initial

weights. In each experiment we usually perform 20 runs for each combination of
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the involved parameters. This number of runs, Nruns, is proposed in [89] if one

wants to be 99% confident that the best-of-all runs (random starts) will result

in one of the best (lowest) 20% possible error values. This value is given by the

formula:

Nruns =
ln(1− Fw(a))
ln(1− FX(a))

, (2.25)

where Fw(a) is the level of confidence, and FX(a), the percentage vicinity of the

lower tail of the distribution, which the best-of-Nruns is expected to provide.

The final result of each experiment will be the average of the errors of the

Nruns and also the respective standard deviation. For each run we compute the

classification error dividing the number of bad classified elements by the total

number of elements of the test set. The standard deviation is important when

comparing results obtained with different models.

One way to evaluate the errors in classification problems is to build a confu-

sion matrix, a visualization tool used to see how the neural network is confused

in the classification of a certain class as another. In a confusion matrix each

column represents the instances in a predicted class, while each row represents

the instances in an true class. An example of a confusion matrix is shown in

Table. 4.6

There are other tools used to measure the performance of a neural network.

A special tool for a two-class problem is the ROC curve (The Receiver Operator

Characteristic curve). It combines the concepts of sensitivity 5 and specificity 6

that depend on the arbitrary selection of a decision threshold. The ROC curve is

shown to be a simple yet complete empirical description of this decision thresh-
5Sensitivity is a statistical measure of how well a binary classification test correctly identifies

a condition. In a medical test to determine if a person has a certain disease, the sensitivity to
the disease is the probability that, if the person has the disease, the test will be positive. That
is, the sensitivity is the proportion of true positives of all positive cases in the population.

6Specificity is a statistical measure of how well a binary classification test correctly classifies
cases not belonging to that class. In a medical test to determine if a person has a certain disease,
the specificity to the disease is the probability that, if the person does not have the disease, the
test will be negative. That is, the specificity is the proportion of true negatives of all negative
cases in the population.
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old effect, indicating all possible combinations of the relative frequencies of the

various kinds of correct and incorrect decisions [134].

2.2 Entropy

The concept of entropy originated from thermodynamics is widely known from

its second law, first stated by Rudolf Clausius. He introduced the concept of

entropy in 1865 during the apogee of steam engines: it specified the maximum

energy available for useful work. In a posterior stage, in statistical mechanics,

Boltzmann stated his famous equation S = k ln W describing the entropy (S)

as the relation between the number of microstates in a system (W ) and its

macroscopic properties (k is the Boltzmann constant). Tsallis, in 1988, presented

a extension of the concept of entropy, stating that Boltzmann formula was not

valid for some rare events [36, 184]:

Sq(p) =
1

q − 1

(
1−

∑
x

pq(x)

)
. (2.26)

In this case, p is a probability distribution, and q is a real parameter. In the

limit as q → 1, the normal Boltzmann-Gibbs entropy is recovered.

Claude Shannon used the same term, entropy, when he introduced his work

about communications over a noisy channel [174]. He studied the statistical

structure of a message to be transmitted and the nature of the final destination

of the information. The first concepts of information in communications were

introduced by Nyquist and Hartley in the 1920’s. In 1924 Nyquist showed that

the speed W of transmission of information over a telegraph circuit, with a fixed

line speed, is proportional to the logarithm of the number m of values used to

encode the message: W = k log m where k is a constant [143]. Later, in 1928,

Hartley generalized the concept and introduced the measure of information for

communication [74], the amount of information associated with an event x which

occurs with probability p, as I = log 1
p .

Entropy has been used in a variety of applications, scattered through the large
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science spectrum. Examples are the applications in information and coding the-

ory, dynamical systems, logic and theory of algorithms, statistical inference and

prediction, physical sciences, economics, biology, humanities and social sciences.

2.2.1 Entropy and Information

In a communication system, the information of a certain event is higher as smaller

is its probability of occurrence. In simple cases, the amount of information is

conveniently measured by the logarithm of the number of available choices 7.

Note that information here is not equivalent and must not be confused with

meaning [185]. The concept of information is too complex and cannot be ex-

plained with a single definition. Two messages, one of which is heavily loaded

with meaning and the other which is pure nonsense, can be exactly equivalent as

regards to our use of information. Information, in communication theory, relates

not so much to what you do say, as to what you could say. Information is one’s

freedom of choice when one selects a message [185]. In this sense it is clearly

related to the initial uncertainty associated to the message selection.

When an event is related to a previous one – when a message is produced by

consecutive symbols – the probability of occurrence of the various symbols at a

certain stage of the process can be dependent on the previous one. The quantity

that measures the information of such a process must be expressed in terms

of the various probabilities involved: those of getting to certain stages of the

message forming process, and the probabilities that, when in those stages, certain

symbols will be chosen next. This quantity, moreover, involves the logarithm of

probabilities, so that it is a natural generalization of the logarithmic measure for

simple cases.

Claude Shannon defined precisely entropy as how much choice is involved in

the selection of a certain event or how uncertain we are of the outcome. Shannon,

in his famous 1948 paper [174], introduced the concept of entropy and mutual
7One of the reasons for using the logarithm is because information should be additive:

I(ab) = I(a) + I(b).
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information, and laid the foundations to the new field of information theory.

Since then, some concepts related to Shannon’s entropy were presented, like

relative entropy that was first defined, in 1951, by Kullback and Leibler [116],

and also some different properties were found for these quantities, for example,

Fano’s inequality [49].

Given a discrete random variable X taking values in the finite set X =

{x1, x2, ..., xn} with probabilities p = (p1, p2, ..., pn), we define the (Shannon)

entropy of X to be the expectation of the Hartley’s information measure:

H(X) = −K
n∑

i=1

pi log2 pi , (2.27)

where K is a positive constant. The entropic measure

H(X) = −
n∑

i=1

pi log2 pi , (2.28)

(the constant K is only related to the choice of the unit of measure, the used

logarithm) played an important role in information theory as a measure of in-

formation, choice and uncertainty.

Note that the entropy of X depends, not on the values of X, but on their

probabilities; however we will use, as usual, H(X) as H(p).

Originally Shannon used log2 and measured entropy in bits. From now on

we will use log, representing the natural logarithm.

If X is a random variable with Bernoulli distribution that takes the value 0

with probability 1− p and the value 1 with probability p, the entropy is:

H(X) = −p log p− (1− p) log(1− p)). (2.29)

As can be seen, for p = 0 or 1, there is no uncertainty in the event (X

is deterministic) and so is the entropy H(X) = 0. If p = 1/2, X will have

the highest uncertainty and consequently the highest value for the entropy is

H(X) = 1 (see Fig.2.11).

Entropy possesses the following properties:
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1. H(X) ≥ 0. The equality holds if one of the probabilities is 1 and all the

others are 0.

2. H(X) is a continuous function of p.

3. H(X) is symmetric. In other words, the ordering of the probabilities p1, p2, ..., pn

does not influence the value of H(X).

4. The entropy of independent variables is additive. If X and Y are two

independent variables with probabilities p and q then, for the entropy of

the join event (X,Y ), we have H(X,Y ) = H(X) + H(Y ).

5. H(X) ≤ log n, with equality iff p1 = p2 = ... = pn = 1
n .

After Shannon other authors have presented other information entropy mea-

sures having almost the same properties of the original one. Rényi presented

a generalized form of information measure based on a general theory of means,

derived from the following axioms:

1. the information of a couple of independent individual events is the sum of

their respective information;
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Figure 2.11: The entropy of a Bernoulli variable for different p.
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2. the information of a random variable is a (generalized) mean information of

the individual event information;

3. the information is additive for independent random variables.

The generalized mean of the real numbers x1, x2, ..., xn with weights p1, p2, ..., pn

has the form

ϕ−1

(
n∑

k=1

pk ϕ(xk)

)
, (2.30)

where ϕ() is the Kolmogorov-Nagumo function [113, 139], which is an arbitrary

continuous and strictly monotonic function defined on the real numbers.

The entropy measure should be [154,155]

ϕ−1

(
n∑

k=1

pk ϕ(I(pk))

)
. (2.31)

To meet the additivity condition, ϕ() can either be ϕ(x) = x or ϕ(x) =

2(1−α)x. If the first expression is used, 2.31 will become Shannon’s entropy 2.28.

If the latter expression is used, Rényi’s entropy [155] is obtained instead:

HRα =
1

1− α
log

(
n∑

k=1

pk
α

)
, α > 0, α 6= 1 . (2.32)

This entropy measure is often known as a generalized information measure,

information measure of order α, or simply α-order Rényi entropy.

Rényi’s entropy is a family of entropy measures and has the Shannon’s en-

tropy (HS) as a special case. The relation between both entropies is defined

by: 



HRα ≥ HS ≥ HRβ if 0 < α < 1 and β > 1,

lim
α→1

HRα = HS

. (2.33)

Rényi’s entropy is the only entropy measure that satisfies the above three ax-

ioms (including, of course, Shannon’s entropy as a particular case) [98]. However,

there are other measures of information that do not satisfy all the axioms but

are still useful for some applications. The Havrda and Charvat’s entropy [79]:

HHα =
1

1− α
log

(
n∑

k=1

pk
α − 1

)
, α > 0, α 6= 1, (2.34)
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is an example of an entropy measure, similar to Rényi’s entropy but with different

scaling, that does not satisfy the additivity axiom but is still equivalent to Rényi

and Shannon entropies with regard to entropy maximization [104]. Another

example of an entropy measure is also H∞ = − log
(
max

k
(pk)

)
[104].

2.2.1.1 Conditional, Joint and Mutual Information Measures

In the previous subsection we have defined the entropy of a single discrete random

variable. The following measures extend the definition to a pair of discrete

random variables.

Consider two discrete random variables X and Y taking values in the fi-

nite sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} with probabilities p =

(p1, p2, ..., pn) and q = (q1, q2, ..., qm) respectively. We can see (X, Y ) as a com-

pound probabilistic experiment with outcome (xi, yi). Let us consider r(xi, yi)

as the joint probability, the probability that the compound experiment (X, Y )

will yield (xi, yi) as outcome.

As a straightforward generalization of 2.28 the joint Shannon’s entropy of

(X,Y ) is defined as ( [35]):

H(X, Y ) = −
n∑

i=1

m∑

j=1

r(xi, yj) log [r(xi, yj)] . (2.35)

A straightforward extension is also the definition of the conditional entropy

of a certain r.v. Y , related to the probability of Y under the condition that

outcome xi has occurred.

H(Y |xi) = −
m∑

j=1

q(yj |xi) log [q(yj |xi)] . (2.36)

Note that we use the conditional probabilities q(yj |xi), j = 1, 2, ..., m, instead

of probabilities q(yj), j = 1, 2, ..., m.

The average conditional entropy of Y given X is obtained by averaging

H(Y |xi) over all the xi values as:
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n∑

i=1

p(xi)H(Y |xi) = −
n∑

i=1

m∑

j=1

p(xi)q(yj |xi) log [q(yj |xi)] ;

H(Y |X) = −
n∑

i=1

m∑

j=1

r(xi, yj) log [q(yj |xi)] .

The minimum and maximum values for the conditional entropy of Y given

X, H(Y |X) is given by the following inequalities:

1. H(Y |X) ≥ 0;

2. H(Y |X) ≤ H(Y ), with equality only if X and Y are independent.

The main conclusion about the second inequality is that, on average, the

information about X leads to a reduction of the uncertainty of event Y . In case

X and Y are independent, knowing X value does not help reducing the initial

uncertainty of Y . The same properties hold for H(X|Y ). For all r.v. X and Y ,

H(X, Y ) = H(X) + H(Y |X)

= H(Y ) + H(X|Y ). (2.37)

Using 2.37 and the previous inequalities one easily derives:

H(X, Y ) = H(X) + H(Y |X) ≤ H(X) + H(Y ), (2.38)

with equality only if events X and Y are independent. One can say that, if an

absolute dependence exists between the outcomes of Y and X (if Y is known

after knowing X), the conditional entropy H(Y |X) = 0 and H(X, Y ) = H(X).

Relative entropy and mutual information are two further concepts related

with entropy which are very important in information theory. Relative entropy,

also known as the Kullback-Leibler divergence [116], is a measure of the dis-

similarity between two distributions and is defined as the expectation of the

logarithmic likelihood ratio. Relative entropy is thus defined as:

D(p|q) =
∑

x

p(x) log
p(x)
q(x)

, (2.39)
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where p(x) and q(x) are two probability mass functions. Although sometimes

mentioned as "Kullback-Leibler distance" this is not a true distance measure

between two distributions since it is not symmetric and does not satisfy the

triangular inequality. The relative entropy is used as a measure of inefficiency

of assuming that the distribution is q when the true distribution is p [35].

Mutual information can be seen as a dependency measure between two ran-

dom variables Y and X, or the amount of information that one random variable

contains about another random variable. Mutual information is thus defined as:

I(X,Y ) = H(Y )−H(Y |X)

= −
n∑

i=1

m∑

j=1

r(xi, yj) log
r(xi, yj)

p(xi)q(yj)
. (2.40)

When X and Y are independent I(X, Y ) = 0. I(X,Y ) is symmetric, that is

I(X,Y ) = I(Y, X) = H(X)−H(X|Y ). (2.41)

The relationship between the presented information measures (different en-

tropies and mutual information) is shown in the Venn diagram of Fig.2.12. The

intersection of the two circles will not occur in the case of independent r.v. X

and Y .

H(X)

H(Y)

H(X|Y)

H(Y|X)
I(X,Y)

Figure 2.12: Relationship between information measures.

The following relationships between information measures can be easily de-

rived from the Venn diagram:
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1. H(X|Y ) ≤ H(X) and H(Y |X) ≤ H(Y )

2. I(X, Y ) ≤ H(Y ) and I(X,Y ) ≤ H(X)

3. I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

4. H(X, Y ) = H(X|Y ) + I(X,Y ) + H(Y |X) = H(Y ) + H(X|Y ) = H(X) +

H(Y |X)

5. H(X, Y ) ≤ H(X) + H(Y )

Until now we have just presented information measures and related properties

for discrete random variables. The equivalent formulas for continuous random

variables are obtained in a straightforward way, substituting summations by

integrals and probability mass functions by probability density functions. The

entropies of continuous r.v. are sometimes known as differential entropies. This

way, Shannon’s (differential) entropy is:

H(X) = −
∫ +∞

−∞
f(x) log f(x) dx, (2.42)

where f(x) is the probability density function (pdf) of r.v. X. Analogously, the

α-order Rényi differential entropy is:

HRα(X) =
1

1− α
log

(∫ +∞

−∞
fα(x) dx

)
, α > 0, α 6= 1. (2.43)

The second-order Rényi’s differential entropy,

HR2(X) = − log
(∫ +∞

−∞
f2(x) dx

)
, (2.44)

will be used later and will be referred to as the Rényi’s quadratic entropy due

to the quadratic form of the pdf.

Differential entropy follows some important extremal properties:

1. If the density f is concentrated on a limited interval [a; b], then the differ-

ential entropy is maximal iff f is uniform on [a; b], and then H(f) = 0.
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2. If the density is concentrated on the positive half line and has a fixed expec-

tation, then the differential entropy takes its maximum for the exponential

distribution.

3. If the density has fixed variance, then the differential entropy is maximum

for the Gaussian density.

All the properties presented earlier, such as joint and conditional entropies

and mutual information, are also valid for differential entropies [35].

2.2.2 Entropy Estimation

How can entropy be estimated from data? One might think that this problem

has already been conclusively studied and understood. However, taking into

account all the works presented since Shannon’s 1948 paper, it still is a currently

researched subject especially in what concerns differential entropy.

Several authors have presented explicit expressions for the entropy of known

continuous probability distributions. An overview of some formulas for univari-

ate densities can be found in [117] and for multivariate densities in [3, 64]. The

entropy estimation problem is rather more difficult for unknown distributions

because one must estimate the probability density function and, when directly

applying formula 2.42, to use numerical integration. Before discussing entropy

estimation, we will present in the following two subsections the most used non-

parametric methods to estimate the probability density function of a continuous

random variable: the histogram-based estimator and the Parzen window estima-

tor. See [129] for a review on nonparametric density estimation.

2.2.2.1 Histogram-based Density Estimators

According to [181], the first histogram appeared in 1661, due to John Graunt, a

London haberdasher, as an attempt to summarize the information collected by

the parish priests of the Church of England about the last 100 years births and

deaths, as was ordered by king Henry VIII, concerned with the decrease of the
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English population caused by the plague. This first histogram came about from

the need to summarize the mountains of collected data.

Let us consider a sample {x1, x2, ..., xn} of observations of an i.i.d. random

variable X ∈ R, from an unknown absolutely continuous probability density

function g(x).

The histogram-based density estimator is used to estimate the truncated 8

density of g(x), f(x) (if g(x) has infinite support) as

f(x) =





g(x)R b
a g(t)dt

x ∈ [a, b]

0 otherwise

. (2.45)

Let us consider the partition of the interval [a, b] by a = t0 < t1 < ... < ti <

... < tm = b and denote

Ti = [ti, ti+1[

qi =
∑n

k=1 Ixk∈Ti

l(Ti) = ti+1 − ti

The histogram is built by assigning to each bin a height proportional to the

probability:

p(t) =





qi/n t ∈ Ti;

qm−1/n t = b;

0 t /∈ [a, b]

. (2.46)

The estimated density given by the histogram is therefore obtained by:

f̂H(t) =





p(t)/l(Ti) t ∈ Ti;

p(t)/l(Tm−1) t = b;

0 t /∈ [a, b]

. (2.47)

If f is bounded and has continuous derivatives up to order three, except at

the endpoints of [a, b], and we consider equal spacing, ti+1 − ti = 2h(n) ≡ 2hn,
8Given the finiteness of the available data sample only a truncated pdf estimation can be

reliably performed.
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then, if n → ∞ and hn → 0 such that nhn → ∞, for x ∈ [a, b], the following

holds 9 (see proof in [181]):

MSE
(
f̂H(x)

)
= E

[(
f̂H(x)− fH(x)

)]
→ 0. (2.48)

In other words, f̂H(x) converges in the L2-norm to f(x) and, therefore, it is

a consistent estimator for f(x).

2.2.2.2 Parzen Window Density Estimator

The Parzen window estimator is a generalization of the shifted-histogram or

Rosenblatt’s kernel estimator. Rosenblatt’s approach is simply a histogram

which, for estimating the density at x, has been shifted so that x lies at the

center of a mesh interval. The Rosenblatt estimator is therefore given by ( [160])

f̂n(x) =
] sample points in (x− hn, x + hn)

2nhn
, (2.49)

where hn is a real valued number constant for each n, i.e.,

f̂n(x) =
Fn(x + hn)− Fn(x− hn)

2hn
, (2.50)

with

Fn(x) =
] sample points ≤ x

n
, (2.51)

the empirical distribution of the data.

The Rosenblatt estimator, as the histogram-based estimator, f̂H , is also a

consistent estimate of f(x) [181].

One can also represent Rosenblatt’s shifted histogram estimator as:

f̂n(x) =
1
n

n∑

j=1

1
hn

w

(
x− xj

hn

)
, (2.52)

where w(u) =





1
2 if |u| < 1

0 otherwise

is a rectangular kernel function.

9Condition nhn → ∞ is used to guarantee that n converges more rapidly to ∞ than hn

to 0. These two parameters must be related in such a way that, when n grows, it must grow
faster than the decreasing of hn.
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A global optimal value for hn is presented in [181] and can be obtained from

the integrated mean square error:

hn =
[

9
2

∫
(f ′′(x))2dx

]1/5

n−4/5. (2.53)

Note that there is a faster decrease in hn with the growth of n in such a way

that condition nhn →∞ is satisfied.

Although Rosenblatt suggested generalizing 2.52 to estimators using different

bases (kernels) than step (rectangular) functions, the detailed explanation and

study of kernel estimators is due to Parzen [146]. Parzen considered the estimator

for f(x) as

f̂n(x) =
∫ ∞

−∞

1
hn

K

(
x− y

hn

)
dFn(y) ' 1

nhn

n∑

j=1

K

(
x− xj

hn

)
, (2.54)

where 



∫∞
−∞ |K(y) dy| < ∞

Sup
−∞<y<∞

|K(y)| < ∞,

lim
y→∞|y K(y)| = 0

(2.55)

and 



K(y) ≥ 0
∫∞
−∞K(y) dy = 1

. (2.56)

If K is a Borel function 10, the kernel estimator f̂n in 2.54 subject to 2.55

and 2.56 is asymptotically unbiased if hn → 0 as n →∞, i.e,

lim
n

E
(
f̂n(x)

)
= f(x). (2.57)

The estimator f̂n in 2.54 subject to 2.55 and 2.56 is consistent if we add the

additional constrain lim
n→∞ nhn → ∞. Proofs of the previous theorems can be

found in [181].

10Borel functions, also called measurable functions, are well-behaved functions between mea-
surable spaces.
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A global optimal value for hn obtained from the minimization of the inte-

grated mean square error is:

hn = n−
1

2r+1 α(K) + β(f) (2.58)

with

α(K) =

[ ∫
K2(y) dy

2r
(∫

yrK(y)dy/r!
)2

]1/(2r+1)

and

β(f) =
[∫

|f (r)(y)|2 dy

]−1/(2r+1)

,

where r is the characteristic exponent 11 of the kernel. If K is a probability

density r cannot be higher than 2, with r = 2 being the most important case.

Examples of kernels with characteristic exponents of 2 are the Gaussian kernel,

the double exponential or any other symmetric kernel K having x2K(x) ∈ L1.

Since we assume the functional form of K to be given, we can evaluate α(K)

more or less easily. The determination of β(f) is fraught with difficulty because

f(y) is unknown. Examples of values of α(K) for r = 2 are shown in Table 2.1.

Table 2.1: α values for different kernels with r = 2.

K α(K)

K(y) = 1/2 |y| ≤ 1 1.3510

K(y) = 15
16 (1− y2)2 |y| ≤ 1 2.0362

K(y) = 1√
2π

exp−y2/2 |y| < ∞ 0.7764

In Parzen window estimation we are limited by the fact that β(f) is generally

unknown. One could consider to iteratively improve an estimation of β(f). As

an example we mention that, for a Gaussian density with standard deviation σ,

11In fact, r is the characteristic exponent of k, the Fourier transform of the kernel K that
satisfies conditions 2.55 and 2.56. If there exists a positive r, such that kr = lim

u→0

h
1−k(u)
|u|r

i
is

nonzero and finite, r is called the characteristic exponent of k.
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we have:
∫
|f ′′(y)|2dy ≈ 0.212σ−5 ⇒ β(f) ≈ 1.3637 ⇒ hn ≈ 1.06σn−1/5. (2.59)

(For now on and for the sake of simplicity we will use f̂(x) and h for f̂n(x) and

hn)

Aware of the fact that kernel estimators are not, in general, robust against

poor choices of h [181], some authors have suggested some values for this param-

eter based on formula 2.58. Examples are the ones proposed by Silverman, both

for unidimensional cases [179]: the mentioned value h = 1.06σn−1/5 (formula

2.59), and also

h = 0.9An−1/5 where A = min

(
σ,

IQR

1.34

)
, (2.60)

where IQR is the interquartile range. Also the one proposed by Bowman and

Azzalini [24] for multidimensional cases and assuming normal distributions:

h = σ

(
4

(m + 2)n

) 1
m+4

, (2.61)

where m is the vector dimension (for m = 1, h = σ(4/3n)0.2, similar to formula

2.59).

However, the choice of h (also known as smoothing parameter or bandwidth)

is always limited by the bias-variance tradeoff: the bias can be reduced at the

expense of the variance, and vice versa. The bias of an estimate is the systematic

error incurred in the estimation and the variance of an estimate is related to the

random error incurred in the estimation. The bias-variance dilemma applied to

the choice of h simply means that a large h will reduce the differences among

the estimates of f̂(x) for different data sets (the variance) but it will increase

the bias of f̂(x) with respect to the true density. A small h will reduce the bias

of f̂(x), at the expense of a larger variance in the estimates f̂(x).

The Parzen window estimator for multiple dimensions is:

f̂(x) =
1

n hd

n∑

j=1

K

(
x− xj

h

)
. (2.62)
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We will return to the subject of the optimal value for h when discussing

Rényi’s entropy estimation in the next subsection.

2.2.2.3 Differential Entropy Estimation

After one of the first works in entropy estimation, in 1956, for discrete distribu-

tions [12], this problem, less complex than the estimation for continuous distribu-

tions, was also analysed by several other authors [10,14,65,87,114,144,145,172];

these works presented estimation methods, convergence properties and studied

the estimators complexity and their statistical properties.

Regarding continuous distributions, as we said earlier in this section, some

authors have presented explicit formulas for the entropy of known continuous

probability distributions. For unknown distributions the first proposed estima-

tors for Shannon’s entropy were presented in the seventies by Dmitriev [40],

Ahmad [2] and Vasicek [186]. Other entropy estimators, mostly based on the

previous ones, were presented in the following years [19,34,73,115,136,188].

Dmitriev [40] was the first to propose the integral estimator of the form

Hn = −
∫

An

fn(x) log2 fn(x) dx, (2.63)

to estimate Shannon’s entropy for d = 1. Ahmad [2] estimated the entropy using

the resubstitution estimator

Hn = − 1
n

n∑

i=1

ln fn(Xi) (2.64)

and showed the consistency of this estimator under certain conditions. Other

entropy estimators like the splitting data estimator and the cross-validation es-

timator, were proposed by Györfi [70–72] and by Ivanov [88] and Hall [73] re-

spectively. These authors also studied the consistency and convergence criteria

for these estimators.
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2.2.2.4 Rényi’s Quadratic Entropy Estimation

Most of the work done in the estimation of entropy is related to Shannon’s

entropy. However, recent research works use estimators of Rényi’s entropy with

several applications in learning systems. A particular form of Rényi’s entropy is

the quadratic one, because, in conjunction with the Parzen Window probability

density function estimation with gaussian kernel, it can be estimated in a non-

parametric and very practical way. The only estimation involved is the pdf

estimation. Estimation of Rényi’s quadratic entropy with Parzen window and

gaussian kernel was proposed in [198]. Posteriorly, the estimation of the general

α-order Rényi’s entropy was presented in [45].

Rényi’s quadratic entropy HR2 can be estimated in the following way:

Let us consider a sample {x1, x2, ..., xn} of observations of an i.i.d. random

variable X ∈ R. Let us remember that the Parzen window method estimates

the pdf f(x) as

f(x) =
1

nh

n∑

i=1

K(
x− xi

h
). (2.65)

Using a simple Gaussian kernel

G(x, 1) =
1

(2π)
1
2

exp

(
−1

2
xT x

)
, (2.66)

the estimated pdf f(x) using Parzen window and Gaussian kernel is:

f(x) =
1

nh

n∑

i=1

G

(
x− xi

h
, 1

)
=

1
n

n∑

i=1

G
(
x− xi, h

2
)
. (2.67)

Noting that the integral of the product of two Gaussians is exactly given by a

Gaussian function whose variance is the sum of the variances of the two original

Gaussian functions ( [197]), Rényi’s quadratic entropy can be estimated by

ĤR2(x) = − log
∫ +∞

−∞

(
1
n

n∑

i=1

G(x− xi, h
2)

)2

dx

= − log


 1

n2

n∑

i=1

n∑

j=1

G(xi − xj , 2h2)


 . (2.68)
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One can use other kernel functions in this estimator not achieving, however,

the same convenient evaluation of the integral.

Rényi’s quadratic entropy estimation will be treated with more detail in the

following chapter.

The α-order Rényi’s entropy (2.43) can be written with an expectation op-

erator as:

HRα(X) =
1

1− α
log

∫ +∞

−∞
fα(x) dx =

1
1− α

log E
[
fα−1(x)

]
, (2.69)

and approximating this expectation operator by the sample mean, we get,

HRα(X) ≈ 1
1− α

log
1
n

n∑

j=1

fα−1(xj). (2.70)

Substituting the Parzen window estimator 2.65 in 2.70, the nonparametric

estimator for the α-order Rényi’s entropy is:

ĤRα(X) =
1

1− α
log

1
n

n∑

j=1

[
1
n

n∑

i=1

Kh(xj − xi)

]α−1

=
1

1− α
log

1
nα

n∑

j=1

[
n∑

i=1

Kh(xj − xi)

]α−1

, (2.71)

where 1
n

∑n
i=1 Kh(xj − xi) is the same as 1

nh

∑n
i=1 K(xj−xi

h ).

In [45] the consistency of this estimator, on the condition of consistency of

the related Parzen windowing and sample mean, is proved.





Chapter 3

Error Entropy Minimization

Algorithm

We start this chapter with an overview of the application of information-theoretic

concepts in learning systems and we will present the error entropy minimization

algorithm that was used for regression. In order to perform neural network

classification following the same approach, we developed the error entropy mini-

mization algorithm for classification. Further on, we present several optimization

procedures, including several complements in the algorithm, in order to obtain

a faster learning. In this chapter, we also present some experiments showing the

results obtained with the new algorithm and also with the implemented opti-

mization procedures. These experiments show the validity of the proposed error

entropy minimization (EEM) algorithm.

3.1 Entropy in Learning Systems

Since the introduction by Shannon [174] of the concept of entropy, and the poste-

rior generalization made by Rényi [154], entropy and information theory concepts

have been applied to learning systems. As a matter of fact, entropy and relative

concepts have several applications in learning systems. Some applications are

51
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based on finding the mutual information and the consequent relations between

the distributions of the variables involved in a particular problem. Linsker [122]

proposed the Infomax principle that consists in maximizing the mutual informa-

tion between the input and the output of a neural network. Mutual information

gives rise to either unsupervised or supervised learning rules depending on how

the problem is formulated. We can have unsupervised learning when we ma-

nipulate the mutual information between the outputs of the learning system or

between its input and output. Examples of these approaches are independent

component analysis (ICA) and blind source separation [9, 18]. If the goal is to

maximize the mutual information between the output of a mapper and an ex-

ternal desired response, then learning becomes supervised. Figure 3.1 shows a

block diagram of a unifying scheme for learning, based on the mutual information

criterion.

Figure 3.1: Unifying learning models with the mutual information criterion
(source [152]).

Depending on the position of the switch, learning belongs to the unsupervised

type (position 1 and 2) or supervised type (position 3). Position 1 corresponds

to ICA or blind source separation and position 2 to Linsker’s Infomax criterion.

In position 3, by maximizing the mutual information between the output of a

mapper and an external desired response, the learning becomes supervised.
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Mutual information is also applied in pattern recognition and classification.

Fano’s inequality [49], mentioned earlier in Chapter 2, shows that maximizing

mutual information decreases the lower bound of the probability of classification

error. It relates the probability of error to the conditional entropy. If the goal

is to estimate a variable X with a discrete probability mass p(x) by calculat-

ing an estimate from another random variable Y characterized by p(x|y), Fano

inequality states that

H(Pe) + Pe log(|X | − 1) ≥ H(X|Y ), (3.1)

that can be weakened to:

1 + Pe log(|X |) ≥ H(X|Y ), (3.2)

where Pe = P (x 6= x̂). Applying 2.41 in 3.2 we get:

Pe ≥ H(X)− I(X, Y )− 1
log(|X |) . (3.3)

Since the entropy of X and the log(|X |) depend only on the data, we can see

that, in order to reduce the lower bound of the probability of error, one must

maximize the mutual information between x and y.

Entropy and mutual information were used in a variety of real problems,

such as noise detection [190], image alignment [191], cryptology [25], time series

prediction [46, 149], channel equalization [163] or blind source separation and

ICA [19, 23, 176]. In the last years, Príncipe and his co-workers, presented a

series of works where they successfully applied Rényi’s entropy and other derived

optimality criteria to a huge variety of real problems, some of them related to

blind source separation, dimensionality reduction, feature extraction or time

series prediction [45, 46, 55, 62, 137, 149, 150, 152, 197, 198]. In [45] it is stated

that Príncipe was the first to introduce the terminology "information theoretic

learning" (ITL) into the adaptive systems literature.

We may find some examples of applications of entropy in the specific field of

neural networks. Works presented in this subject show that information theory
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concepts may help us to build and tune neural networks to specific problems.

Examples of these applications are the works that try to use entropy to determine

and define the complexity of the neural network by defining bounds for it [17,41,

204] or just by generating the neural network based on entropy [85, 183] or yet

by performing neural network architecture optimization and pruning [142, 147].

Entropy and information theory can also be combined with neural networks

to solve some real problems [28, 180]. Other examples of the relation between

entropy and neural networks are the works of Schraudolph [171] and Viola [190].

With the specific goal of performing supervised information-theoretic learn-

ing with neural networks, the following approaches have been proposed:

• CIP (Cross Information Potential) - The CIP tries to establish the relation

between the pdfs of two variables. These variables could be the output of

the network and the desired targets or the output of each layer and the

desired targets [199].

• The entropy maximization of the output of the network and simultaneously

the minimization of the entropy of the output of the data that belongs to

a specific class. This method was proposed in [77], as a way of performing

supervised learning without numerical targets.

• MEE (Minimum Error Entropy) - This method consists of the minimization

of the error entropy between the outputs of the network and the desired

targets. This approach was proposed in [46] and used to make time series

prediction.

We made experiments with these three methods with the goal of performing

supervised classification. None of them has shown to be appropriate for that

task. This led us to develop a new approach for classification problems that we

describe in Section 3.2



3.1. ENTROPY IN LEARNING SYSTEMS 55

3.1.1 The Error Entropy Minimization Algorithm for Regres-
sion

As we have seen in Chapter 2, Rényi’s quadratic entropy can be estimated in

a very efficient way. This entropic measure was used in [46, 47] to estimate the

entropy of the errors between the output and the desired targets of an adaptive

system. In this case, the authors have applied Rényi’s quadratic entropy in

time delay neural networks of various sizes to perform short-term prediction of

Mackey-Glass chaotic time series and nonlinear system identification.

Consider e = d−y to be the error between the desired and the actual output

of an adaptive system. The global minimum of Shannon’s entropy of the error

e is achieved when the pdf of the error is a Dirac-δ function [46], meaning that

the global minimum is achieved when all errors are equal.

Regarding Rényi’s quadratic entropy of e:

ĤR2(e) = − log
∫ +∞

−∞

(
1
n

n∑

i=1

G(e− ei, h
2)

)2

dx

= − log


 1

n2

n∑

i=1

n∑

j=1

G(ei − ej , 2h2)


 = − log V (e), (3.4)

it was shown that it has the local minimum e = 0 and that the global minimum

of this estimator is also e = 0. In this case the minimum is obtained when all the

errors have the same value. Principe [150] calls V (.) the information potential

in analogy with the potential field in physics.

In regression problems, this approach can lead to a situation where the fi-

nal solution, the final weight values, may not correspond to a zero-mean error

solution. Actually, in [46] it is stated that:

"One important point to note in training with entropy is that since en-

tropy does not change with the mean of the distribution, the algorithm

will converge to a set of optimal weights, which may not yield zero-mean

error. However, this can be easily corrected by properly modifying the
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bias of the output processing element of the MLP to yield zero mean

error over the training data set just after training ends."

In the next section we present the conditions to apply a similar algorithm of

error entropy minimization to classification problems.

3.2 The EEM Algorithm for Supervised Classification

As we saw on the previous section, the minimization of the error entropy was

already used in learning systems, mainly on regression and time series prediction.

Although in [45] is said that "Due to the property that the entropy estimator is

invariant to the mean of the underlying density of the samples as is the actual

entropy, in supervised learning entropy cannot be used to force the mean of the

error signal to zero", we will show in this section how to use the minimization

of the error entropy in classification problems [164].

We will perform classification tasks, using as cost function Rényi’s quadratic

entropy of the error between the output of the neural network and the desired

targets: this yields the Error Entropy Minimization algorithm, EEM. To per-

form the neural network learning, we apply the back-propagation algorithm and

consequently the gradient descent method for entropy minimization. This same

algorithm with Shannon’s entropy was proposed posteriorly in [178], also with

good results when comparing it with MSE and Cross-entropy.

Let us see how to estimate Rényi’s quadratic entropy of multi-dimensional

random variables.

Let a = ai ∈ Rm, i = 1, ..., N , be a set of samples from the output Y ∈ Rm of

a mapping Rn 7→ Rm : Y = g(w, x), where w is a set of Neural Network weights.

The Parzen window method estimates the pdf f(y) as

f(y) =
1

Nhm

N∑

i=1

K

(
y − ai

h

)
, (3.5)

where N is the number of data points, K is a kernel function, and h the band-
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width or smoothing parameter. The Gaussian kernel

G(y; 0, Σ) =
1

(2π)
m
2 |Σ| 12

exp

(
−1

2
yT Σ−1y

)
, (3.6)

will be used in his simple form, a spherical symmetric Gaussian kernel with zero

mean and diagonal covariance matrix Σ = I, where I is the m × m identity

matrix:

G(y; 0, I) =
1

(2π)
m
2 |I| 12

exp

(
−1

2
yT I−1y

)
. (3.7)

The estimated pdf f(y) using Parzen window and simplified Gaussian kernel

is:

f(y) =
1

Nhm

N∑

i=1

G

(
y − ai

h
, I

)

=
1

Nhm

N∑

i=1

G
(y

h
;
ai

h
, I

)
. (3.8)

Substituting 3.8 in 2.44 Rényi’s quadratic entropy, can be estimated by

ĤR2(y) =

= − log
∫ +∞

−∞

[
1

Nhm

N∑

i=1

G
(y

h
;
ai

h
, I

)]2

dy

= − log
1

N2h2m

∫ +∞

−∞

[
N∑

i=1

1

(2π)
m
2 |I| 12

exp

(
−1

2
(
y − ai

h
)T I−1(

y − ai

h
)
)]2

dy

= − log
1

N2h2m

∫ +∞

−∞

[
N∑

i=1

hm

(2π)
m
2 (|h2I|) 1

2

exp

(
−1

2
(y − ai)T (h2I)−1 (y − ai)

)]2

dy

= − log
1

N2

∫ [
N∑

i=1

G(y; ai, h
2I)

]2

dy.

Given that ( [197]):
∫

G(x; a, A)G(x; b,B) = G(a− b; 0, 2AB), (3.9)
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Rényi’s quadratic entropy is estimated by:

ĤR2(y) = − log


 1

N2

N∑

i=1

N∑

j=1

G(ai − aj ; 0, 2h2I)


 = − log V (a). (3.10)

For simplicity and since the log is a monotonic increasing function, only V (a)

will be used for entropy minimization purposes.

To apply the gradient descent method, we need to compute the derivative of

V (a) with respect to a:

∂V

∂a
=

∂

∂a


 1

N2

N∑

i=1

N∑

j=1

G(ai − aj ; 0, 2h2I)




=− 1
2N2h2

N∑

i=1

N∑

j=1

G(ai − aj ; 0, 2h2I)(ai − aj). (3.11)

Let us now see how to use Rényi’s quadratic entropy as cost function in a

neural network classification problem (Fig. 3.2).

Input x Output y

Targets t

Adjust

Cost Function

)(2 eH R

yte

e

Figure 3.2: Neural network learning with entropic cost function.

Let d ∈ Rm be the desired targets and Y the network output from the

classification problem and ei = di − yi the error for each data sample i of a

given data set. The error entropy minimization approach [46] used in time

series prediction, states that Rényi’s Quadratic Entropy of the error, with pdf

approximated by Parzen window with Gaussian kernel, has minima along the

line where the error is constant over the whole data set. Also the global minimum

of this entropy is achieved when the pdf of the error is a Dirac delta function.
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Taking the quadratic entropy of the error

ĤR2(e) = − log


 1

N2

N∑

i=1

N∑

j=1

G(ei − ej ; 0, 2h2I)


 = − log V (e), (3.12)

we clearly see that this entropy will be minimum when the differences of all the

error pairs (ei − ej) are zero. This means that the errors are all the same. In

classification problems with separable classes, the goal is to get all the errors

equal to zero, meaning that we don’t get any errors in the classification. In

classification problems with non separable classes, the goal is to achieve the

Bayes error.

In the following we prove that, in classification problems, by imposing some

conditions to the output range and target values, the EEM algorithm makes the

error convergent to zero. The objective is to minimize the entropy of the error

e = d− y and, as stated above, to achieve the goal of e = 0 for all data samples.

Corollary 1. Consider a two class supervised classification problem with a unidi-
mensional output vector. Let y ∈ [r, s] be the output of the network and d ∈ {a, b}
be the target vector of the desired output. If r = a, s = b and a = −b then the
application of the EEM algorithm forces the errors on each data point to be equal
to zero.

Proof. Define the targets as d ∈ {−a, a} and consider the output of the network
as y ∈ [−a, a]. The errors are given by e = d− y.

If the true target for a given input xi is {a} then the error ei varies in
P = [0, 2a].

If the true target for a given input xj is {−a} then the error ej varies in
Q = [−2a, 0].

Since the minimization of the entropy of the error makes the errors all have
the same value, r, we get ei = ej = r.

But r must be in P and Q. Since P ∩ Q = {0} follows that r = 0 and
ei = ej = 0.

A similar proof can be made for multidimensional output vectors.

In the EEM algorithm, the error entropy estimation is different according to

the vector e dimension. This dimension depends on the number of MLP output

neurons that depend on the number of classes, C, and their coding. If we use



60 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHM

binary coding 1, the dimension of vector e is dlog2Ce, whereas if we use the

one-out-of-C coding, the number of output neurons, as well as the dimension

of vector e, is equal to the number of classes 2. In the experiments that we

performed we obtained good results for both codings, but we suggest the use of

binary coding only when the number of classes is a power of 2; otherwise, we get

an excessive number of outputs compared with the number of classes.

In Fig. 3.3 we show examples of the support space of the error vector distribu-

tion for two-class and three-class problems (output vector dimension corresponds

to the one-out-of-C encoding).

(a) (b)

Figure 3.3: The support space (shadowed regions) for the error distribution in
a (a) 2-dimensional and (b) 3-dimensional outputs (a two-class and a three-
class problem).

To apply the EEM algorithm the entropy gradient at each point is back-

propagated into the MLP using the back-propagation algorithm (the same used

by the MSE algorithm). The update of the neural network weights is performed

1When using binary coding we can use a single output neuron to solve a two-class problem.
The single output y defines, for example, class 1 if y < 0 and class 2 if y ≥ 0. Targets are
encoded as −1 and 1. For instance a four-class problem only needs 2 outputs.

2In the one-out-of-C coding the target vectors are encoded such that d = [−1, ..., 1, ...,−1],
where the 1 appears at the kth component for a pattern belonging to class Ck.
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using ∆w = ±η ∂V
∂w . The ± means that we can either maximize (+) or minimize

(−) the entropy.

As we have seen, by minimizing Rényi’s Quadratic Entropy of the error,

applying the back-propagation algorithm, we find the weights of the neural net-

work that yield good results in classification problems as we show in the following

experiments. This algorithm represents a new way of performing supervised clas-

sification by using as cost function the entropy of the error between the output

of the MLP and the desired targets:

EH = HR2(e). (3.13)

Some aspects in the implementation of the algorithm will be studied in detail

in Section 3.3; for example, how to choose h and η and make their values adjust

during the training phase to improve the classification performance.

3.2.1 Preliminary Experiments

Wemade several preliminary experiments, using multi-layer perceptrons, to show

the application of the EEM algorithm to data classification and we have com-

pared the results with the MSE. The learning rate η and the smoothing pa-

rameter h were experimentally selected; however, we will present later several

optimization procedures that overcome the need for exhaustive experiments to

obtain the ideal values for these parameters.

In the first experiment we created a data set consisting of 200 data points,

constituting 4 separable classes (Fig. 3.4).

Several [2:nh:4] MLP’s 3 were trained and tested 40 times, 150 epochs, using

EEM and also MSE. We made nh (the number of neurons in the hidden layer)

vary from 3 to 6. We used the 2-fold cross validation method. The results of

the first experiment are shown in Table 3.1. The last row (STD) presents the

3We used in this experiment the one-out-of-C coding, and this is the reason for having 4

outputs for a 4-class problem.
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−1 0 1

−1

0

1

Figure 3.4: Data set for the first experiment with the EEM algorithm.

standard deviation of the errors over the different nh sessions. The classification

errors are smaller in EEM than in MSE.

Table 3.1: The test error and standard deviations for the first experiment.
Last row, STD, represents the standard deviation of the mean errors obtained
with all nh values for EEM and MSE.

nh EEM MSE

3 2.43(1.33) 2.93(1.46)
4 2.20(1.20) 2.55(1.24)
5 2.01(1.09) 2.64(1.13)
6 2.09(1.02) 2.91(1.73)

STD 0.18 0.19

In Fig. 3.5, Fig. 3.6 and Fig. 3.7 we depicted the errors produced in steps 1,

10 and 40 respectively, of this first experiment. Since we have a neural network

with four outputs, the error vectors e form a 100×4 matrix. This matrix of errors

is represented in each figure by a 4× 4 matrix of axes with scatter plots of each

column of the matrix against the other columns. Diagonals are the histograms
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of each column of the matrix.

Analyzing these graphs we can see that the errors are located (more visible

in the first iteration) in the three support regions, as depicted in Fig. 3.3b and

that the error vectors converge to the origin (0, 0, 0, 0) during the experiment.
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Figure 3.5: Errors in the first iteration of an experiment with data set of
Fig. 3.4.
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epoch 10
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Figure 3.6: Errors in the tenth iteration of an experiment with data set of
Fig. 3.4.
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epoch 40
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Figure 3.7: Errors in the fortieth iteration of an experiment with data set of
Fig. 3.4.
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In the following experiments, we used the data sets Diabetes, Wine and Iris

(Appendix A contains a summary of the characteristics of all the real data sets

used in this work).

Several MLP’s with one hidden layer were trained and tested 20 times, 150

epochs, for EEM and also for MSE. The 2-fold cross validation was used. The

results of these experiments are presented in Table 3.2.

Table 3.2: The error results of the second set of experiments. Last row, STD,
represents the standard deviation of the mean errors obtained with all nh

values for EEM and MSE.

Diabetes Wine Iris

nh EEM MSE EEM MSE EEM MSE

2 23.80(0.94) 28.40(4.87) 3.62(1.30) 9.72(10.60)
3 23.94(0.97) 27.25(4.72) 3.81(1.00) 4.27(3.77) 4.36(1.12) 4.72(4.75 )
4 23.99(1.52) 26.42(4.53) 1.94(0.72) 3.03(1.08) 4.43(1.30) 4.75(1.27)
5 23.80(1.04) 25.10(1.80) 2.50(1.01) 3.20(1.83) 4.38(1.34) 4.15(1.32)
6 24.10(1.33) 24.70(1.80) 2.47(1.20) 3.06(1.43) 4.30(1.16) 3.97(1.05)
7 24.10(0.90) 24.40(1.06) 2.44(1.00) 2.39(1.50) 4.41(1.42) 5.18(4.74)
8 23.90(0.71) 23.90(1.18) 2.16(0.92) 2.92(1.07) 4.31(1.27) 4.65(1.32)
9 24.30(1.42) 24.00(0.95) 2.22(0.83) 2.50(1.35)
10 23.60(0.86) 24.10(1.20) 2.31(0.51) 2.95(1.29)
11 24.02(1.00) 27.41(5.19)
12 24.93(3.24) 27.64(5.04)

STD 0.35 1.69 0.65 2.29 0.05 0.44

The results show, in almost all experiments, a small, but better performance

of the EEM algorithm. They also show, especially in the second set of experi-

ments, that the variation of the error along nh is smaller in the EEM than in

the MSE. This can be seen in the last row, STD, the standard deviation of the

mean errors obtained with all nh values for EEM and MSE. This could mean

that the relation between the complexity of the MLP and the results of the

EEM algorithm is not so tight as for the MSE algorithm. In other words, we
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obtained some empirical evidence that EEM generalizes better than MSE. This

is also hinted by the systematically lower standard deviation of the errors of the

EEM when compared with MSE. These findings can be understood taking into

account that entropy is better at characterizing the pdf of the errors than simply

MSE, which only characterizes their variance.

3.3 Optimization of the EEM Algorithm

We performed several adaptations to the EEM algorithm, trying to achieve a

faster convergence and a better performance. We made some studies focused

on the learning rate parameter [169], on the smoothing parameter [167] and on

combining batch and online training [166]. In [138] we can find some popular

techniques for parameter optimization, applied to information theoretic learning,

particularly in unsupervised feature extraction and frequency-doubling problems.

We started the optimization of EEM algorithm by trying to make the kernel

smoothing parameter (kernel window size) h an updated variable along the train-

ing process, namely proportional to the error variance. This strategy was based

on the fact that, as we approach the optimal solution, the errors tend to zero

(m-tuples of zeros) and so it makes sense to decrease h since the points are all

close to each other. However, the estimates of the error entropy and its deriva-

tive depend on the values of h; smaller h originates higher entropy estimates. If

we reduce the value of h from one iteration to another, by that simple fact, the

value of the entropy is higher, the opposite to our objective of minimization of

the entropy of the error in consecutive iterations. If, at each algorithm iteration,

we manage to minimize the entropy function, we can, at least theoretically, get

an optimal solution. The problem found when using a variable h was that, in

the proximity of the minimum training error, the algorithm became very unsta-

ble, loosing the capability of convergence. In Fig. 3.8 we show the behavior of

the training curve when using a variable h, proportional to the error variance.

We can see that h varies with the training error but, at a certain stage (around
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epoch 100 and training error 10%), the algorithm loses stability never returning

to a steady state.
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Figure 3.8: The observable instability of EEM algorithm when using variable
h in an experiment with data set 2VowelsPB.
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After performing several experiments with different approaches trying to

overcome this limitation, and having observed the same behavior we left behind

the possibility of using a variable h along the learning process and we started

the improvement of EEM algorithm by implementing an adaptive learning rate

η and a fixed smoothing parameter h.

3.3.1 Adaptive Learning Rate

The second implemented optimization procedure was an adaptive learning rate η.

As we have seen in Chapter 2, several authors have shown that, by adapting the η

value along the learning process, one can get a better and faster convergence in a

neural network using mean squared error as cost function. With the experiments

to be described later, we tried to grasp on what conditions we could apply

an adaptive learning rate to a multi-layer perceptron trained with the EEM

algorithm. To get a faster convergence, still obtaining good classification results,

we first planed to adjust η as a function of the error entropy similarly to adjusting

it as a function of the MSE. We will see how the variation of the learning rate

along the training process can yield good results.

As we saw in Section 3.2, the gradient of Rényi’s Quadratic Entropy of the er-

ror is back-propagated into the MLP in the same way as with the MSE algorithm.

The update of the neural network weights is performed using ∆w = ±η δV
δw .

The variability of the learning rate follows the simple but effective rule men-

tioned in Section 2.1.4.4: if the error entropy decreases between two consecutive

epochs of the training process, then the algorithm produces an increase in the

learning rate parameter. Similarly, if the error entropy increases between two

consecutive epochs, then the algorithm produces a decrease in the learning rate

parameter and, furthermore, it restarts the update step, i.e. we recover and use

the previous "good" values of all the neural network parameters. In Section 3.3.3

we also implemented with good results two other different rules: the Silva and

Almeida’s rule [177] and the resilient backpropagation (RProp) algorithm [156].
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The rule for learning rate updating is:

η(n) =





η(n−1)u if H
(n)
R2 < H

(n−1)
R2

η(n−1)d ∧ restart if H
(n)
R2 ≥ H

(n−1)
R2

, u > 1, d < 1, (3.14)

where η(n) and H
(n)
R2 are, respectively, the learning rate and Rényi’s Quadratic

entropy of the error at the nth iteration and u and d are the increasing and

decreasing factors.

We performed several experiments in order to find good values for u and d. In

one of these tests, that we present here, we used the bi-dimensional 2VowelsPB

data set.

In Fig. 3.9 we show an example of the training phases with fixed learning

rate, FLR (dotted lines), and with rule 3.14 variable learning rate, VLR (solid

lines), of two experiments that have produced the smallest classification errors.

The use of VLR produces a continuous decreasing entropy curve and a minimum

training error is achieved.
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Figure 3.9: Two best results for FLR (doted) and VLR (solid).

In Table 3.3 we present the results of an experiment made with different

values for u and d. The column (restart) indicates the number of times that

the algorithm restarts the update step. These experiments suggest that, if the
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algorithm produces an increase on the entropy, then the learning rate should

be decreased by a considerable factor. Based in the several tests that we have

performed and in the fact that our errors are always limited to a restricted set,

due to the conditions mentioned in Section 3.2, we found out that d and u should

have values around 0.2 and 1.2, respectively. The solid line in Fig. 3.9 represents

a case with d = 0.2 and u = 1.2.

Table 3.3: Results for different values for u and d.

u d restart Training Error

1.2 0.2 36 5.26
1.2 0.4 65 5.26
1.2 0.6 112 5.59
1.2 0.8 256 5.92
1.4 0.2 64 5.59
1.4 0.4 115 5.26
1.4 0.6 197 24.34
1.4 0.8 465 5.59
1.6 0.2 90 5.59
1.6 0.4 154 5.26
1.6 0.6 279 5.59
1.6 0.8 640 5.26
1.8 0.2 112 5.59
1.8 0.4 193 5.59
1.8 0.6 352 5.59
1.8 0.8 801 5.26

3.3.1.1 Experiments: EEM-VLR versus MSE-VLR

Wemade a first experiment, using multilayer perceptrons (MLP), to show the ap-

plication of the Error Entropy Minimization with Variable Learning Rate (EEM-

VLR) algorithm to data classification and compare it with Mean Square Error

with Variable Learning Rate (MSE-VLR) algorithm. In this experiment we used

the same data set 2VowelsPB. Several [2 : nh : 4] MLP’s were trained and tested
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40 times, 300 epochs, using the EEM-VLR and also the MSE-VLR. We made

nh vary from 3 to 20. The 2-fold cross validation method was used. The results

of this experiment are shown in Table 3.4.

Table 3.4: Classification errors for EEM-VLR and MSE-VLR.

nh EEM-VLR MSE-VLR

3 9.68(3.31) 24.46 (9.84)
4 8.18(2.30) 17.49 (9.10)
5 8.54(2.81) 15.86 (8.61)
6 8.73(2.51) 13.80 (7.61)
7 9.22(4.60) 14.35 (8.26)
8 8.67(2.60) 12.29 (6.58)
9 9.03(2.51) 12.46 (7.48)
10 8.77(1.88) 11.95 (6.64)
11 9.90(3.55) 11.34 (6.66)
12 9.30(2.56) 10.67(6.01)
13 10.16(2.83) 9.44(3.84)
14 10.01(2.50) 9.46(3.63)
15 10.14(2.16) 8.61(1.30)
16 11.50(5.54) 9.22(3.48)
17 10.72(1.94) 9.77(4.97)
18 12.68(4.47) 10.61(6.18)
19 12.62(4.10) 9.71(4.76)
20 12.94(5.80) 9.10(3.88)

We see in Table 3.4 that EEM-VLR algorithm produces better results when

compared to the MSE-VLR algorithm. The smallest error is 8.18. The MSE-

VLR algorithm produced better results only for larger values of the number of

neurons in the hidden layer. However, this could be due to over-fitting, since

we used a fixed number of epochs (no early stopping). We also see that similar

results are achieved with less complex MLP’s using the EEM-VLR algorithm

(Fig. 3.10). This may suggest that, with EEM, we need less complex neural

networks, compared to MSE in order to solve a particular classification problem.
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Figure 3.10: Results comparison between EEM-VLR and MSE-VLR for data
set 2VowelsPB.

Two more experiments were made applying the two algorithms to the data

sets Diabetes and Wine.

Several MLP’s were trained and tested 20 times, 120 epochs, with d = 0.2

and u = 1.2. Again the 2-fold cross validation was used. The initial learning rate

value for our experiments is usually around 0.1, however one can use a different

value by observing the behaviour of the training curve4. The results of these

experiments are shown in Table 3.5. Again, the best results (bold), in this two

classification problems, were achieved with the EEM-VLR algorithm.

We present in Fig. 3.11 the results comparison between EEM-VLR and MSE-

VLR with data sets Diabetes and Wine and we can see, as in the previous

experiment, that with EEM less complex MLP’s are needed to get similar results

when solving these two classification problems.

4If a very small value is used for a particular problem we will get a learning curve with an
initial very flat region indicating that the weights are updated by a very small amount. If we
use a high value for the learning rate, the training curve will have a initial very fast decrease
or, if an extremely high value is used, the algorithm can even fail to converge.
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Table 3.5: Classification errors for the EEM-VLR and the MSE-VLR algo-
rithms.

Diabetes Wine

nh EEM-VLR MSE-VLR EEM-VLR MSE-VLR

2 23.80(0.94) 28.40(4.87) 3.62(1.3) 9.72(10.6)
3 23.94(0.97) 27.25(4.72) 3.81(1.00) 4.27(3.77)
4 23.99(1.52) 26.42(4.53) 1.94(0.72) 3.03(1.08)
5 23.79(1.04) 25.12(1.80) 2.50(1.01) 3.20(1.83)
6 24.07(1.33) 24.73(1.80) 2.47(1.20) 3.06(1.43)
7 24.12(0.90) 24.35(1.06) 2.44(1.00) 2.39(1.50)
8 23.90(0.71) 23.87(1.18) 2.16(0.92) 2.92(1.07)
9 24.26(1.42) 24.04(0.95) 2.22(0.83) 2.50(1.35)
10 23.62(0.86) 24.08(1.20) 2.31(0.51) 2.95(1.29)
11 24.02(1.00) 27.41(5.19)
12 24.93(3.24) 27.64(5.04)

3.3.2 The Smoothing Parameter

Having performed the first improvement of the EEM algorithm by using an

adaptive learning rate during the training process, we searched for further im-

provement by studying the influence of the value of the smoothing parameter h

in the performance of the neural network. As a matter of fact, from the many

experiments performed, we came to recognize that the smoothing parameter is

the most important factor and the one that has more influence in the final re-

sults of a classification problem, when using the EEM algorithm. The choice of

the smoothing parameter in the Parzen Window estimation of the probability

density function for the computation of the entropy and its gradient is a difficult

issue of the EEM algorithm. In the following subsection we present a formula

yielding the value of the smoothing parameter depending on the number of data

samples and on the neural network output dimension. Several experiments with

real data sets were made in order to show the validity of the proposed formula.
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Figure 3.11: Results comparison between EEM-VLR and MSE-VLR for data
sets Diabetes and Wine.

3.3.2.1 Tuning the Smoothing Parameter

One of the problems of pdf estimation using the Parzen Window method, besides

the choice of the kernel, is the choice of the smoothing parameter h. In the EEM

algorithm the value of h depends on: the different codings of the number of

classes; the number of data samples; the dimension m of the vector e.

Let us remind that for continuous f(x), the estimated density function will

converge to the true density as N →∞ when:

h → 0 and Nh →∞. (3.15)

We have also seen in Chapter 2 that, for multidimensional cases, assuming
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normal distributions and using the normal kernel, Bowman and Azzalini [24]

proposed the formula:

hop = s

(
4

(m + 2)N

) 1
m+4

, (3.16)

where s is the sample standard deviation, N is the number of samples and m is

the dimension of vector x. An important fact that impedes, in our case, the use of

formula 3.16 is that our algorithm uses the entropy of e as a control variable, i.e.,

the algorithm progresses only if the entropy at a given iteration is smaller than

at the previous one. Since the entropy value is proportional to the smoothing

parameter value used to compute it, if one uses a value for h proportional to the

variance of e, one might be increasing, by this simple fact, the entropy value and

the algorithm fails to converge to a minimum. This means that we are limited

to use a value for h that does not depend on s. Considering that the variable

e takes values, in the unidimensional case, in the interval [−2, 2], and that the

maximum standard deviation in this case is 2, we considered using this value to

replace the standard deviation in formula 3.16:

hop = 2
(

4
(m + 2)N

) 1
m+4

. (3.17)

Note that, in the EEM algorithm, we only need to compute the entropy

and its gradient; we do not need to estimate the probability density function

of e. This is a relevant fact because, in the gradient descent method, more

important than computing with extreme precision the gradient is to get with

relative precision its direction. Also, the tentative of estimating with extreme

accuracy the probability density function by using very small values of h, causes

the estimations of entropy to have high variability in consecutive epochs. This

fact can also lead to the occurrence of local minima. Given these considerations,

we do not hesitate in using h values higher than the ones usually proposed for

pdf estimation. Taking into account the experimental results with several data

sets we tried to formulate a rule that yields higher values of h for smaller data
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sets than those obtained with formula 3.17 and still inducing the same behavior.

We then arrived at the following formula with behavior similar to 3.17:

hop = 25
√

m

N
. (3.18)

Notice the decreasing behavior with N and increasing behavior with m as

desired. A comparison between the values of h obtained with formulas 3.17 and

3.18 for different values of m is shown in Fig. 3.12.
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Figure 3.12: Value of h for formulas 3.17 (dashed) and 3.18 (solid) for m=2,
3 and 4. (Marked points refer to experiments with data sets summarized in
Table 3.15).

In the several experiments that we have performed using formula 3.18, the

results were very satisfactory, as we will see in the next paragraph.
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Experiments We now describe experiments using several different real data

sets with different number of samples and different number of classes, namely

the Ionosphere, Sonar, Wdbc, Iris, Wine and 2VowelsPB data sets.

We also produced an artificial data set and used it as a 2-class and as a 4-class

classification problem in an attempt to establish the influence of the number of

classes in the value of the smoothing parameter. The two versions of the artificial

data set (that we call XOR-n), similar to an XOR problem, but with some noise

added, are shown in Fig. 3.13.

In all experiments we used [I:nh:O] MLP’s, where I is the number of input

neurons, nh is the number of neurons in the hidden layer and O is the number

of output neurons. We applied the 2-fold cross validation method using half of

the data for training and half for testing. The experiments for each data set

were performed varying the number of neurons in the hidden layer, the value

of the smoothing parameter and using different number of epochs. The results

are shown in Tables 3.6, 3.7, 3.8 and 3.9. Each result is the mean error of 20

repetitions. For each number of epochs we highlighted the 10 best results in

order to get the needed guidance about the optimum value for the smoothing

parameter.

In Tables 3.6 and 3.7 we show the results of the classification errors for

the XOR-n data sets. Comparing the two tables, we can see that an increased

number of classes demands an increased value of the smoothing parameter. In

the first case, (2-class problem), the optimum value for h is about 4.0 and in the

second case, (4-class problem), the optimum value for h is about 4.8.

The classification errors for the real data sets are shown in Tables 3.8, 3.9,

3.10, 3.11, 3.12, 3.13 and 3.14. For each data set we performed experiments

with different number of epochs. In the results we highlighted (bold), for each

number of epochs of each data set, the 10 smallest classification errors and, for

each data set, we underlined the best classification results.
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Figure 3.13: Artificial data set for the first two experiments.
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Table 3.6: Errors (%) for XOR-n data set, 2 classes (resp. 80, 120 and 160
epochs from top to bottom).

h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

2 36.50 35.43 37.90 36.28 35.93 35.40 35.33 35.63 34.45 36.35 34.20
4 28.25 30.38 27.18 26.33 26.30 25.75 27.75 24.70 28.60 25.68 27.53
6 24.40 26.43 24.45 26.78 27.10 26.83 27.25 24.98 26.75 23.75 23.70
8 23.10 23.93 26.65 23.88 22.43 24.93 22.30 23.73 23.05 24.93 22.38
10 23.38 27.00 26.38 25.65 27.08 21.10 26.65 25.33 21.20 25.50 25.55
12 27.30 28.15 26.48 23.68 27.20 24.80 22.20 22.65 24.68 24.10 23.60

2 35.10 35.78 34.00 33.68 33.83 34.95 33.20 33.98 32.93 33.78 33.98
4 24.30 29.68 26.25 25.05 24.65 25.18 23.38 24.10 22.60 23.40 25.18
6 24.43 25.08 25.00 24.80 24.53 21.20 24.10 23.68 23.63 22.75 23.33
8 22.75 23.88 25.45 28.55 25.03 22.88 25.80 23.88 24.08 23.80 22.75
10 24.48 25.75 26.75 26.63 24.70 26.23 23.30 23.43 24.20 24.93 22.63
12 23.55 26.38 27.13 25.63 26.43 22.15 24.15 23.00 25.80 23.25 24.05

2 36.28 34.68 35.10 33.65 34.90 33.78 34.03 33.68 35.10 33.03 34.70
4 27.03 26.28 27.10 26.58 22.00 25.63 24.40 24.00 21.90 21.33 22.03
6 22.78 24.93 24.40 24.75 26.48 21.28 23.58 23.38 24.45 23.18 22.08
8 23.43 24.30 27.43 25.25 24.18 24.33 25.53 22.55 23.25 24.33 24.33
10 23.70 26.60 25.50 26.60 24.98 25.80 23.73 22.78 23.38 23.60 22.95
12 22.55 27.05 26.55 25.83 25.00 23.48 26.73 23.70 23.00 23.60 23.33

Table 3.7: Errors (%) for XOR-n data sets, 4 classes (resp. 80, 120 and 160
epochs from top to bottom).

h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

2 19.00 17.65 18.90 17.75 19.10 17.38 18.18 18.68 18.83 18.68 17.40
4 19.08 18.13 17.98 18.18 18.50 17.73 18.78 17.98 17.70 18.33 19.10
6 18.13 19.10 17.90 17.73 17.95 18.65 18.00 18.48 17.30 17.65 18.10
8 19.30 18.73 17.85 18.30 18.30 18.20 18.13 19.18 19.53 18.40 19.53
10 18.88 17.40 19.15 17.75 18.53 19.13 18.08 18.50 18.70 19.15 17.73
12 19.10 18.83 18.23 18.58 18.30 18.38 18.70 18.25 18.70 19.13 18.45

2 18.63 20.38 18.33 18.28 18.20 18.48 17.68 17.60 17.38 17.50 17.85
4 19.43 19.28 18.98 18.23 18.05 18.23 18.18 18.60 18.08 18.23 18.08
6 18.63 18.55 19.30 17.75 18.95 18.80 18.98 18.93 17.80 17.68 17.85
8 20.18 18.95 18.48 18.15 18.73 18.70 18.48 18.35 17.95 18.65 18.18
10 19.70 19.73 18.88 18.53 17.75 18.15 18.05 18.08 18.63 18.78 17.68
12 20.63 20.45 18.38 18.65 18.80 17.78 19.15 18.50 18.78 19.15 18.55

2 18.35 18.60 17.93 18.88 18.08 17.33 18.43 18.38 17.40 17.60 18.18
4 19.45 18.63 19.50 19.38 17.95 18.85 20.08 19.13 19.68 18.45 18.70
6 19.80 19.00 19.75 19.68 18.90 19.03 19.28 19.30 18.85 18.33 19.45
8 19.20 19.30 19.60 19.35 18.90 18.28 19.60 19.05 18.78 19.30 19.03
10 18.83 19.85 19.35 19.38 19.90 19.65 19.45 18.98 19.98 19.58 19.38
12 19.48 19.08 19.38 19.58 19.05 19.28 19.53 19.18 19.33 19.18 19.08
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Table 3.8: Errors (%) for data set Ionosphere (resp. 40, 60 and 80 epochs).

h

nh 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5

4 33.84 12.47 12.71 13.07 12.70 13.10 12.73 13.09 12.96 12.71
8 19.54 12.70 12.86 12.40 12.97 12.80 12.79 12.39 12.81 12.61
12 20.04 13.21 12.81 12.37 12.74 12.80 12.70 12.67 12.06 12.90
16 15.29 13.13 13.20 12.82 12.77 12.67 12.26 12.73 12.80 12.70
20 16.26 12.69 13.03 12.93 12.70 12.64 12.46 12.59 12.43 12.69
24 17.13 12.61 13.01 13.17 13.23 12.84 12.26 12.97 12.63 12.87

4 12.70 13.13 13.41 13.07 13.17 12.91 13.07 13.06 12.77 13.11
8 12.76 13.19 13.06 12.83 13.03 12.50 13.10 13.29 12.70 12.44
12 12.97 12.91 12.88 13.16 13.23 12.77 13.36 12.82 12.61 12.44
16 13.24 13.01 12.91 12.94 12.86 12.66 12.89 12.46 12.44 12.29
20 13.54 12.80 12.80 13.16 12.84 12.94 12.24 12.41 12.29 13.16
24 13.27 13.14 12.83 12.71 13.19 12.60 12.87 12.41 12.96 12.87

4 13.07 13.47 14.20 13.33 13.00 13.10 12.81 13.04 12.61 13.16
8 13.02 13.28 13.14 12.83 12.71 13.00 12.62 12.40 12.41 12.56
12 13.00 13.40 13.40 12.94 12.70 13.11 12.88 12.64 13.29 12.60
16 13.09 13.18 13.00 12.53 12.33 12.73 12.24 12.34 12.67 12.60
20 13.17 12.87 12.80 13.06 12.90 12.83 12.69 12.94 12.73 12.63
24 13.49 13.20 13.50 12.69 12.90 12.59 12.63 12.99 12.72 13.06

Table 3.9: Errors (%) for data set Sonar (resp. 50, 100 and 150 epochs).

h

nh 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0

2 49.47 48.49 24.90 24.78 23.17 24.37 23.82 24.04 24.11 24.50 24.26
4 48.63 45.77 23.65 23.27 23.68 23.05 23.70 24.06 23.82 23.82 23.15
6 49.18 45.67 23.61 22.96 23.53 22.28 23.61 22.98 24.18 21.73 23.42
8 48.97 43.22 22.96 22.40 24.28 23.08 22.72 22.98 24.04 22.81 23.56
10 48.56 41.37 22.88 22.65 23.77 23.34 22.76 22.98 23.08 22.21 22.12
12 50.65 43.73 23.17 23.03 23.66 24.18 22.36 22.81 23.13 22.81 22.96

2 48.36 36.71 24.64 24.02 24.16 23.99 23.51 24.64 24.06 23.56 23.58
4 49.90 35.36 23.44 24.52 24.33 22.40 24.47 24.04 24.35 23.58 23.77
6 49.30 37.74 23.41 23.51 23.49 24.52 23.00 22.45 23.15 23.37 23.13
8 49.04 35.53 24.06 22.86 22.84 24.35 22.81 23.82 22.12 23.44 22.40
10 48.41 34.52 23.94 23.29 24.42 22.81 23.10 23.29 23.27 23.44 22.67
12 49.81 31.42 23.80 23.08 23.08 22.74 23.87 22.74 21.32 21.61 22.14

2 50.82 31.63 25.53 24.23 25.31 24.06 24.33 24.98 24.42 25.41 23.73
4 50.48 28.10 24.52 24.52 24.45 24.06 23.85 23.17 23.56 23.58 23.89
6 50.00 27.81 23.92 23.08 23.27 22.26 23.99 23.29 22.14 23.51 23.08
8 49.86 29.88 24.18 22.33 22.67 22.67 23.00 23.05 23.32 22.84 21.95
10 50.82 26.90 25.00 24.13 22.74 23.41 22.86 22.26 23.17 23.27 22.07
12 49.95 25.51 23.61 24.52 23.15 23.25 22.67 22.88 22.00 22.07 22.60
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Table 3.10: Errors (%) for data set Wdbc (resp. 40, 60 and 80 epochs).

h

nh 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

2 50.34 8.83 2.53 2.77 2.83 2.84 2.91 2.67 3.28 2.89 2.69
4 52.31 10.37 2.33 2.70 2.75 2.87 2.77 2.76 2.88 2.85 2.91
6 51.22 19.04 2.65 2.61 2.90 2.64 2.91 2.92 3.31 2.79 3.09
8 49.44 19.74 2.57 2.71 2.84 2.58 3.07 2.84 2.97 2.94 3.19
10 46.88 21.80 3.01 2.77 2.78 2.97 2.90 2.59 3.28 2.95 2.98

2 51.54 10.71 2.79 2.97 3.05 2.97 2.72 2.94 3.07 3.06 2.98
4 51.16 11.46 2.80 2.83 3.06 3.01 3.06 3.04 2.93 3.02 3.14
6 49.32 11.48 3.07 2.91 3.06 3.06 2.81 3.04 3.02 3.25 3.16
8 47.58 9.74 2.95 2.83 2.97 3.07 2.97 2.88 3.06 3.07 3.17
10 45.97 19.47 2.82 2.96 3.05 3.08 3.23 3.24 3.49 3.28 3.37

2 48.80 4.41 2.77 2.95 2.96 3.26 3.13 3.06 3.03 3.15 3.30
4 46.52 2.89 2.81 3.23 3.04 2.87 3.11 3.26 3.08 3.05 3.49
6 49.48 5.49 3.08 3.75 3.11 3.12 3.17 3.22 3.06 3.28 3.49
8 48.60 5.83 3.00 3.06 3.08 2.99 2.95 2.99 3.21 3.20 3.35
10 48.58 6.11 2.92 2.91 3.08 3.06 3.05 3.36 3.34 3.40 3.35

Table 3.11: Errors (%) for data set Iris (resp. 40, 60 and 80 epochs).

h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

2 7.97 7.17 6.77 7.37 4.70 5.50 4.80 5.50 7.40 5.54 5.00
4 7.20 6.63 4.43 4.87 6.67 4.30 4.20 4.10 4.67 3.90 4.37
6 6.33 4.60 4.77 4.10 4.67 4.83 4.37 4.33 4.63 4.20 4.07
8 9.20 4.63 3.83 4.40 4.10 5.50 4.73 4.57 4.97 4.47 4.00
10 7.27 4.24 4.70 4.40 4.03 4.53 4.23 4.37 4.50 4.27 4.53

2 5.07 4.80 5.87 8.40 6.37 6.60 6.60 6.37 4.60 5.40 5.70
4 5.23 3.67 4.67 4.10 5.00 3.97 4.47 3.80 4.23 4.53 4.03
6 5.07 4.50 4.27 3.93 3.97 3.97 3.80 4.40 4.07 4.20 4.43
8 4.40 3.87 4.07 4.27 3.97 3.87 4.20 4.50 4.13 4.40 4.13
10 4.90 4.30 4.13 3.80 4.13 4.53 4.37 4.07 4.00 4.10 4.10

2 5.13 7.83 4.60 5.27 4.57 5.57 7.30 5.17 6.10 4.70 5.00
4 4.57 3.73 4.50 4.40 4.07 5.73 4.23 4.53 4.53 4.30 5.00
6 4.10 4.80 3.77 3.73 4.63 3.83 3.67 4.03 4.53 4.57 4.30
8 4.23 4.23 3.57 3.83 4.00 3.50 4.30 4.20 3.90 4.10 3.83
10 4.13 4.23 4.10 3.93 4.10 3.80 4.57 4.00 3.87 3.73 3.80
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Table 3.12: Errors (%) for data set Wine (resp. 40, 60 and 80 epochs).

h

nh 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

4 46.41 8.54 2.28 2.30 2.47 2.33 2.64 2.14 2.56 2.05
6 34.92 2.61 2.44 2.84 2.42 2.59 2.59 2.28 2.28 1.86
8 29.30 2.28 2.19 2.25 2.36 2.19 2.14 2.22 2.16 2.42
10 22.89 2.28 2.56 1.94 1.97 2.05 2.11 2.11 2.39 2.16
12 17.89 2.28 2.50 2.36 2.39 2.78 2.30 2.64 2.00 2.22
14 18.60 2.53 2.67 2.42 2.31 2.08 2.30 1.94 1.83 1.97
16 17.75 2.45 2.36 2.33 2.22 1.94 2.33 2.42 1.91 2.02

4 6.77 2.16 2.95 2.28 2.42 2.50 2.05 2.45 2.47 2.89
6 2.25 2.64 2.28 2.39 2.39 2.22 2.39 2.36 2.31 2.53
8 3.79 2.33 2.42 2.19 2.44 2.89 2.64 1.88 2.78 2.11
10 2.30 2.61 2.56 2.14 2.08 2.22 1.94 2.75 2.39 2.36
12 2.81 2.39 2.61 2.36 2.56 2.30 2.42 2.45 2.16 2.17
14 2.61 2.50 2.59 2.33 2.28 2.16 2.64 2.19 2.28 2.39
16 2.56 2.36 2.30 2.28 2.22 2.45 2.22 2.44 2.61 2.28

4 2.30 2.47 2.53 2.47 2.81 2.17 2.81 2.78 3.01 3.06
6 2.92 2.64 2.64 2.81 2.56 2.33 2.59 1.88 2.36 2.84
8 2.67 2.42 2.61 2.64 2.42 2.44 2.84 2.67 2.50 2.61
10 2.56 2.75 2.73 2.78 2.84 2.42 2.70 2.36 2.95 2.44
12 2.39 2.64 2.59 2.47 2.61 2.25 2.78 2.87 2.39 2.02
14 2.67 2.95 2.28 2.64 2.87 2.47 2.36 2.30 2.89 2.42
16 2.39 2.59 2.64 2.89 2.31 2.42 2.75 2.53 2.87 2.70

Table 3.13: Errors (%) for data set 2VowelsPB (resp. 200, 250 and 300 epochs).

h

nh 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

2 24.09 21.25 25.49 28.72 28.64 28.94 28.77 29.35
4 16.17 11.53 9.11 8.79 11.65 9.73 11.99 11.51
6 13.26 8.19 7.82 8.66 8.77 9.19 11.28 11.37
8 14.46 9.29 8.11 8.49 9.18 9.34 9.36 9.05
10 14.71 8.88 8.51 8.85 8.35 9.70 9.61 8.30
12 14.62 8.12 8.92 9.31 9.88 8.73 9.36 9.89

2 22.29 22.89 24.94 28.46 30.83 30.30 28.75 28.29
4 15.07 7.80 7.65 10.35 12.38 13.22 10.97 10.81
6 12.76 8.50 7.82 8.24 9.61 8.77 8.90 9.60
8 10.21 8.29 8.40 7.80 8.53 10.58 8.22 10.43
10 11.65 7.76 7.64 7.58 8.21 9.08 9.89 10.15
12 11.23 8.36 9.08 8.92 8.81 9.26 9.38 8.63

2 18.73 25.80 25.71 27.02 29.65 29.03 28.63 28.31
4 12.10 8.00 8.36 9.40 10.77 10.78 10.21 11.55
6 10.63 7.51 8.43 8.17 8.41 9.43 8.77 7.55
8 10.78 7.89 7.55 7.94 8.70 7.72 9.83 8.26
10 10.68 8.39 8.08 8.05 9.76 8.31 9.37 8.51
12 9.03 8.25 8.17 7.60 7.76 8.09 8.82 8.89
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Table 3.14: Errors (%) for data set Olive (resp. 140, 200 and 260 epochs).

h

nh 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0

10 6.65 6.53 6.34 6.30 6.03 6.15 6.05 6.27 5.92 6.10 5.91
15 6.07 5.69 6.37 6.00 6.14 5.68 5.72 5.84 5.56 5.98 5.60
20 5.92 6.11 5.94 5.99 5.68 5.70 5.75 5.74 5.76 5.74 5.70
25 6.06 6.02 6.00 5.86 5.29 5.64 5.65 5.29 5.83 5.59 5.78
30 5.81 5.86 5.73 5.74 5.58 5.93 5.70 5.85 5.38 5.88 5.65

10 6.37 5.90 5.94 6.08 6.16 5.65 5.92 5.62 6.41 6.08 5.74
15 5.89 5.46 5.48 5.70 5.77 5.37 5.71 5.40 5.57 5.39 5.58
20 5.39 5.38 5.52 5.42 5.49 5.26 5.25 5.49 5.38 5.58 5.74
25 5.60 5.84 5.50 5.31 5.04 5.47 5.45 5.36 5.19 5.34 5.45
30 5.30 5.58 5.47 5.38 5.31 5.27 5.25 5.44 5.40 5.29 5.28

10 6.12 6.23 6.18 6.46 5.90 6.23 6.36 5.90 6.10 6.13 6.33
15 5.86 5.74 6.37 5.59 5.29 5.88 5.48 5.76 5.85 5.40 5.60
20 5.70 5.69 5.29 5.54 5.74 5.96 5.95 5.71 5.79 5.66 5.41
25 5.49 5.35 5.67 5.35 5.37 5.31 5.48 5.58 5.77 5.48 5.40
30 6.08 5.86 5.45 5.42 5.46 5.46 5.31 5.69 5.28 5.80 5.39

In Table 3.15 we present the values of h for the minimum classification errors

("Best h" column) and the value of h representative 5 of the underlined smallest

classification errors ("Suggested h" column). We present also the values proposed

for each data set by formula 3.17 ("Formula 3.17" column) and formula 3.18

("Formula 3.18" column). In both formulas the N values correspond to the

number of elements of the training set (50% of the number of elements of the

data set given in column "# samples").

The experiments clearly show that, for small values of h, the classification

errors are significantly large and, therefore, the use of formulas like (3.17), used

for density estimation, are not appropriate for the EEM algorithm. Figure 3.12

shows (crosses and open circles), the h values obtained in the experiments with all

data sets (except for data set Olive). In this figure we can easily see the relation

between the h values of the proposed formula 3.18 and the values obtained in

the experiments. For each data set the crosses correspond to the values of the

5This "suggested h", hs, was obtained by averaging the error results using the following
formula: hs =

P hi
ei

/
P

1
ei
, where ei are the smallest classification errors (∼ 10, underlined for

each experiment) and hi the respective h values.
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Table 3.15: Values of h for each data set driven by the experiments and defined
by formulas 3.17 and 3.18.

Data sets Classes # samples Best h Suggested h
Formula

3.18

Formula

3.17

Ionosphere 2 351 4.6 3.9 2.67 0.85

Sonar 2 208 3.4 3.7 3.47 0.92

Wdbc 2 569 1.4 1.7 2.10 0.78

XOR-n 2 200 4.0 4.7 3.54 0.93

Iris 3 150 4.0 3.6 5.00 1.05

Wine 3 178 4.6 4.2 4.59 1.02

2VowelsPB 4 608 1.8 2.2 2.87 0.93

XOR-n 4 200 5.2 5.0 5.00 1.07

Olive 9 572 4.6 5.4 4.43 1.20

"Suggested h" and the circles to the h values of the minimum classification error.

Based on the experimental evidence, we conclude that the proposed for-

mula 3.18 for the value of the smoothing parameter, h, of the entropy estimation,

yields good results when compared to existing formulas of h used for density es-

timation. Also, the proposed formula, contrary to the one proposed by Bowman,

does not and cannot depend on s, due to the iterative nature of the EEM-VLR

algorithm. We showed that it produces very good results using a set of exper-

iments where the values proposed by our formula are much closer to the best

ones found empirically.

3.3.3 The Batch Sequential Algorithm

The fact that, in the EEM algorithm, the entropy is estimated using the prob-

ability density function estimation with the Parzen window method implies the

use of all available error samples to estimate its value. This fact forces the use

of the batch mode in the back-propagation algorithm, limiting the use of the
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sequential or stochastic mode which would be, in some cases, more appropriate.

Apart from the higher complexity of the algorithm in batch mode, we know

that this approach has some limitations over the sequential mode. This was the

reason for us to try to combine both modes when using entropic criteria. To

overcome the above mentioned limitation, we propose a new approach that com-

bines these two modes (the batch and the sequential) trying to use their mutual

advantages. The proposed Batch-Sequential algorithm combines the two meth-

ods applied in the back propagation learning algorithm: the sequential mode,

also referenced as on-line or stochastic mode, where the update is made for each

sample of the training set, and the batch mode, where the update is performed

after the presentation of all samples of the training set. A brief reference to the

possibility of combining both batch and sequential modes when training neural

networks was made in [21].

We said, in Chapter 2, that the sequential mode of weight updating leads

to a sample-by-sample stochastic search in the weight space implying that it

becomes less likely for the back-propagation algorithm to be trapped in local

minima [80]. However, we still need some samples to estimate the entropy, and

this limits the use of the sequential mode. One of the advantages of the batch

mode is that the gradient vector is estimated with more accuracy, guaranteeing

the convergence to, at least, a local minima.

In order to make use of the advantages of both modes and also to speedup the

algorithm, we developed a batch-sequential algorithm consisting on the splitting

of the training set in several groups that are presented to the algorithm in a

sequential way. In each group we apply the batch mode.

Let Ts be the training set of a given data set and Tsj the subsets obtained

by randomly dividing Ts in several groups with an equal number of samples,

such as

|Ts| = n +
L∑

j=1

|Tsj |, (3.19)

where L is the number of subsets and n the remainder. This division is performed
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in each epoch of the learning phase. Leaving, in each epoch, some samples out

of the learning process (when n 6= 0) is not significant because those samples

will most likely be included in the next epoch. The partition of the training

set in subsets reduces the probability of the algorithm getting trapped in local

minima since it is performed in a random way. The subsets are sequentially

presented to the learning algorithm, which applies to each one, in batch mode,

the respective back-propagation and subsequent weight update. The pseudo

code for the Error Entropy Minimization Batch-Sequential algorithm (EEM-BS)

is presented in Table 3.16.

Table 3.16: Pseudo-code for the EEM-BS Algorithm.

For k:=1 to number of epochs
Create L subsets of Ts.
For j:=1 to L

Compute the error entropy gradient of Tsj applying formula 3.11.
Perform weight update.

End For
End For

One of the advantages in using the batch-sequential algorithm is the decreas-

ing of the algorithm complexity. The complexity of the original EEM algorithm,

due to formulas 3.10 and 3.11, is O(|Ts|2). We clearly see that, for large training

sets, the algorithm is highly time consuming. With the EEM-BS algorithm the

complexity is proportional to:

L

( |Ts|
L

)2

. (3.20)

Therefore, the complexity ratio of both algorithms is:

|Ts|2
L( |Ts|

L )2
= L, (3.21)

which means that, in terms of computational processing time, we achieve a reduc-

tion proportional to L. For a complete experiment, similar to the one presented

in the next paragraph with the data set "Olive", we reduced the processing time

from about 30 to 6 minutes in our machine.
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The number of subsets, L, is determined by the size of the data set. If, in a

given problem, the training set has a large number of data samples, we can use

a higher number of subsets than if we have a small training set. We recommend

the division of the training set in a number of subsets with a number of samples

not less than 40, even though we sometimes got good results with less elements.

In order to perform the experiments with the batch-sequential algorithm, we

tried to use the EEM algorithm with adaptive learning rate (EEM-VLR). Let

us remind that EEM-VLR is based on the use of a global variable learning rate

during the training phase, as a function of the error entropy value in consecutive

iterations. Since in EEM-VLR we compare HR2 of a certain epoch with the

same value in the previous one, we cannot combine it with the batch-sequential

algorithm because, in each epoch, we use different sets of samples and, by this

simple fact, we would have different values of HR2. To overcome this limitation,

and also with the goal of achieving a faster convergence, we implemented a

similar process, also using variable learning rate, but this time, the variation

of the learning rate is done for each neural network weight by comparing the

respective gradient in consecutive iterations (EEM-BS(SA)). This approach was

already used in back-propagation with MSE [177]. We also used, for the same

purpose of speeding up the convergence, the combination of the batch-sequential

algorithm with the resilient back-propagation [156], achieving very good results

(EEM-BS(RBP)). Examples of the training phase for the three different methods,

with the data set "Olive", are depicted in Fig.3.14.

Experiments In order to establish the validity of the proposed algorithm we

performed several experiments, comparing the results obtained with the EEM-

BS algorithm with those obtained with the simple EEM-VLR algorithm. We

used the data sets Ionosphere, Olive, Wdbc and Wine.

In all experiments we used [I:nh:O] MLP’s, where I is the number of input

neurons, nh is the number of neurons in the hidden layer and O is the number of
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Figure 3.14: Training Error curves for the EEM-BS and the two combinations:
EEM-BS(SA) and EEM-BS(RBP).

output neurons. We applied the 2-fold cross validation method. The experiments

for each data set were performed varying the number of neurons in the hidden

layer, the number of subsets used and the number of epochs. In Table 3.17 we

present the results obtained with the EEM-BS algorithm with 4 and 8 subsets (5

and 8 for the Wdbc data set). Each result is the mean error of 20 repetitions. In

Table 3.18 we only present the best results for each experiment with the EEM-

BS algorithm and the comparison with the results obtained with the EEM-VLR

algorithm.

The results presented in Table 3.17 show that the final errors, for each data

set, do not present a significant variation according to the characteristics of

the experiment (epochs, nh). Also, the errors obtained, in each data set, with

different number of subsets are very similar.

The comparison of the results obtained with both algorithms (EEM-BS and

EEM-VLR), presented in Table 3.18, show that they are similar and, in some

cases, the ones obtained by EEM-BS are better than those of EEM-VLR. Since

the best results were obtained with different neural network complexities, we

present in column Tpe the processing time per epoch for each algorithm. It is

clear that the computational time can be reduced by a considerable factor when

using the EEM-BS algorithm.

In this subsection we saw that, the combination of sequential and batch
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modes when using entropic criteria in the learning phase can profit from the

advantages of both methods. We show, using experiments, that this is a valid

approach that can be used to speed-up the training phase, maintaining a good

performance, both in achieved error rate and computational time.
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Table 3.17: Errors and standard deviations of the experiments performed with
EEM-BS in data sets Ionosphere, Olive, Wdbc and Wine, for different values
of nh and different number of epochs and subsets (L).

Ionosphere

L=4 L=8

Epochs Epochs

nh 60 80 100 120 60 80 100 120

4 12.81(1.08) 13.06(1.10) 12.49(1.52) 13.0(1.57) 12.40(0.82) 13.17(1.32) 12.29(1.16) 12.57(1.36)
6 12.64(1.13) 12.56(0.99) 12.39(0.96) 12.64(1.07) 12.81(1.01) 12.59(1.10) 12.63(1.46) 12.59(1.25)
8 13.14(1.30) 12.67(1.42) 12.27(1.23) 12.54(1.16) 12.52(1.03) 12.79(0.88) 12.00(1.09) 12.09(1.23)
10 12.53(1.40) 12.36(0.91) 12.77(1.49) 12.94(1.26) 12.64(1.18) 12.66(1.27) 12.46(1.18) 12.89(1.01)
12 12.40(1.24) 12.46(0.94) 12.67(1.46) 12.66(1.24) 13.00(1.12) 12.36(1.45) 13.09(1.42) 12.31(1.10)

Olive

L=4 L=8

Epochs Epochs

nh 100 140 180 220 100 140 180 220

10 5.73(0.70) 5.65(0.73) 5.71(0.76) 5.79(0.63) 6.42(0.61) 5.67(0.68) 5.33(0.52) 5.66(0.47)
20 5.83(0.69) 5.24(0.49) 5.48(0.56) 5.42(0.67) 6.06(0.74) 5.81(0.88) 5.24(0.70) 5.55(0.70)
30 5.65(0.75) 5.17(0.51) 5.38(0.56) 5.24(0.52) 6.11(0.67) 5.62(0.67) 5.45(0.87) 5.35(0.63)
40 5.85(0.82) 5.48(0.49) 5.29(0.51) 5.57(0.57) 6.47(0.60) 5.85(0.73) 5.64(0.75) 5.54(0.69)

Wdbc

L=5 L=8

Epochs Epochs

nh 40 60 80 100 40 60 80 100

4 2.63(0.47) 2.47(0.49) 2.58(0.56) 2.54(0.51) 2.58(0.40) 2.41(0.42) 2.54(0.54) 2.48(0.49)
6 2.66(0.70) 2.66(0.58) 2.60(0.45) 2.59(0.66) 2.54(0.53) 2.51(0.50) 2.47(0.55) 2.51(0.54)
8 2.51(0.52) 2.56(0.49) 2.46(0.43) 2.54(0.47) 2.44(0.58) 2.46(0.52) 2.43(0.48) 2.69(0.57)
10 2.52(0.41) 2.31(0.35) 2.52(0.42) 2.49(0.34) 2.35(0.48) 2.77(0.51) 2.46(0.37) 2.90(0.57)
12 2.39(0.48) 2.39(0.40) 2.50(0.53) 2.64(0.62) 2.47(0.49) 2.61(0.45) 2.63(0.60) 2.67(0.55)

Wine

L=4 L=8

Epochs Epochs

nh 20 40 60 80 20 40 60 80

8 2.61(0.82) 2.22(0.81) 2.42(0.89) 2.33(0.88) 2.45(0.69) 2.0(0.85) 2.67(0.85) 2.67(1.25)
10 2.36(0.99) 2.61(1.17) 2.59(0.92) 2.58(1.32) 2.59(0.84) 2.16(1.27) 2.28(0.15) 2.50(0.88)
12 2.4(1.15) 2.36(1.15) 2.17(0.66) 2.19(0.73) 2.61(1.28) 2.05(0.86) 2.33(0.64) 1.94(0.76)
14 2.28(0.64) 2.08(1.01) 2.56(0.69) 2.50(0.88) 2.50(0.82) 2.16(1.11) 2.58(0.99) 2.36(1.15)
16 2.75(0.89) 2.03(0.53) 1.88(0.80) 2.25(0.91) 2.33(1.13) 2.42(1.15) 1.88(0.86) 2.16(1.05)
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Table 3.18: Summary of the best results of EEM-BS and comparison with
EEM-VLR (Tpe: Time per epoch ×10−3 sec.).

Ionosphere

Algorithm Error (Std) L n_h Epochs Tpe

EEM-VLR 12.06 (1.11) - 12 40 16.7

EEM-BS 12.27 (1.23) 4 8 100 6.4

EEM-BS 12.00 (1.09) 8 8 100 4.8

Olive

Algorithm Error (Std) L n_h Epochs Tpe

EEM-VLR 5.04 (0.53) - 25 200 77.7

EEM-BS 5.17 (0.51) 4 30 140 17.6

EEM-BS 5.24 (0.70) 8 20 180 12.8

Wdbc

Algorithm Error (Std) L n_h Epochs Tpe

EEM-VLR 2.33 (0.37) - 4 40 38.7

EEM-BS 2.31 (0.35) 5 10 60 13.6

EEM-BS 2.35 (0.48) 8 10 40 9.6

Wine

Algorithm Error (Std) L n_h Epochs Tpe

EEM-VLR 1.83 (0.83) - 14 40 5.8

EEM-BS 1.88 (0.80) 4 16 60 3.2

EEM-BS 1.88 (0.86) 8 16 60 2.5



Chapter 4

Clustering with Entropy

In the previous chapter we have applied entropic concepts to neural network su-

pervised classification. In this chapter we will focus on unsupervised data clas-

sification, i.e. data clustering. The motivation for the new clustering algorithm

presented here came from our goal to perform an entropic task decomposition for

modular neural networks (this subject will be discussed in the following chapter).

Our new clustering algorithm [168] is a hierarchical algorithm, a stepwise

clustering method, usually based on dissimilarity measures between objects or

sets of objects from a given data set, but now based on a new entropic dissimilar-

ity measure 1. The most common dissimilarity measures are distance measures.

The derived proximity matrices can be used to build graphs, which provide the

basic structure for some clustering methods. We present in this chapter a new

proximity matrix based on the new entropic dissimilarity measure and also a

new clustering algorithm that builds layers of subgraphs based on this matrix,

and uses them and a hierarchical agglomerative clustering technique to form the

clusters. Our approach capitalizes on both a graph structure and a hierarchical

construction. Moreover, by using entropy as a proximity measure we are able,

1In our proposed algorithm we use Rényi’s quadratic entropy because of its simplicity;
however, one could use other entropic measures as well.

93



94 CHAPTER 4. CLUSTERING WITH ENTROPY

with no assumption about the cluster shapes, to capture the local structure of

the data, forcing the clustering method to reflect this structure. We present

several experiments performed on artificial and real data sets that provide ev-

idence of the superior performance of this new algorithm when compared with

competing ones.

Some examples of the application of entropy and information-theoretic con-

cepts in clustering are the minimum entropic clustering [121], entropic span-

ning graphs clustering [81] or entropic subspace clustering [29]. In some works

the entropic concepts are usually related to measures similar to the Kullback-

Leibler divergence. In some recent works several authors used entropy as a

measure of proximity or interrelation between clusters. Examples of these algo-

rithms are those proposed by Jenssen [97] or Gokcay [63], that use a so-called

Between-Cluster Entropy, and the one proposed by Lee [119], [120] that uses the

Within-Cluster Association. Despite the good results in several data sets, these

algorithms are heavily time consuming and they start by selecting some random

seeds as first clusters which may produce very different results in the final cluster

solution depending on the number of seeds chosen and their "position". If none

of the elements of a real cluster is selected as seed, those elements probably will

be included in other built clusters. These algorithms usually give good results

for compact and well separated clusters.

4.1 What is Clustering?

Clustering deals with the process of finding possible different groups in a given

set, based on similarities or differences among their objects. This simple defini-

tion does not convey the richness of such a wide area of research. What are the

similarities and what are the differences? How do the groups differ? How can

we find them? These are examples of some basic questions, none with an unique

answer. There is a wide variety of techniques to do clustering. Results are not

unique and they always depend on the purpose of the clustering. The same data
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can be clustered with different acceptable solutions. Hierarchical clustering, for

example, gives several solutions depending on the tree level chosen for the final

solution.

There are algorithms based on similarity or dissimilarity measures between

the objects of a set, like sequential and hierarchical algorithms; others, are based

on the principle of function approximation, like fuzzy clustering or density based

algorithms; yet others, are based on graph theory or competitive learning. In

this paper we combine hierarchical and graph approaches and present a new clus-

tering algorithm based on a new proximity matrix that is built with an entropic

measure. With this measure, connections between objects are sensitive to the

local structure of the data, achieving clusters that reflect that same structure.

In the following subsections we present some basic concepts and notation

that serve as the basis to present our algorithm and we make an overview of

some of the most popular clustering algorithms.

4.1.1 Proximity Measures

Let X be the data set, X = {xi}, i = 1, 2, ..., N , where N is the number of

objects and xi an l -dimensional vector representing each object. We define S,

an s-clustering of X, as a partition of X into s subsets C1, C2, ..., Cs, obeying

the conditions: Ci 6= ®, i = 1, ..., s; ∪s
i=1Ci = X and Ci ∩ Cj = ®, i 6= j, i, j =

1, ..., s. Each vector (point), given these conditions, belongs to a single subset

(cluster). Our proposed algorithm uses this so called hard clustering. (There

are algorithms, like those based on fuzzy theory, in which a point has degrees

of membership for each cluster.) Points belonging to the same cluster have a

higher degree of similarity with each other than with any other point of the

other clusters. This degree of similarity is usually defined using similarity (or

dissimilarity) measures.

The most common dissimilarity measure between two real-valued vectors x
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and y, is the weighted lp metric,

dp(x,y) =

(
l∑

i=1

wi|xi − yi|p
) 1

p

, (4.1)

where xi and yi are the ith coordinates of x and y, i = 1, ..., l, and wi ≥ 0 is

the ith weight coefficient. The unweighted (w = 1) lp metric is also known as

Minkowski distance of order p (p ≥ 1). Examples of this distance are the well-

known Euclidian distance, obtained by setting p = 2, the Manhattan distance,

p = 1, and the l∞ or Chebyshev distance.

4.1.2 Overview of Clustering Algorithms

Probably the most used clustering algorithms are the hierarchical, agglomerative

algorithms. They create, by definition, a hierarchy of clusters from the data

set. Hierarchical clustering is widely used in biology, medicine, and also in

computer science and engineering. (For an overview on clustering techniques

and applications see [20,93–95]). Hierarchical agglomerative algorithms start by

assigning each point to a single cluster and then, usually based on dissimilarity

measures, proceed to merge small clusters into larger ones in a stepwise manner.

The process ends when all the points in the data set are members of a single

cluster. The resulting hierarchical tree defines the clustering levels. Examples of

hierarchical clustering algorithms are CURE [68] and ROCK [69] developed by

the same researchers, AGNES [110], BIRCH [206], [207] and Chameleon [108].

The merging phase of the agglomerative algorithms differs in the sense that,

depending on the measures used to compute the similarity or dissimilarity be-

tween clusters, different merge results can be obtained. The most common meth-

ods to perform the merging phase are:

• Single Link Method: the dissimilarity between two clusters is measured by

the distance between the two closest vectors.

• Complete Link Method: the dissimilarity between two clusters is measured

by the distance between the two most distant vectors.
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• Centroid Method: the dissimilarity between two clusters is measured by the

distance between their centroids (usually the mean vectors).

• Ward’s Method: two clusters are merged if the sum of all the distances

between the resulting centroid and the joined vectors is the smallest one.

The Single Link method usually creates elongated clusters and the Com-

plete Link usually results in more compact clusters. The Centroid method acts

in a midway basis, yielding clusters somewhere between the two previous ones.

Ward’s method is considered very effective in producing balanced clusters; how-

ever, it has several problems dealing with outliers and elongated clusters. In [102]

one can find a probabilistic interpretation of these classical agglomerative meth-

ods.

Another type of algorithms are the ones based on graphs and graph theory.

A graph is defined as an ordered pair G = (V, E), where V = {vi}, i = 1, ..., N

is a set of vertices and E is a set of edges connecting pairs of vertices. An edge

connecting vi and vj is denoted by eij . One can have directed or undirected

graphs depending on whether or not the order of vi and vj is important. Using

directed graphs originates double edges between a pair of vertices, one in each

direction. Unweighted graphs are those where there is no cost associated with

each edge. If there is a path in G where the first and last vertices coincide then

this path is called a loop or circle. A subgraph G′ = (V ′, E′) of G is a graph

with V ′ ⊆ V and E′ ⊆ E, where edges of E′ connects pairs of vertices from V ′.

A similarity graph is a graph based on the similarity matrix of a specific data

set.

Clustering algorithms based on graph theory are usually divisive algorithms,

meaning that they start with a single highly connected graph (that corresponds

to a single cluster) that is then splited using consecutive cuts. A cut in a graph

corresponds to the removal of a set of edges that disconnects the graph. A

minimum cut (min-cut) is the removal of the smallest number of edges that

produces a cut. The result of a cut in the graph causes the splitting of one
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cluster into, at least, two clusters. An example of a min-cut clustering algorithm

can be found in [99]. Clustering algorithms based on graph theory have existed

since the early 1970’s. They use the high connectivity in similarity graphs to

perform clustering ( [130], [131]). More recent works such as [75], [76] and [196]

also perform clustering using highly connected graphs and subsequent partitions

by edge cutting to obtain subgraphs. Chameleon [108], mentioned earlier as a

hierarchical agglomerative algorithm, also uses a graph-theoretic approach. It

starts by constructing a graph, based on k-nearest neighbors, then it performs

the partition of the graph into several clusters (using the hMetis [109] algorithm)

such that it minimizes the edge cut. After finding initial clusters, it repeatedly

merges these small clusters, using relative cluster interconnectivity and closeness

measures.

Graph cutting is also used in spectral clustering, commonly applied in image

segmentation and, more recently, in web and document clustering and bioinfor-

matics. The rationale of spectral clustering is to use the special properties of the

eigenvectors of a Laplacian matrix as the basis to perform clustering. Fidler [52]

was one of the first to show the application of eigenvectors to graph partitioning.

The Laplacian matrix is based on an affinity matrix, A, built with a similarity

measure. The most common similarity measure used in spectral clustering is

Aij = exp (−d2
ij/2σ2), where dij is the Euclidian distance between vectors xi and

xj and σ is a scaling parameter. With matrix A, the Laplacian matrix L is

computed as L = D − A, where D is the diagonal matrix whose elements are

the sums of all row elements of A.

There are several spectral clustering algorithms that differ in the way they

use the eigenvectors in order to perform clustering. Some researchers use the

eigenvectors of the "normalized" Laplacian matrix [31] (or a similar one), in

order to perform the cutting usually using the second smallest eigenvector [175],

[103], [39]. Others, use the highest eigenvectors as input to other clustering

algorithm [141], [133]. One of the advantages of this last approach is that, by
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using more than one eigenvector, enough information can be provided to obtain

more than two clusters as opposed to cutting strategies where clustering must be

performed recursively to obtain more than two clusters. A comparison of several

spectral clustering algorithms can be found in [187].

The practical problems encountered with graph-cutting algorithms are ba-

sically related to the belief that the subgraphs produced by cutting are always

related to real clusters. This assumption is frequently true with well separated

compact clusters; however, in data sets with, for example, elongated clusters,

this may not occur. Also, if we use weighted graphs, the choice of the threshold

to perform graph partition can produce very different clustering solutions.

Other clustering algorithms use the existence of different density regions of

the data to perform clustering. One of the density based clustering algorithms,

apart from the well-known DBScan [48], is the Mean Shift algorithm. Mean

Shift was introduced by Fukunaga [58], rediscovered in [30] and also studied in

more detail by Comaniciu [32], [33], with applications to image segmentation.

The original algorithm, with a flat kernel, works this way: in each iteration, for

each point P , the cluster center is obtained by repeatedly centering the kernel

(originally centered in P ) by shifting it in the direction of the mean of the set

of points inside the same kernel. The process is similar if we use a Gaussian

kernel. The mean shift vector is aligned with the local gradient estimate and

defines a path leading to a stationary point in the estimated density [33]. This

algorithm seeks modes in the sample density estimation and so is considered to

be a gradient mapping algorithm [30]. Mean Shift has some very good results

in image segmentation and computer vision applications but, like other density

based algorithms, it builds clusters with the assumption that each of them is

related to a mode of the density estimation. For problems like the one depicted in

Fig. 4.1a, with clusters of different densities very close to each other, this kind of

algorithm usually has difficulties in performing the right partition because it finds

only one mode in the density function. (If we use a smaller smoothing parameter
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it will find several local modes in the low density region). This behavior is also

observable in data sets like the double spiral data set depicted in Fig. 4.10.

(a) The original data set. (b) The expected cluster-
ing solution.

(c) Density function.

Figure 4.1: An example of a data set difficult to cluster using density based
clustering algorithms like Mean Shift.

Another example of a clustering algorithm is the path-based pairwise cluster-

ing algorithm [53, 54]. This clustering method also groups objects according to

their connectivity. It uses a pairwise clustering cost function with a dissimilar-

ity measure that emphasizes connectedness in feature space to deal with cluster

compactness. This simple approach gives good results with compact clusters.

To deal with structured clusters a new objective function, containing the same

properties of the pairwise cost function, is used. This new objective function is

based on the effective dissimilarity, the length of the minimal connecting path

between two objects, and is the basis for the path-based clustering. Some of the

applications of this clustering algorithm are edge detection and texture image

segmentation.

4.2 The Clustering Algorithm Components

One of the main concerns when we started searching for an efficient clustering

algorithm was to find an extremely simple idea, based on very simple principles,

that didn’t need complex measures of intra- or inter-cluster association. Keeping

this in mind, we performed clustering tests involving several types of individuals
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(including children) in order to grasp the mental process of data clustering. The

results and analysis of these tests can be found in Appendix B. One of the

most important conclusions from our tests is that human clustering exhibits

some balance between the importance given to local (e.g., connectedness) and

global (e.g., structuring direction) features of the data, a fact that we tried to

reflect in our algorithm. The tests also provided majority choices of clustering

solutions against which one can compare the clustering algorithms. Some of the

experiments performed with these data sets are presented later.

In the following we introduce two new clustering algorithm components: a

new proximity matrix and a new clustering process. We first present the new

entropic dissimilarity measure and, based on that, the computing procedure of a

layered entropic proximity matrix; afterwards we present the LEGClust (Layered

Entropic subGraphs Clustering) algorithm.

4.2.1 The Entropic Proximity Matrix

Given a set of vectors X = {x1,x2, ..,xN}, xi ∈ Rm, corresponding to a set of

objects, each element of the dissimilarity matrix A, A ∈ RN×N , is computed

using a dissimilarity measure Ai,j = d(xi,xj). Using this dissimilarity matrix

one can build a proximity matrix, L, where each ith line represents the data set

points, each jth column the proximity order (1st column=closest point ... last

column=farthest point) and each element the point reference that, relative to

row point i, is in the jth proximity position. An example of a proximity matrix,

is shown in Table 4.5 (to be described in detail later on). The points referenced

in the first column (L1) of the proximity matrix are those that have the smallest

dissimilarity value relative to the corresponding row elements.

Each column of the proximity matrix is considered one layer of connections.

We can use this proximity matrix to build subgraphs for each layer, where each

edge is the connection between a point and the corresponding point of that layer.

If we use a proximity matrix based on a dissimilarity matrix built with the
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Euclidian distance to connect each point with its corresponding L1 point (first

layer) we get a subgraph similar to the one presented in Fig. 4.2b for the data

set of Fig. 4.2a. We call the clusters formed with this first layer connections the

elementary clusters. Each of these resulting elementary clusters (not considering

directed edges) is a Minimum Spanning Tree.

(a) Spiral data set.

(b) Connections based on Euclidian dis-
tance.

(c) "Ideal" connections.

Figure 4.2: Connections of the first layer using Euclidian distance and the
"ideal" connections for the spiral data set.

As we can see from Fig. 4.2b, these connections have no relation with the

structure of the given data set. In Fig. 4.2c we present what one should expect

to be the "ideal" connections. These ideal connections should, in our judgement,

reflect the local structuring direction of the data. However, using classical dis-
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tance measures, we are not able to achieve this behavior. As we will see bellow,

entropy will allow us to do it. The main idea behind the entropic dissimilarity

measure is to make the connections follow the local structure of the data set,

where the meaning of "local structure" will be clarified later. From now on we

will take "local structure" or "local structuring" in an intuitive common-sense

basis, as a designation of a prevailing direction in the data. This concept can be

applied to data sets with any number of dimensions.

Let us consider the set of points depicted in Fig. 4.3. These points are in a

square grid except for points P and U . For simplicity we use a two-dimensional

data set, but the analysis is valid for higher dimensions. Let us denote:

• K = {ki}, i = 1, 2, ..,M , the set of the M nearest neighbors of P ;

• dij , the difference vector between points ki and kj , i, j = 1, 2, ..,M , i 6= j,

that we will call the connecting vector between those points;

• pi, the difference vector between point P and each of the M -nearest neigh-

bors ki.

We wish to find the connection between P and one of its neighbors that

best reflects the local structure. Without making any computation and just by

"looking" at the points we can say, despite the fact that the shortest connection

is p1, that the ideal candidates for "best connection" are those connecting P

with Q or with R because they are the ones that best reflect the structuring

direction of the data points.

Let us represent all dij connecting vectors translated to a common origin as

shown in Fig. 4.4a. We will call this an M-neighborhood vector field. An M-

neighborhood vector field can be interpreted as a probability density function in

correspondence with the two-dimensional histogram shown in Fig. 4.4b, where

in each bin we plot the number of occurrences of dij vector ends. This histogram

estimates the probability density function of dij connections. It can be inter-
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p1

k1

P

k2d12

9−nearest neighbors of P

R
P

Q
U

Figure 4.3: A simple example with the considered M-nearest neighbors of point
P , M = 9; the M-neighborhood of P corresponds to the dotted region.

preted as a Parzen window estimate of the pdf using a rectangular kernel. The

main elongation direction of the pdf defines our "structuring direction".

(a) (b)

Figure 4.4: The M-neighborhood vector field of point P (a) and the histogram
representation of the probability density function (b).

The probability density function associated with point P , reflects, in this

case, an horizontal M-neighborhood structure and, therefore, we expect to choose

an "ideal" connection for P that follows this horizontal direction. Although the

direction is an important factor we should also consider the size of the connec-

tions and avoid the selection of connections between points far apart. Taking

this into consideration, we can also see that in terms of the probability density

function, the small connecting vectors are the most probable ones.

Now, since we want to choose a connection for point P based on ranking

all possible connections, we have to compare all the probability density func-

tions resulting from adding each connection pi to the set of connection of the
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M-neighborhood vector field. One of the measures that compares probability

density functions is an entropic measure and we will use it to rank all the pos-

sible connections pi. Basically, what we are going to do, is to rank connections

pi according to the variation introduced by each one in the probability density

function. The connection that introduces less disorder into the system, that

least increases the entropy of the system, will be top ranked as the stronger

connection, followed by the other M − 1 connections in decreasing order.

Let D = {dij}, i, j = 1, 2, .., M , i 6= j. Let H(D, pi) be the entropy associated

with connection pi, the entropy of the set of all connections dij plus connection

pi, such that

H(D, pi) = H({dij} ∪ {pi}), i = 1, 2, .., M. (4.2)

This entropy is our dissimilarity measure. We compute, for each point, the

M possible entropies and build an entropic dissimilarity matrix and the corre-

sponding entropic proximity matrix (examples are shown in Tables 4.4 and 4.5).

The elements of the first column of the proximity matrix are those corresponding

to the points having the smallest entropic dissimilarity value (strongest entropic

connection), followed by those in the subsequent layers in decreasing order.

We show, in Table 4.1, the dissimilarity and proximity values for point P and

their neighbors depicted in Fig. 4.3. We use Rényi’s quadratic entropy computed

as explained in section 2.2.2. The points of Fig. 4.3 are referenced left to right

and top to bottom as 1 to 14.

In Fig. 4.5 we show the first layer connections, where we can see the difference

between using a dissimilarity matrix based on classic distance measures such

as the Euclidian distance (Fig. 4.5a) and a dissimilarity matrix based on our

entropic measure (Fig. 4.5b).

The connections derived by the first layer, when using the entropic measure,

clearly follow an horizontal line and, despite the fact that point k1 is the closest

one to P in the Euclidian sense, the stronger connection for point P is the
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Table 4.1: Entropic dissimilarities and proximities relative to point P (10).

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10 -2.42 -2.67 -2.69 -2.67 -2.42 -2.87 -3.12 -3.12 -2.87

(a) Entropic dissimilarities.

Layers

Point L1 L2 L3 L4 L5 L6 L7 L8 L9

10 11 9 12 8 3 4 2 5 1

(b) Entropic proximities.

(a) (b)

Figure 4.5: Difference on Elementary Clusters using a dissimilarity matrix
based on Euclidian distance (a) and on our Entropic measure (b).

connection between P and R, as desired. This different behavior can also be

seen in the spiral data set depicted in Fig. 4.6. The connections that produce the

elementary, first layer, clusters are clearly following the "structuring direction"

of the data. We obtain the same behavior for the connections of all the layers

favoring the union of those clusters that follow the structure of the data.

The pseudo-code to compute the entropic proximity matrix is presented in

Table 4.2.

The process just described is different from the apparently similar process

of ranking the connections pi according to the value of the probability density
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Figure 4.6: The first layer connections following the structure of the data set
when using an entropic proximity matrix.

Table 4.2: Pseudo-code for computing the entropic proximity matrix.

For i = 1 to N (number of objects)
For j = 1 to M (number of nearest neighbors)

Compute H(D, pj) = H({D} ∪ {pj}).
end j

end i
Build the (N ×M) entropic proximity matrix.

function derived from the M -neighborhood vector field. In Fig. 4.7 we show the

estimated probability density function and the points corresponding to the pi

connections. We can see that, even in this simple example, a difference exists in

the ranking of the connections (fifth element).

4.2.2 The Clustering Process

We could use the new entropic proximity matrix with an existing clustering

algorithm to cluster the data. However, the potentialities of the new proximity

matrix can be exploited with a new hierarchical agglomerative algorithm that we

propose and call LEGClust (Layered Entropic subGraph Clustering algorithm).

The basic structure used in this new clustering algorithm is the unweighted
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8 (0.052)

9 (0.065)

5 (0.035)

1 (0.035)

2 (0.047)

4 (0.047)
3 (0.043)

Figure 4.7: The probability density function of the M -neighborhood vector
field and the points corresponding to the pi connections. The labels indicate
the element number and the pdf value.

subgraph. More specifically, we use directed, maximally connected, unweighted

subgraphs, built with the information provided by the entropic proximity matrix

(EPM). Each subgraph is built by connecting each point with the corresponding

point of each layer (column) of the EPM. An example of such a subgraph was

already shown in Fig. 4.6. The clusters are built hierarchically by joining together

the clusters that correspond to the layer subgraphs.

We start by presenting, in Table 4.3, the pseudo-code of LEGClust Algo-

rithm.

Table 4.3: Pseudo-code for the LEGClust Algorithm.

Compute the entropic proximity matrix. (Table 4.2)
Form the elementary clusters using the first layer.
Define k - the minimum number of connections.
While number-of-clusters> 1 do

Go to next layer (L).
Join each cluster with the one having the highest number of connections
with it (≥ k) in L.

End While
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To illustrate the procedure applied in the clustering process we use a simple

two dimensional data set example (Fig. 4.8a). This data set consists of 16 points

apparently constituting 2 clusters with 10 and 6 points each. Since the number

of clusters in a data set is highly subjective, the assumption that it has a specific

number of clusters is always affected by the knowledge about the problem.

In Tables 4.4 and 4.5 we present the EPM built from the entropic dissimilarity

matrix.

Table 4.4: The dissimilarity matrix for Fig. 4.8 data set.

Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 - 5.64 - 6.36 5.66 6.32 - - - 5.77 - - - - - -

2 6.00 - 6.03 6.26 6.40 - - - - 6.12 - - - - - -

3 - 6.19 - 6.61 - - - - - 7.03 6.76 6.48 - - - -

4 6.48 6.50 6.58 - - - - - - 6.36 6.47 - - - - -

5 6.10 - - - - 6.24 - 6.16 6.09 6.18 - - - - - -

6 - - - 6.05 6.21 - - 6.03 6.14 6.11 - - - - - -

7 - - - - 5.61 6.06 - 5.67 5.28 6.84 - - - - - -

8 - - - - 6.09 5.54 5.82 - 5.89 6.27 - - - - - -

9 - - - - 5.78 5.98 5.79 6.03 - 5.99 - - - - - -

10 6.06 5.98 - 6.05 6.00 5.98 - - - - - - - - - -

11 - - - - - - - - - - - 3.74 4.41 4.73 3.93 3.86

12 - - - - - - - - - - 3.86 - 3.88 4.36 4.60 3.95

13 - - - - - - - - - - 4.39 3.78 - 3.79 4.75 3.87

14 - - - - - - - - - - 4.71 4.36 3.80 - 3.93 3.86

15 - - - - - - - - - - 3.85 4.81 5.01 3.82 - 3.71

16 - - - - - - - - - - 4.19 4.18 4.18 4.18 4.18 -

The EPM defines the connections between each point and those points in

each layer: point 1 is connected with point 2 in the first layer, with point 5 in

the second layer and with point 10 in the third layer and so on (see Table 4.5).
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Table 4.5: The proximity matrix for Fig. 4.8 data set.

Layers

Points L1 L2 L3 L4 L5

1 2 5 10 6 4

2 1 3 10 4 5

3 2 4 11 1 10

4 10 3 6 2 11

5 9 1 8 10 6

6 8 4 10 9 5

7 9 5 8 6 10

8 6 7 9 5 10

9 5 7 10 6 8

10 6 2 5 4 1

11 12 16 15 13 14

12 11 13 16 14 15

13 12 14 16 11 15

14 13 16 15 12 11

15 16 14 11 12 13

16 14 11 13 12 15

We start the process by defining the elementary clusters. These clusters are

built by connecting, with an oriented edge, each point with the corresponding

point of the first layer (Fig. 4.8b). There are 4 elementary clusters in our simple

example.

In the second step of the algorithm we connect, with an oriented edge, each

point with the corresponding point of the second layer (Fig. 4.8c).

In order to build the second step clusters we apply a rule based on the number

of connections to join each pair of clusters. We can use the simple rules of: a)

joining each cluster with the ones having at least k connections with it; b) joining
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(b) First layer connections and resulting
elementary clusters.
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(c) The 4 elementary clusters and the
second layer connections.

Figure 4.8: The clustering process in a simple two dimensional data set.

each cluster with the one having the highest number of connections with it, not

less than a predefined k. In the performed experiments this second rule proved

to be more reliable, and the resulting clusters were usually "better" than using

the first rule. The parameter k must be greater than 1 in order to avoid outliers

and noise in the clusters. In our simple example we chose to join the clusters

with the maximum number of connections larger than 2 (k > 2). In the second

step we form 3 clusters by joining cluster 1 and 3 with 3 edges connecting them

(note that the edge connecting points 3 and 4 is a double connection). The

process is repeated and the algorithm stops when only one cluster is present or

when we get the same number of clusters in consecutive steps. The resulting

number of clusters for this simple example was 4-3-2-2-2. As we can see, the

number of clusters in steps 3 and 4 is the same (2); therefore, we consider it to
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be the acceptable number of clusters.

4.2.3 Parameters involved in the clustering process

4.2.3.1 Number of nearest neighbors

The first parameter that one must choose in LEGClust is the number of nearest

neighbors (M). We do not have a specific rule for this. However, one should not

choose a very small value because a minimum number of steps in the algorithm

is needed in order to guarantee reaching a solution. Choosing a relatively high

value for M is also not a good alternative because one loses information about

the local structure, which is the main focus of the algorithm.

Based on the large amount of experiments performed with the LEGClust

algorithm on several data sets, we came to a rule of thumb of using M values not

higher than 10% of the data set size. Note that, since the entropy computation

for the whole data set has complexity O

(
N

((
M
2

)
+ 1

)2
)
, the value of M has a

large influence on the computational time. Hence, for large data sets a smaller

M is recommended, down to 2% of the data size. For image segmentation M can

be reduced to less than 1% due to the nature of image characteristics (elements

are much closer to each other than in other classification problems).

4.2.3.2 The smoothing parameter

As we said earlier, the h parameter is very important when computing the en-

tropy. In other works that also use the Rényi’s quadratic entropy to perform

clustering it is assumed that the smoothing parameter is experimentally selected

and that it must be fine tuned to achieve acceptable results [63,97]. A comparison

between formulas 2.60 and 2.61 was also performed in [96]. In this work they

use formula 2.60 to estimate the optimal one-dimensional kernel size for each

dimension of the data, and use the smallest value as the smoothing parameter.

In Section 3.3.2.1 we have proposed the formula hop = 25
√

m/N and have
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shown experimentally that higher values of h than those given by formula 2.61

produce better results in neural network classification using error entropy mini-

mization as a cost function. Following the same approach, we propose a formula

similar to formula 2.61, but with the introduction of the mean standard devia-

tion:

hop = 2 s∗
(

4
(m + 2)N

) 1
m+4

, (4.3)

where s∗ is the mean value of the sample standard deviations for each dimension.

All experiments of LEGClust were performed using formula 4.3.

Although the value of the smoothing parameter is important, it is not crucial

in order to obtain good results. As we increase the h value, the kernel becomes

smoother and the entropic proximity matrix becomes similar to the Euclidian

distance proximity matrix. Extremely small values of h will produce undesirable

behaviors because the entropy will have high variability. Using h values in a

small interval, near the optimal value, does not affect the final clustering results

(e.g., we used in the spiral data set – Fig. 4.2 – values between 0.05 and 0.5

without changing the final result).

4.2.3.3 Minimum number of connections

The third parameter that must be chosen in the LEGClust algorithm, is the value

of k, the minimum number of connections to join clusters in consecutive steps of

the algorithm. As mentioned earlier, one should not use k = 1 to avoid outliers

and noise, especially if they are located between clusters. In our experiments we

obtained good results using either k = 2 or k = 3. If the elementary clusters

have a small number of points, we do not recommend higher values for k because

it can cause the impossibility of joining clusters due to lack of a sufficient number

of connections among them.
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4.2.4 Algorithm Optimization

In order to optimize the LEGClust algorithm, we have introduced some extra

refinements that can produce better final clustering solutions. One of them,

related with the problem of outliers or noise, is the presence of "micro clusters".

Micro clusters are clusters with a very small number of elements: in a small data

set these could consist of 2 or 3 elements. These micro clusters can appear if,

for example, there is a very small number of elements in a isolated region (Fig.

4.9a).

What should we do with these micro clusters? There are several solutions:

• At each step of the algorithm we can join each micro cluster to the cluster

having the highest number of connections with it. This must be done with

caution because it can, eventually, lead to the union of two normal clus-

ters into one single cluster. However, in most cases, this approach produces

good results. An example of it is shown in Fig. 4.9, where we can see the

difference between a clustering with no micro clusters consideration and one

where the clusters with less than 3 elements, before the second step of the

algorithm, are joined with other clusters. The number of clusters in each

step of the clustering process was, in the first case (Fig. 4.9a): 18, 16, 12,

6, 5, 5 and in the second case (Fig. 4.9b): 18, 13, 8, 3, 3.

• We can repeat the previous process periodically along the clustering process,

increasing the size of the acceptable micro clusters. This means that one

can start by forcing the clustering of micro clusters with, for instance, less

than 3 elements at a first stage and then repeat the process in posterior

stages increasing, at each step, the minimum number of elements in each

micro cluster. The only problem involved with this approach is the fact that

one may wrongly exclude real small clusters from the final clustering.

• The clustering process is performed normally and, in the end, we can take
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5 clusters
k=3; No micro cluster detection.

Micro Clusters

(a) Clustering with out micro cluster detection.

3 clusters
k=3; With micro cluster detection.

(b) Clustering with micro cluster detection.

Figure 4.9: Different solutions considering or not micro cluster detection.

actions in order to include the micro clusters in the formed clusters. This

option, however, has the disadvantage of the possible inclusion of outliers

and noise in real clusters.

• We just leave the final micro clusters as they are and consider them as noise

or outliers.

Other aspects that can be considered for inclusion in the algorithm in order

to try to achieve better results are:
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• Regarding the possibility of joining two clusters, we have presented in sec-

tion 4.2.2 two possible solutions based on a fixed number k of connections

between elements of two different clusters. One of the options that can be

included in the algorithm is to increase the number k as we evolve in the

clustering process. This option is based on the fact that, as we evolve in the

clustering process, larger clusters will be formed and, therefore, the prob-

ability of having a higher number of connections between clusters will be

much higher.

• At each step of the algorithm we only use the connections of the correspond-

ing layer to evaluate the possibility of joining two clusters. It may happen

that at a certain step, the number of connections between two clusters may

not be sufficient to perform their union but, at a further step, when consid-

ering the connections of all the previous steps, we may reach the number k

of necessary connections to joint the two clusters. One could then use as an

optional feature the evaluation of the clustering process at each step based

on all previous connections.

We have made some experiments with these two options but we didn’t reach

a conclusion about the type of data sets that benefit from their use.

Despite the fact that we do not use any kind of intra-cluster or inter-cluster

association measure, we can easily introduce this concept in our algorithm but

this would highly increase its complexity, turning against our objective of a

extremely simple clustering algorithm. We also suspect that the introduction

of our new entropic dissimilarity measure in other hierarchical and graph-based

algorithms may improve their results.
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4.3 Experiments

We have experimented the LEGClust algorithm in a large variety of applica-

tions. We have performed experiments with the real data sets, UBIRIS, NCI

Microarray, 20NewsGroups, Dutch Handwritten Numerals (DHN), Iris, Wdbc,

Wine, and Olive, some of them with a large number of features, and also with

several artificial two-dimensional data sets. The artificial data sets were created

in order to better visualize and control the clustering process and some examples

are depicted in Fig. 4.10. For the artificial data set problems the clustering so-

lutions yielded by different algorithms were compared with the majority choice

solutions obtained in the human clustering experiment mentioned in Section 4.2

and described in Appendix B. For real data sets the comparison was made with

the supervised classification of these data sets with the exception of the UBIRIS

data set where the objective of the clustering tasks was the correct segmentation

of the eye iris. In both cases – majority choice or supervised classes – we will

designate these solutions as reference solutions or reference clusters.

(a) dataset7 (142). (b) dataset13 (113). (c) dataset15 (184).

(d) dataset22 (141). (e) dataset34 (217). (f) spiral (387).

Figure 4.10: Some of the artificial data sets used in the experiments (in brack-
ets the number of elements).
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We have compared our algorithm with several well known clustering algo-

rithms: Chameleon algorithm, two Spectral clustering algorithms, DBScan and

Mean Shift algorithms.

The Chameleon clustering algorithm, included in Cluto [107], is a software

package for clustering low and high-dimensional data sets. The parameters used

in the experiments, among the innumerous used by Chameleon are mentioned

in the results. In fact, the number of parameters needed to tune this algorithm

was one of the main problems we encountered when we tried to use it in our

experiments. To perform the experiments with Chameleon we followed the advice

in [108] and in the manual for the Cluto software [106].

For the experiments with the spectral clustering approaches we implemented

the algorithms (Spectral-Ng) and (Spectral-Shi) presented in [141] and [175] re-

spectively. One of the difficulties with both Spectral-(Ng/Shi) algorithms, is

the choice of the scaling parameter. Extremely small changes in the scaling

parameter produced very different clustering solutions. In these algorithm the

number of clusters is the number of eigenvectors used to perform clustering. The

number of clusters is a parameter that is chosen by the user in both algorithms.

We tried to make this choice, in Spectral-Ng, an automatic procedure by imple-

menting the algorithm presented in [162]; this, however, produced poor results.

When making the choice of the cluster centroids in the k-means clustering used

in Spectral-Ng we performed a random initialization and 10 restarts (deemed

acceptable by the authors).

We tested the adaptive Mean Shift algorithm [33] in our artificial data sets

and the results were very poor. In most of the cases the proposed clustering so-

lution has a high number of modes and, consequently, a high number of clusters.

For problems having a small number of points, the estimated density function

will present, depending on the window size, either a unique mode if we use a

large window size, or several modes not corresponding to really existing clusters,

if we use a small window size. An example of a clustering solution given by
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this algorithm is presented in Fig. 4.11. As we can see, the number of modes

is extremely high and, even if we optimize the result by joining modes that are

very close to each other, we still have a considerable number of modes. We think

that this algorithm probably works better with large data sets. An advantage

of this algorithm is the fact that one does not have to specify the number of

clusters as these will be driven by the data according to the number of modes.

(a) (b)

Figure 4.11: An example of the number of modes (square points) obtained
with the adaptive Mean Shift algorithm (considering 30 nearest neighbors)
when applied to the spiral data set (a) and an estimated probability density
functions of the same data set (b).

The DBScan algorithm is a density based algorithm that claims to find clus-

ters of arbitrary shapes, but presents, basically, the same problems as the Mean

Shift algorithm. It is based in several density definitions between a point and its

neighbors. This algorithm only requires two input parameters, Eps and MinPts,

but small changes in their values, specially in Eps, produce very different clus-

tering solutions. For our experiments we used the implementation of DBScan

available in [200].

In the LEGClust algorithm the parameters involved are: the smoothing pa-

rameter (h), related to the Parzen pdf estimation; the number of neighbors to

consider (M); and the number of connections to join clusters (k). For the pa-

rameter h we used in all experiments the proposed formula 4.3. For the other

two parameters we indicate in each experiment the chosen values.
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Regarding the experiments with artificial data sets, depicted in Fig. 4.10, we

present in Figures 4.12 and 4.12 the results obtained with LEGClust.

(a) dataset7; M=14; k=3;
43 33 17 10 5 3 3 3 2 2 1.

(b) dataset13; M=10; k=3;
11 7 5 4 3 3 3.

(c) dataset13; M=10; k=3;
11 7 5 4 3 3 3.

(d) dataset15; M=18; k=2;
55 37 16 7 5 3 2 1.

Figure 4.12: The clustering solutions suggested by LEGClust (part 1). Each
label shows: the data set name; the number of neighbors (M); the number of
connections to join clusters (k); the number of clusters found at each step of
the algorithm (underlined is the selected step).

In Fig. 4.14 we present the solutions obtained with Chameleon algorithm

that differ from those suggested by LEGClust.

From the performed experiments, an important aspect noticed when using

the Chameleon algorithm was the different solutions obtained for slightly differ-

ent parameter values. Data set 4.14c was the one where we had more difficulties

in tuning the parameters involved in Chameleon algorithm. A particular differ-

ence between the Chameleon and LEGClust results corresponds to the curious
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(a) dataset20; M=15; k=3;
41 28 18 10 4 2 2 1.

(b) dataset22; M=14; k=2;
45 26 12 8 5 3 2 2.

(c) dataset34; M=20; k=3;
68 59 36 25 15 8 5 3 2 2.

(d) spiral; M=30; k=2;
116 72 28 14 5 3 2 1.

Figure 4.13: The clustering solutions suggested by LEGClust (part 2). Each
label shows: the data set name; the number of neighbors (M); the number of
connections to join clusters (k); the number of clusters found at each step of
the algorithm (underlined is the selected step).

solution given by Chameleon, and depicted in Fig. 4.14b. When choosing 3

clusters as input parameter (nc=3) this solution is the only solution that is not

suggested by the individuals that performed the tests referred in Section 4.2.

The solutions for this same problem, given by LEGClust, are shown in figures

4.12b and 4.12c.

The spectral clustering algorithms gave some good results for some data sets,

but they were unable to resolve some non-convex data sets like the double spiral

problem (Figures 4.15 and 4.16).

The DBScan algorithm clearly fails in finding the reference clusters in all
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(a) dataset13; nc=4; a=20; n=20. (b) dataset13; nc=3; a=20; n=20.

(c) dataset34; nc=2; a=50; n=6.

Figure 4.14: Some clustering solutions suggested by Chameleon. The consid-
ered values nc, a and n are shown in each label.

data sets (except the one of Fig. 4.10a).

Comparing the results given by all the algorithms applied to the artificial

data sets we clearly see, as expected, that the solutions obtained with the density

based algorithms are worse than those obtained with any of the other algorithms.

The best results were achieved with the LEGClust and Chameleon algorithms.
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(a) dataset13; nc=4; σ = 0.065. (b) dataset22; nc=3; σ = 0.071.

(c) spiral; nc=2; σ = 0.0272. (d) spiral; nc=2; σ = 0.0275.

Figure 4.15: Some clustering solutions suggested by Spectral-Ng. Each label
shows: the data set name; the pre-established number of clusters; the σ value.
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(a) dataset13; nc=4; σ = 0.3. (b) dataset15; nc=5; σ = 0.3.

(c) dataset22; nc=3; σ = 0.15. (d) spiral; nc=2; σ = 0.13.

Figure 4.16: Some clustering solutions suggested by Spectral-Shi. Each label
shows: the data set name; the pre-established number of clusters; the σ value.
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We now present the performed experiments with LEGClust in real data sets

and the comparative results obtained with the different clustering algorithms.

We start by presenting the results of the segmentation performed by LEG-

Clust and Spectral-Ng in the images of UBIRIS data set sample. The results

for this image segmentation problem are depicted in Fig. 4.17 (second and third

columns). In all experiments with LEGClust we used the values M = 30 and

k = 3. For the experiments with Spectral-Ng we chose 5 as the number of final

clusters. We can see by the segmentations produced that both algorithms gave

acceptable results. However, one of the striking differences is the way Spectral

clustering splits each eyelid in two by its center region (the third image is a good

example of this behavior) that is also observable if we choose different numbers

of clusters.

To test the sensitivity of our clustering algorithm to different values of the

parameters we have made some experiments with different values of M and k,

in the UBIRIS data set sample. An example is shown in Fig. 4.18. We can see

that, different values of M and k do not affect substantially the final result of

the segmentation process; the eye iris in all solutions is distinctly obtained.

Experiments with the DHN data set were performed with LEGClust and

Spectral clustering and their results compared. These results are presented in

Table 4.7. ARI stands for Adjusted Rand Index, a measure for comparing results

of different clustering solutions when the labels are known [86]. This index is an

improvement of the Rand Index; it lies between 0 and 1 and the higher the ARI

index is the better is the clustering solution. The parameters for both Spectral

clustering and LEGClust were tuned to give the best possible solutions. We can

see that, in this problem, LEGClust performs much better than Spectral-Shi

and with similar (but slightly better) results than Spectral-Ng. We also show in

Table 4.7 some different results for LEGClust obtained with different choices of

the minimum number of connections (k) to join clusters. In these results we can

see that different values of k produce results with small differences in the ARI
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Figure 4.17: Sample from UBIRIS data set (first column) and the results of the
LEGClust (second column) and Spectral (third column) clustering algorithms.
The number of clusters for LEGClust was 8, 9, 12, 7, 5 and 8 respectively, with
M = 30 and k = 3.
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(a) k = 2 (b) M = 10 (c) M = 20

Figure 4.18: Segmentation results for the fourth image (line 4) of Fig. 4.17
using different values of k or M .

index.

In Table 4.6 we show an example of the confusion matrix obtained with

LEGClust for an experiment with the DHN data set.

In the experiments with the 20NewsGroups data set we have compared the

LEGClust algorithm with both Spectral clustering algorithms. The results of

the experiments are shown in Table 4.7. We can see that the best results are

obtained with the Spectral-Ng algorithm. However the results of LEGClust are

much better when compared with Spectral-Shi.

Table 4.6: A confusion matrix of a clustering solution given by LEGClust for
the DHN data set.

Classes

C
lu
st
er
s

176 1 0 1 0 3 9 0 169 3

1 0 0 0 0 0 0 0 19 0

7 2 1 3 14 178 6 16 1 188

0 2 195 5 0 0 0 83 3 3

1 10 4 7 1 4 0 101 0 3

0 167 0 1 3 0 1 0 2 2

0 2 0 0 86 0 1 0 1 0

0 8 0 3 95 0 1 0 2 1

0 8 0 180 0 14 1 0 0 0

15 0 0 0 1 1 181 0 3 0
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In the experiments performed with the NCI Microarray data set we also have

compared the LEGClust and Spectral clustering algorithms. To perform these

experiments we have chosen 3 clusters, following the example in [78], as the final

number of clusters for both algorithms. The results are also shown in Table 4.7.

Again the results produced by LEGClust were quite insensitive to the choice of

parameter values.

Table 4.7: The results and parameters used in the comparison of LEGClust
and Spectral clustering in experiments with DHN, 20NewsGroups and NCI
Microarray data sets.

LEGClustt Spectral-Ng Spectral-Shi

DHN M k ARI nc σ ARI nc σ ARI

30 10 0.628 10 12 0.573 10 10 0.287

30 8 0.608

30 12 0.574

20NewsGroups

20 3 0.289 20 12 0.479 20 20 0.006

20 2 0.287

NCI Microarray

4 2 0.148 3 80 0.177 3 10 0.138

6 3 0.148

10 3 0.148

The results presented in Table 4.7 show that the LEGClust algorithm per-

forms better than the Spectral-Shi algorithm in the three data sets and, com-

pared with Spectral-Ng, it gives better results in the DHN data set and similar

ones in the NCI Microarray.

In the experiments with the data sets Iris, Olive, Wdbc and Wine, we com-

pared the clustering solutions given by LEGClust and Chameleon. The param-



4.3. EXPERIMENTS 129

eters used for each experiment and the results obtained with both algorithms

are shown in Table 4.8. Each experiment with the Chameleon algorithm, followed

the command: vcluster dataset_name number_of_clusters=nc -clmethod=graph

-sim=dist -agglofrom=a -agglocr=wslink -nnbrs=n given in [106]. The final

number of clusters is the same as the number of classes. We can see that the re-

sults with LEGClust are better than the ones obtained with Chameleon, except

for the data set Olive.

Table 4.8: The results and parameters used in the comparison of LEGClust
and Chameleon in experiments with 4 real data sets.

Chameleon LEGClust

Data set a n ARI M k ARI

Iris 9 50 0.658 15 3 0.750

Olive 40 40 0.733 25 3 0.616

Wdbc 40 25 0.410 20 3 0.574

Wine 30 21 0.400 15 3 0.802

Finally we also experimented our algorithm in two images from [54], used

to test textured image segmentation. We show in Fig. 4.19 the results obtained

and the comparison with those obtained by Fischer [54] with their Path-based

algorithm. We are aware that our algorithm was not designed having in mind the

specific requirements of texture segmentation; as expected, the results were not

as good as those obtained in [54], but nevertheless LEGClust was still capable

of detecting some of the structured texture information.

In this chapter we have presented a new proximity matrix, built with a

new entropic dissimilarity measure, as input for clustering algorithms. We also

presented a simple clustering process that uses this new proximity matrix and

performs clustering by combining a hierarchical approach with a graph technique.

The new proximity matrix and the methodology implemented in the LEG-
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Figure 4.19: Segmentation results for textured images (left hand side) with
Fischer’s path-based clustering (midle) and LEGClust (right). The parameters
used in LEGCLust were M = 30 and k = 3 and the final number of clusters
was 3 (top) and 6 (bottom).

Clust algorithm allows taking into account the local structure of the data, rep-

resented by the statistical distribution of the connections in a neighborhood of a

reference point achieving a good balance between structuring direction and local

connectedness. In this way, LEGClust is able, for instance, to correctly follow a

structuring direction presented on the data, with sacrifice of local connectedness

(minimum distance), as human clustering often does.

In the next chapter we will use LEGClust to perform modular neural network

task decomposition.



Chapter 5

MNN with Entropic Task

Decomposition

As we said in the beginning of the previous chapter, the proposed new clustering

algorithm was developed because we intended to perform modular neural net-

work task decomposition based on entropic criteria. The purpose of this chapter

is to present the experiments with modular neural networks with task decom-

position performed with LEGClust (a small part of this chapter was presented

in [165]). We will start the chapter with a brief introduction to modular neural

networks and the task decomposition process followed by the presentation of the

results obtained in classification problems.

The use of simple neural networks such as multi-layer perceptrons has some

drawbacks: e.g. slow learning, weight coupling or the black box effect. These

can be alleviated by using a modular neural network (MNN). A modular neural

network is an ensemble of learning machines. The idea behind this kind of

learning structure is the divide-and-conquer paradigm: the problem should be

divided into smaller subproblems that are solved by experts (modules) and their

131
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partial solutions should be integrated to produce a final solution. (Figure 5.1).

Data

Modules

Integration
Output

Figure 5.1: A modular neural network.

Ensembles of learning machines proved to give, in some cases, better results

than the single learners that produce them. The proofs are mainly empirical

[15, 38] but there are some theoretical results [5, 6, 111] that also support this

assumption.

The purpose here is to address the issue of using our entropic clustering

algorithm (LEGClust) to perform the task decomposition in a modular neural

network (MNN) approach, as opposite to the traditional methods. Task de-

composition is one of the strategies used to simplify the learning process of any

learning system. In neural networks it basically consists on the partition of the

input space in several regions, this way decomposing the initial problem in dif-

ferent subproblems. This is done based on the assumption that these regions

possess different characteristics and so they should be learned by specialized

neural networks. By posterior integration of the learning results, we are able

to hopefully achieve better solutions for the initial problem. Generally, task

decomposition can be obtained in three different ways: explicit decomposition

(the task is decomposed by the designer before training), class decomposition

(the decomposition is made based on the classes of the problem) and automatic

decomposition. When automatic decomposition is used, it can either be made
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during the learning stage or it can be made before training the modules, using

an unsupervised or clustering algorithm. We use this last approach performing

the task decomposition with LEGClust.

So, to use a MNN, three stages have to be considered:

• The task decomposition stage, where the problem is divided into smaller

problems, each one to be delivered to one of the modules or expert networks.

• The training phase, where each individual expert (module) is trained until

it learns to solve its particular subproblem.

• The decision integration. This strategy is used to combine the work of

the experts and to produce a final network output. This can be done in

several ways: using a gating network [90], making the modules vote [11] or

through hierarchical integration (which can also use voting and/or gating

networks) [91, 100]. In this work we consider the use of a gating network.

This network can be considered as an additional expert that is trained to

recognize the region of the input space where each of the experts have their

region of expertise, defined in the task decomposition phase.

After finishing the learning process, when a new pattern to be classified

is presented to the network, the individual experts compute the class it might

belong, but the gate network selects only a particular output that is given by the

expert it considers to be ‘competent’ to solve the problem, taking into account

the region of the input space to which the pattern belongs.

5.1 Task decomposition and MNN Structure

As we mentioned before, the task decomposition is done before training the

modules, using a clustering algorithm. Previous works like [4,44,189] and [5,50]

already used this approach. There are several well known algorithms to perform
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clustering, being the most common ones those based on matrix theory and graph

theory. However, it is also known, and we have mentioned it on the previous

chapter, that this kind of algorithms often have serious difficulties in identifying

real clusters. The algorithms based on matrix theory build clusters according to

some distance measure producing usually globular clusters and the algorithms

based on graph theory, usually divisive algorithms, present some difficulties in

the process of graph partitioning to obtain plausible clusters. In the following

we propose the use of LEGClust to do the automatic task decomposition.

To better understand the need for a task decomposition process, let us take

a look at the artificial data set depicted in Fig.5.2.

Figure 5.2: The partition of the input space for a 3 class problem.

This is a 3 class problem where the input space is clearly divided into 2 re-

gions: one of the regions (upper right) contains samples from 2 classes (crosses

and circles) and the other contains samples from all 3 classes. Note that there are

two classes with samples belonging to the 2 different regions. This classification

problem, apparently trivial, will require a complex MLP to obtain a satisfac-

tory solution due to the fact that there are non convex and disjoint classes. By

having a classifier dedicated to each region we are able to transform this partic-

ular problem into two simpler ones with each classifier responsible to learn its
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subproblem defined by its region of interest.

A schematic view of the structure of our modular neural network and all the

steps involved in the training phase of the MNN is depicted in Fig. 5.3.

Input (X,T)
LEGClust

Number of

Clusters (C)

Number of

Modules (M)

=

Module 1

Module 2

Module M

Input X

X_C.1

X_C.2

X_C.M

Targets T

Y.1

Y.2

Y.M

Outputs Y

T_C.1

T_C.2

T_C.M

EEM

EEM

EEM

Input X
Gate G

Y.G

C

EEM

Outut (X,T,C)

Figure 5.3: Schematic view of the structure and the training phase of the
Modular Neural Network.

Each module, including the gate, is an MLP.

The process starts with the partition of the input space in C clusters. This

partition is performed by the LEGCLust algorithm that receives as input the
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features matrix X and the target vector T and produces as output the same

X and T and an additional vector C representing the clusters labels for the

elements of the data set.

We have already mentioned, in the previous chapter, that the final number

of clusters in a clustering process is very subjective and is also influenced by the

problem domain. In classification problems to be solved by a MNN approach,

one must not work with a high number of final clusters because the problem

would be extremely partitioned and, consequently, the errors induced by the gate

module, responsible to learn the division of the input space, would probably be

very high. In fact, this, and the absence of natural clusters in a data set, are

the main obstacles to use a MNN in a classification problem. If the data set

does not possess natural clusters, by forcing the division of the input space in,

at least, two clusters, the errors induced by the gate would be, probably, higher

than those produced by a single MLP. To better understand this problem let us

look at Fig.5.4.

Figure 5.4: The possible partition of the input space in 2 clusters for this 2
class problem would produce worse results with a MNN than with a simple
MLP.

This is a very simple problem for a simple MLP (the classes are almost linear

separable). By dividing the input space in two clusters, like the ones depicted in
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Fig. 5.5, obtained with the clustering process, the errors produced by the gate

module would be responsible for a worse solution than the possible one obtained

with a single MLP.

To illustrate the training phase, let us return to the example of Fig.5.2 and

let us suppose that the clustering process divides the data set in two clusters,

C1 and C2, depicted in Fig. 5.5.

C1

C2

Figure 5.5: The possible 2 clusters originated by the clustering process applied
to the data set of Fig.5.2.

The MNN for this problem will have two modules and the gate. The two

modules are responsible for learning each of the subsets of the data defined by

each cluster and the gate is responsible for learning the problem as if it was a

2-class problem like the one depicted in Fig. 5.6.

Each module, M1 and M2, is trained with the subset of the training data

corresponding to each cluster, C1 and C2, respectively. The targets of these

subsets are the original class labels. Module M1 is trained with 3 classes and

module M2 with 2 classes. So, we have a [2, nh, 3] MLP for module M1 and a

[2, nh, 2] MLP for module M2. The gate is trained with all the training set data

but now the initial targets are substituted by the clusters labels (Fig. 5.6). By

doing this, the gate network will learn to identify the data corresponding to each

input region (cluster). The training process for each module/gate is performed
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Figure 5.6: The gate is trained as if the initial problem is transformed in a
2-class problem like the one depicted here.

exactly the same way as in the MLP training. In addition we also use in each

module/gate our EEM algorithm as referenced in Fig. 5.3.

In the test phase, for each new pattern that is presented to the MNN, the

gate will determine which module is going to classify this new pattern, depending

on the output label. If the gate classifies the pattern as belonging to C1, the

output of module M1 is the one that is chosen, and the similar for cluster C2

and module M2. Other strategies can be used, such as the combination of both

outputs, to obtain a classification for each pattern, but we didn’t consider this

hypothesis in our work.

5.2 Experiments

We have performed a considerable number of experiments with several data sets

using modular neural networks with task decomposition performed by differ-

ent clustering algorithms: one using k-means (K-MNN), another using Spectral

Clustering [141] and the last one using our entropic clustering (EC-MNN). All

the neural networks used in the experiments, both the modules and the gates

of the MNN, were MLP’s with one hidden-layer. The topologies of the MLPs

were [a : nh : c], where a is the number of features, nh is the number of neurons
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in the hidden layer and c is the number of classes treated by each expert and

the number of clusters/experts for the gates. The neural networks were trained

with the back-propagation algorithm and early stopping. The experiments were

made using the 2-fold cross validation method. Each module is trained with the

input data defined by the clustering algorithm (each module learns with the data

from each cluster). The gate network is trained with all the data labeled by the

LEGClust algorithm.

Regarding the clustering processes, since none of them produce automatically

the number of clusters, these must be defined by the user. Taking into account

the data sets used in the experiments, we only considered the possibilities of

2 and 3 clusters. Otherwise, the training set for each module could have an

insufficient number of samples.

We used in our experiments several real data sets: Breast Tissue, CTG,

Diabetes, Olive, 2VowelsPB and Sonar, and also the artificial one depicted in

Fig. 5.2 further designated as ArtificialF5.2 containing 222 elements, 2 features

and 3 classes.

In Table 5.1 we present the parameters of each modular neural network for

the results presented in Table 5.2. For each type of MNN, we show the number

of experts and, for each of them, we present the number of hidden neurons and

the number of output neurons. The number of output neurons is defined by the

number of classes in each cluster. The presented structures correspond to the

best results in a large number of experiments with different combinations in the

number of neurons in each module and in the gate.

In Table 5.3 we present the errors for the performed experiments with single

neural networks, SNN, (MLP’s with one hidden layer). The number of neurons

in the hidden layer is shown in column nh. The results in Tables 5.2 and 5.3 are

the average and standard deviations for 20 repetitions of each experiment.
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Table 5.1: Structure of the modular neural networks used in the experiments
corresponding to the results in Table 5.2. The last topology corresponds to
the gate structure.

Data set Algorithm # Modules MNN Structure

ArtificialF5.2

EC-MNN 2 [2:20:3][2:12:2]-[2:14:2]

K-MNN 2 [2:18:3][2:18:2]-[2:18:2]

S-MNN 2 [2:18:3][2:18:2]-[2:16:2]

Breast Tissue

EC-MNN 2 [9:12:2][9:12:2]-[9:3:2]

K-MNN 2 [9:10:2][9:12:2]-[9:12:2]

S-MNN 2 [9:4:2][9:14:2]-[9:6:2]

CTG

EC-MNN 3 [22:20:6][22:18:2][22:26:2]-[22:26:3]

K-MNN 3 [22:22:10][22:18:9][22:18:9]-[22:26:3]

S-MNN 3 [22:18:10][22:22:10][22:22:10]-[22:22:3]

Diabetes

EC-MNN 3 [8:14:2][8:18:2][8:12:2]-[8:16:3]

K-MNN 3 [8:10:2][8:12:2][8:10:2]-[8:12:3]

S-MNN 2 [8:18:2][8:12:2]-[8:10:3]

Olive

EC-MNN 3 [8:10:4][8:4:3][8:12:2]-[8:8:3]

K-MNN 3 [8:6:6][8:12:4][8:12:8]-[8:12:3]

S-MNN 3 [8:12:4][8:12:4][8:4:3]-[8:6:3]

2VowelsPB

EC-MNN 2 [2:4:2][2:5:2]-[2:2:2]

K-MNN 2 [2:6:2][2:6:2]-[2:2:2]

S-MNN 2 [2:5:2][2:5:2]-[2:2:2]

Sonar

EC-MNN 2 [60:12:2][60:12:2]-[60:12:2]

K-MNN 2 [60:12:2][60:12:2]-[60:14:2]

S-MNN 2 [60:10:2][60:16:2]-[60:16:2]
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Table 5.2: Errors and standard deviations for the performed experiments with
MNN’s with task decomposition made by K-means clustering (K-MNN), spec-
tral clustering (S-MNN) and entropic (LEGClust) clustering (EC-MNN).

Data set K-MNN S-MNN EC-MNN

ArtificialF5.2 16.40 (2.40) 15.32 (3.55) 14.70 (3.22)

Breast Tissue 58.95 (7.54) 33.53 (4.47) 32.79 (3.72)

CTG 22.90 (0.86) 23.91 (2.91) 20.67 (2.38)

Diabetes 24.45 (1.45) 23.96 (1.76) 23.89 (1.64)

Olive 49.11 (2.89) 5.20 (1.11) 4.74 (0.89)

2VowelsPB 7.23 (1.17) 7.28 (0.95) 7.25 (0.80)

Sonar 16.14 (3.43) 23.69 (4.57) 18.57 (3.40)

Table 5.3: Errors and standard deviations for the performed experiments with
single neural networks (SNN).

Data set SNN nh

ArtificialF5.2 19.56 (3.95) 20

Breast Tissue 32.75 (3.26) 22

CTG 15.70 (0.60) 20

Diabetes 23.90 (1.69) 15

Olive 5.45 (0.62) 15

2VowelsPB 7.51 (0.37) 6

Sonar 21.90 (2.80) 14

5.3 Results Discussion

We must start by reminding that the MNN approach, with its associated task

decomposition, will only be effective, giving better results than single neural

networks, if the input space possesses some divisive properties, i.e., if different

regions of the input space exhibit clear data clusters as exemplified in Fig. 5.2.
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This is the main reason why we first focused our experiments on the comparison

between three different modular neural network task decomposition approaches,

and secondly, we have compared the results obtained by these MNN’s and the

ones obtained with SNN’s. So, what we have compared in these first experiments

is the suitability of the entropic clustering to perform task decomposition when

compared with other methods, namely the k-means and spectral clusterings. To

achieve that comparison we have two choices: to use, for each data set, the same

topology for the different modules of the MNN’s for each method or, for each

data set, to try to find the best topology for each module of the MNN for each

method. We think that the second hypothesis is the most reasonable because

one should expect that different clustering processes would produce different

clusters/regions by differently dividing the input space. Therefore, the modules

must possess different structures to learn each of the subproblems, depending on

the cluster complexity.

We can see that the average errors, in almost every performed experiment,

were smaller for the EC-MNN than for the K-MNN and S-MNN. In some cases

the differences in the performances are very substantial, specially when com-

paring EC-MNN and K-MNN, in the Breast Tissue and Olive data sets. The

2VowelsPB is a data set with 2 well separated globular clusters, one containing

class 1 and 2 and the other classes 3 and 4 (see Appendix A); that is the reason

for the almost equal results for the three different MNN’s.

We used the Wilcoxon or ranksum non-parametric test to check the statistic

significance of the differences between similar results. The significance level used

was α = 0.05. The null hypothesis (medians are equal) can not be rejected for

data set Diabetes between EC-MNN and K-MNN and for data sets Breast Tissue,

Diabetes, ArtificialF5.2, and Olive between EC-MNN and S-MNN. Despite the

results of the statistic tests, the means and standard deviations of the performed

experiments are smaller for the EC-MNN.

When comparing the results of the performed experiments for both MNN and
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single MLP’s (Tables 5.2 and 5.3), we can see that, for the data set ArtificialF5.2

and 2VowelsPB we have a reduction in the final error when using MNN’s of any

kind (in the 2VowelsPB data set the difference is very small, due to the nature

of the problem). Comparing only the results of the SNN and the EC-MNN for

the remaining data sets, we can see that there are some data sets where the final

errors are considerable better for the EC-MNN. This is the case of data sets

Olive and Sonar. On the other hand, the results for data set CTG are better

when using a SNN. A possible explanation for this fact is that, as we mentioned

before, the data set must possess some divisive properties to obtain some gain

in using MNN’s. We know that data set Olive probably possesses some divisive

characteristics because olive oil samples came from three different regions of Italy

(see Fig. A.3). For the remaining data sets, the results for EC-MNN and SNN

are very similar.





Chapter 6

Conclusions

Our work in data classification with entropic criteria is a contribution both

in supervised classification with multi-layer perceptrons and in unsupervised

classification. In the following we will present a review of the contributions

made in this thesis.

6.1 Contributions

Following previous works on the application of entropic criteria to regression and

prediction, we have introduced and applied the error entropy minimization algo-

rithm (EEM) for classification with MLP’s. We have applied it in classification

problems with data sets with different number of elements, features and classes

(balanced and unbalanced). The EEM algorithm proved to give better results

than the usual MSE in almost every performed experiment 1.

In order to improve the learning process with EEM we have implemented

several optimization procedures. We first tried to use a variable smoothing

parameter in the entropy gradient computation with the purpose of a better

gradient estimation. This attempt didn’t produce good results and we explained

the reasons for it. For this reason, we used a fixed smoothing parameter and, in

1Despite the fact that we do not presented here a comparison of the EEM algorithm with
other well known classification methods such as SVMs or even other cost functions for MLPs
like the cross-entropy, we have made several experiments comparing our algorithm with these
last two and the results also show that EEM is a valid alternative.

145
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a following phase, we performed experiments trying to obtain a formula for it

because the known formulas for pdf estimation proved to be inadequate for our

algorithm. After performing a large variety of experiments, we proposed a new

formula for the EEM smoothing parameter. In another phase of our work, with

the purpose of achieving a faster convergence, we presented several algorithms for

adaptive learning rate. With this optimization strategy, we were able to speed-

up the learning process with good final results. The last optimization procedure

was the batch-sequential algorithm. It was implemented in order to gain from

the advantages of both methods and also to reduce the complexity of the EEM

algorithm. Since the computational complexity of the entropy and its gradient is

proportional to the number of elements of the training set, the algorithm became

very time demanding for large data sets. With the batch-sequential algorithm

we were able to achieve, in some cases, a reduction on the computational time

of 5:1.

In the second part of our research, we have applied the entropy to clustering

problems by developing a new clustering algorithm: LEGClust. This clustering

algorithm is based on layered entropic subgraphs build based on a proximity

matrix obtained from a new entropic dissimilarity matrix. This dissimilarity

matrix is built with an entropic measure obtained by computing, for all the

data set elements, the entropy of the difference vectors in a neighborhood of

every element. With this entropic measure we were able to capture the local

structure of the data allowing us to apply LEGClust to data sets with clusters

of different "shapes" without knowing them a priori. The experiments with the

LEGClust algorithm in both artificial and real data sets have shown that: it

achieves good results compared with other classical and sophisticated clustering

algorithms; it is simple to use, since it only needs to adjust 3 parameters and

simple guidelines for these adjustments were presented; its sensitivity to small

changes of the parameter values is low; it often yields solutions that are majority

voted by humans; and, it is a valid proposal for data sets with any number of
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features.

We have finished this work by implementing a modular neural network (MNN)

for classification using the LEGClust algorithm in its task decomposition phase.

The use of a clustering algorithm is one of the possible strategies to perform task

decomposition. The input space of the problem is divided into several regions,

with each one being learned by a different module (NN). We have compared

our clustering algorithm with the k-means and with the spectral clustering al-

gorithms. The performed experiments have shown that the use of LEGClust

to perform task decomposition is a valid approach, that there are several data

sets that can benefit from it, and that (generally) this approach will yield better

results (smaller classification error) than those using k-means and spectral clus-

tering algorithms. We have also compared the results obtained with our MNN

with entropic task decomposition with the results obtained with a single neural

network. They have shown that better results with such a modular approach

are only expected when the classification problem possesses some divisive char-

acteristics. Otherwise, by dividing the input space in several regions, the error

introduced by the decision integration of the different modules may lead to a

worse final classification error.

6.2 Future Work

First of all, we must say that we think to have achieved the proposed objectives

for this work and that we have fulfilled our initial expectations. We are aware

that several other related research topics are opened to research and deserve a

future study. Among other possible subjects we mention the following ones:

The use of entropic cost functions in classification problems with MLPs must

be the subject of a further theoretical study. The nature of the errors, being the

combination of two random variables of different kinds – the output of the NN is

a continuous variable and the defined targets are discrete variables – make this

issue a very complex one in theoretical terms.
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We think that a supplemental effort should be made in order to try to use a

variable smoothing parameter during the training phase.

We have made several preliminary experiments comparing the results ob-

tained by NNs with the EEM algorithm with other well known classifiers such as

SVMs or other cost functions such as cross-entropy. The results show that EEM

is comparable, with slightly better results, to cross-entropy and, when compared

to SVMs, it gives better results in some data sets and worse results in others.

Further experiments should be performed in order to try to establish the kind of

problems where one may expect better results when using the EEM algorithm.

This, is in fact, a metalearning research task.

We will try to include our entropic measure in other existing hierarchical and

graph based algorithms in order to compare them with LEGClust algorithm. By

doing this, we can also establish the importance of the entropic measure in the

clustering process.

The implementation of a clustering process using as input our entropic dis-

similarity matrix with a different approach than the one presented here, inde-

pendent of the user choice of parameters, and with a fixed number of clusters if

so desired, is one of the open research perspectives.

Further more, the possibility of combining our entropic measure with mea-

sures of intra- and inter-cluster association in order to try to obtain an even

better final result, in more specific clustering problems like image segmentation,

is also an open research project.



Appendix A

Data Sets

In this appendix we present information about the real data sets used in this

work. Table A.1 contains a summary of the characteristics of these data sets.

In the following sections we present detailed information about each one of

the data sets.

Table A.1: The real data sets used in this work.

Data set # samples # features # classes

20NewsGroups 1000 565 20
2VowelsPB 608 2 4
Breast Tissue 106 9 6
CTG 2126 22 10
DHN 2000 3 10
Diabetes 768 8 2
Ionosphere 351 33 2
Iris 150 4 3
NCI Microarray 64 6830 12
Olive 572 8 9
Sonar 208 60 2
UBIRIS image data set
Wdbc 569 30 2
Wine 178 13 3
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20NewsGroups

The 20 Newsgroups data set can be found in the UCI repository of machine

learning databases [22]. It is a collection of approximately 20000 newsgroup

documents, partitioned (nearly) evenly across 20 different newsgroups. The 20

newsgroups collection has become a popular data set for experiments in text

applications of machine learning techniques, such as text classification and text

clustering.

The data is organized into 20 different newsgroups, each corresponding to a

different topic. Some of the newsgroups are very closely related to each other,

while others are highly unrelated. Here is a list of the 20 newsgroups: alt.atheism;

comp.graphics; comp.os.ms-windows.misc; comp.sys.ibm.pc.hardware;

comp.sys.mac.hardware; comp.windows.x; misc.forsale; rec.autos; rec.motorcycles;

rec.sport.baseball; rec.sport.hockey; sci.crypt; sci.electronics; sci.med; sci.space;

soc.religion.christian; talk.politics.misc; talk.politics.guns; talk.politics.mideast;

talk.religion.misc.

The data set that we use in this work (20NewsGroups) is a random sub-

sample of 1000 elements from the original data set (50 elements from each group).

This data set is a 20 class text classification. We have prepared this data set by

stemming words according to the Porter Stemming Algorithm [148]. The size of

the corpus (the number of different words presented in all the stemmed data set)

defines the number of features. In this sub-sample we consider only the words

that occur at least 40 times, thus obtaining a corpus of 565 words.

2VowelsPB

The data set 2VowelsPB, represented in Fig. A.1, can be found in [90]. It is a

speaker independent, four-class, vowel discrimination problem. The data consists

on the first and second formants of the vowels [i], [I], [a] and [A] from 75 speakers

(males, females and children). The data forms two pairs of overlapping classes.



151

Figure A.1: The 2VowelsPB data set.

Vowels [i] and [I] form one overlapping pair of classes and vowels [a] and [A] form

the other pair. The data set has 608 elements.

Features: (all numeric-valued)

1 First formant value.

2 Second formant value.

Class Distribution: 152 elements per class.

Breast Tissue

The Breast Tissue data set can be found in [128]. It contains 106 elements, 9

features and 6 classes.

This data set consists on electrical impedance measurements performed on

samples of freshly excised tissue from the breast. The features, computed from

the impedance spectrum obtained by measurements taken at seven different fre-

quencies, are:
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1 Impedivity (ohm) at zero frequency.
2 Phase angle at 500 KHz.
3 High-frequency slope of phase angle.
4 Impedance distance between spectral ends.
5 Area under spectrum.
6 Area normalized by feature 4.
7 Maximum of the spectrum.
8 Distance between feature 1 and the real part of the maximum frequency point.
9 Length of the spectral curve.

Class Distribution:

Class # samples

Carcinoma 21
Fibro-adenoma 15
Mastopathy 18
Glandular 16
Connective 14
Adipose 22

CTG

The CTG data set can be found in [128]. It contains 2126 elements, 16 features

and 10 classes.

This data set consists on measurements of cardiotocographic (CTG) exam-

inations. Cardiotocography is a popular diagnostic method in Obstetrics, con-

sisting on the analysis and interpretation of the foetal heart rate, the uterine

contractions and the foetal movements. In this data set only the measures cor-

responding to the foetal heart rate signals and computed by an automatic system

are included. The classification of the signal patterns was performed by expert

obstetricians (following a clinical protocol). From the original data set (22 fea-

tures) we have discarded 6 features as suggested in [128].

The used features are:
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1 Baseline value in b.p.m.
2 Number of accelerations.
3 Number of uterine contractions.
4 Percentage of time with abnormal short term variability.
5 Mean value of short term variability.
6 Percentage of time with abnormal long term variability.
7 Mean value of long term variability.
8 Number of light decelerations.
9 Histogram width (histogram of heart rate in b.p.m.).
10 Low freq. of the histogram.
11 High freq. of the histogram.
12 Number of histogram peaks.
13 Histogram mean.
14 Histogram median.
15 Histogram variance.
16 Histogram tendency.

We used in our experiments the features 2, 3 and 8 has is. However, since

they represent a number of occurrences in a certain period of time (different in

each pattern) one should transform these features and represent them as the

number of occurrences per unit of time (e.g. 10 min).

Class Distribution:

Class # samples

Calm sleep 384
REM sleep 579
Calm vigilance 53
Active vigilance 81
Shift pattern 72
Accelerative/decelerative pattern 332
Decelerative pattern 252
Largely decelerative pattern 107
Flat-sinusoidal pattern 69
Suspect pattern 197
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DHN

The Dutch Handwritten Numerals (DHN) data set can be found in [22]. It con-

sists on 2000 images of handwritten numerals (’0’–’9’) extracted from a collection

of Dutch utility maps [43]. Each image has 15×16 pixels. A sample of this data

set is depicted in Fig. A.2.

Figure A.2: A sample of the DHN data set.

Each one of the 240 features (15 ×16) corresponds to the pixel gray intensity

level.

Class Distribution: 200 elements (handwritten numerals) in each of the 10

classes.

Diabetes

The data set Diabetes (Pima Indians Diabetes) can be found in [22]. It contains

768 elements, 8 features and 2 classes.

Features (all numeric-valued):
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1 Number of pregnancies.
2 Plasma glucose concentration at 2 hours in an oral glucose tolerance test.
3 Diastolic blood pressure (mm Hg).
4 Triceps skin fold thickness (mm).
5 2-Hour serum insulin (mu U/ml).
6 Body mass index (weight in kg/(height in m)2).
7 Diabetes pedigree function.
8 Age (years).

Class Distribution: (class value 1 is interpreted as "tested positive for dia-

betes")

Class # samples

0 500
1 268

Ionosphere

The data set Ionosphere can be found in [22]. It contains 351 elements, 34

features and 2 classes.

This is a radar data collected by a system in Goose Bay, Labrador. This

system consists on a phased array of 16 high-frequency antennas. The targets

were free electrons in the ionosphere. "Good" radar returns are those showing

evidence of some type of structure in the ionosphere. "Bad" returns are those

that do not. Received signals were processed using an autocorrelation function

whose arguments are the time of a pulse and the pulse number. Since there were

17 pulse numbers for the Goose Bay system, with 2 attributes per pulse number,

the number of features is 34. We have removed one of the features from the

original data set since it has the same value (zero) for all elements.

Class Distribution: (class value 1 is interpreted as "good")



156 APPENDIX A. DATA SETS

Class # samples

0 126
1 225

Iris

The data set Iris can be found in [22]. It contains 150 elements, 4 features and

3 classes.

This is the well known Fisher’s Iris plants data set, perhaps the best known

database to be found in the pattern recognition literature. Fisher’s paper [56]

is a classic in the field and is referenced frequently to this day. The data set

contains 3 classes, where each class refers to a type of Iris plant(Iris Setosa, Iris

Versicolour and Iris Virginica). One class is linearly separable from the other 2;

the latter are NOT linearly separable from each other.

Features: (all numeric-valued)

1 Sepal length in cm
2 Sepal width in cm
3 Petal length in cm
4 Petal width in cm

Class Distribution: 50 elements in each of 3 the classes.

NCI Microarray

The NCI Microarray data set can be found in [140]. It contains 64 elements,

each described by 6830 features, and 12 classes.

Each pattern element corresponds to a human tumor microarray data. NCI is

an example of a high-dimensional data set. The data are a 64×6830 matrix of real

numbers, each representing an expression measurement for a gene (column) and a

sample (row). There are 12 different tumor types, one with just 1 representative

and three with 2 representatives. It is also, therefore, a quite unbalanced data
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set.

Class Distribution:

Class # samples

Breast 7
CNS 5
Colon 7
K562 2
Leukemia 6
MCF7 2
Melanoma 8
NSCLC 9
Ovarian 6
Prostata 2
Renal 9
Unknown 1

Olive

The data set Olive can be found in [57]. It contains 572 elements, each described

by 8 features, and 9 classes.

This data set contains data from eight fatty acid contents of different olive

oils from several regions of Italy.

Figure A.3 represents the region of origin of the 9 different kinds of olive oils.

The class distribution is as follows:
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Class # samples

1-North Apulia Calabria 25
2-Calabria 56
3-South Apulia 206
4-Sicily 36
5-Inner Sardinia 65
6-Coastal Sardinia 33
7-East Liguria 50
8-West Liguria 50
9-Umbria 51

Figure A.3: Italian olive oil samples by nine regions of origin.

Sonar

The data set Sonar can be found in [22]. It contains 208 patterns, each described

by 60 features, and 2 classes.

This data set, used by Gorman and Sejnowski in their study of the classifica-

tion of sonar signals, contains 208 patterns obtained by bouncing sonar signals

off a metal cylinder (111) and rocks (97) at various angles and under various con-

ditions. Each pattern corresponds to a vector of 60 real numbers in the range 0.0
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to 1.0. Each number represents the energy within a particular frequency band,

integrated over a certain period of time.

UBIRIS

The data set UBIRIS is described in [153] and can be downloaded from

http://iris.di.ubi.pt/. UBIRIS is a data set of eye images used for biometric

recognition. In our experiments we used a sample of 12 graytone images with 256

gray levels from this data set, some of which are shown in Fig. A.4. Each image

has 60×45 pixels. Each one of the 2700 features (60×45 pixels) corresponds

to the pixel gray intensity level. The biometric identification process starts by

detecting and isolating the iris with a segmentation algorithm.

Figure A.4: Sample from UBIRIS data set.

Wdbc

The Wdbc data set is the Wisconsin Breast Cancer data set and can be found

in [22]. It contains 569 elements, each described by 30 features, and 2 classes.

The two classes, benign and malignant, are linearly separable using all 30 input

features.

These 30 features are obtained from 10 original features, computed from a

digitized image of a fine needle aspirate (FNA) of a breast mass. These 10 fea-
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tures, that describe characteristics of the cell nuclei present in the image, are

computed for each cell nucleus as follows:

1 Radius (mean of distances from center to points on the perimeter).
2 Texture (standard deviation of gray-scale values).
3 Perimeter.
4 Area.
5 Smoothness (local variation in radius lengths).
6 Compactness (perimeter2 / area - 1.0).
7 Concavity (severity of concave portions of the contour).
8 Concave points (number of concave portions of the contour).
9 Symmetry.
10 Fractal dimension ("coastline approximation" - 1).

The 30 features are obtained by computing the mean, standard error, and

"worst" or largest (mean of the three largest values) of the original 10 features,

computed for each image.

Class distribution: 357 benign, 212 malignant.

Wine

This data set can be found in [22]. It contains 178 elements, each described by

13 features, and 3 classes.

The data is the result of a chemical analysis of wines grown in the same re-

gion in Italy but derived from three different cultivars. The analysis determined

the quantities of 13 chemical constituents found in each of the three types of

wines. The attributes are:
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1 Alcohol.
2 Malic acid.
3 Ash.
4 Alkalinity of ash.
5 Magnesium.
6 Total phenols.
7 Flavanoids.
8 Nonflavanoid phenols..
9 Proanthocyanins.
10 Color intensity.
11 Hue.
12 OD280/OD315 of diluted wines.
13 Proline.

The class distribution is as follows:

Class # samples

Cultivar 1 59

Cultivar 2 71

Cultivar 3 48





Appendix B

An Assessment of Human
Clustering on Bi-Dimensional
Data

B.1 Introduction

Data clustering performed by humans is characterized by a high variability of so-

lutions for non-trivial data sets. The complexity and subjectivity involved in the

clustering process are highly related to the personal experience and sometimes

to knowledge about the problem domain. Clustering solutions may depend on a

variety of features perceived in the data set. Figure B.1 illustrates some of the

features that seem to have a main role in guiding human solutions to clustering.

They are as follows:

• Connectedness – This is probably the most basic feature leading us to join

points into clusters whenever connecting paths are perceived. This feature is

valued in the data set of Fig. B.1a when a human "sees" one cluster instead

of two.

• Structuring direction – This feature leads us to "see" the two arms of

the cross in Fig. B.1b instead of only one cluster. Humans are good at

perceiving structuring directions in data set graphs, independently of those

directions being straight or curved lines.
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• Structuring density – This feature leads us to "see" two clusters in

Fig. B.1c instead of only one.

• Structuring morphology – This feature leads us to "see" two clusters in

Fig. B.1d instead of only one, deciding differently of the similar Fig. B.1a.

The reason is that, contrary to Fig. B.1a, we now identify the bulging out

wart of Fig. B.1d with a known form.

(a) (b)

(c) (d)

Figure B.1: Clustering features: a) connectedness; b) structuring direction; c)
structuring density; d) structuring morphology.

How much influence have these features in the clustering process? How

do they interplay? In order to obtain some knowledge about these issues we

performed a variety of 2D data clustering experiments involving children and

adults. The reason to involve children in clustering experiments is related to

the fact that we expected in this way to discriminate (and characterize) basic

clustering skills present in children from more advanced skills present in adults.

Based on the experimental results we were able to extract a few guidelines on

the human approach to data clustering.
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B.2 Clusters Experiments

We performed tests involving several individuals (including children) in order

to grasp, based on the results, the mental process of data clustering. We made

the experiment with 37 individuals, 17 of them children (6-7 years old), 15

adults with no knowledge about clustering and 5 adults with some knowledge of

clustering problems. The experiments were performed with the bi-dimensional

data sets shown in Figure 2 and Figure 3. All data sets were manually drawn

and we tried to create different situations using examples similar to those usually

seen in clustering-related works and others created by us.

We have presented to the individuals all the data sets in the same order as in

Figures B.2 and B.3, and they were asked to circle the possible groups of points

in each data set. We haven’t given any other explanation or made any comment

on the way they should perform the experiment. We just said that in each figure

some groups of points could exist, or not, and if they thought they existed they

should circle them with a line.

A few similar data sets with small differences among them were deliberately

included in order to appreciate how small differences influence the clustering

solutions. Examples of such data sets are the pairs (b-f) and (p-aa).



166
APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ON

BI-DIMENSIONAL DATA

(a) Data set "a". (b) Data set "b". (c) Data set "c".

(d) Data set "d". (e) Data set "e". (f) Data set "f".

(g) Data set "g". (h) Data set "h". (i) Data set "i".

(j) Data set "j". (k) Data set "k". (l) Data set "l".

(m) Data set "m". (n) Data set "n". (o) Data set "o".

Figure B.2: Data sets I.
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(a) Data set "p". (b) Data set "q". (c) Data set "r".

(d) Data set "s". (e) Data set "t". (f) Data set "u".

(g) Data set "v". (h) Data set "w". (i) Data set "x".

(j) Data set "y". (k) Data set "z". (l) Data set "aa".

(m) Data set "bb". (n) Data set "cc". (o) Data set "dd".

Figure B.3: Data sets II.
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B.3 Results

B.3.1 Global View

In this section, we present the results of the experiments in a global perspective.

The clustering solutions proposed by the adults and children are summarized

in Table B.1. In the labelling of the solutions, we used the label "Others" to

designate a group of various solutions different from the most occurring ones,

labelled with numerals.

A glance at Table B.1 immediately shows that the solutions proposed by the

adults are more consistent, exhibiting fewer solutions for each data set than the

ones proposed by the children (6-7 years). Detailed observation of the children

solutions revealed that a large percentage of children build clusters based on a

small number of points. It seems that they focus on more local regions giving

particular attention to small groups. An example of such behavior is shown in

Fig. B.4.

During the labelling process we only considered "well-grown" clusters pro-

posed in the solution, disregarding very small clusters (up to 2 points). This

often happened with solutions proposed by children. An example of this situa-

tion is the one depicted in Fig. B.4a. In this case, we considered the proposed

3-cluster solution like the one shown in Fig. B.20b.

B.3.2 Detailed View

In this section, we present a detailed view of the results together with statistical

assessment and some comments.

In order to understand in detail the clustering process, we have divided the

data sets into several types. Type A: data sets with well-separated clusters;

Type B: data sets with different point densities; Type C: data sets with crossing

clusters; Type D: data sets with nested clusters; Type F: data sets with spiral-

shaped clusters; Type E: other data sets.

In the next subsections, we take a closer view to each group of data sets and
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Table B.1: Experimental results with adults and children. Column "others"
refer to several isolated solutions.

Adults Children

Options Options

Data set 1 2 3 4 Others 1 2 3 4 Others

a 19 1 14 1 2
b 20 12 5
c 17 2 1 13 1 3
d 9 9 1 4 10 3
e 19 1 14 3
f 15 5 2 13 2
g 13 6 1 6 7 3
h 20 14 2
i 16 3 1 14 2
j 19 1 9 7
k 2 4 4 5 5 1 4 1 10
l 10 5 5 2 6 9
m 6 4 6 4 9 1 1 6
n 14 6 5 10
o 5 11 4 5 3 8
p 12 7 1 10 3 3
q 20 13 3
r 14 6 9 7
s 4 14 2 4 12
t 19 1 12 4
u 10 7 3 9 2 5
v 19 1 12 4
w 9 5 5 1 2 2 9 1
x 8 6 6 3 3 9 1
y 16 3 1 8 3 5
z 16 4 10 6
aa 11 8 1 8 2 5
bb 16 4 5 6 5
cc 10 8 2 1 11 4
dd 17 3 9 3 4
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(a) Example of a clustering solution pro-
posed for data set "g".

(b) Example of a clustering solution pro-
posed for data set "v".

Figure B.4: Children usually consider the existence of small clusters.

make some comments about the proposed solutions. We also present analysis

of the clustering results with the following statistical tests: χ2 test for goodness

of fit to a postulated distribution; χ2 test for independence between the Age

variable (two categories: adults and children) and Solution variable (categories

to be presented in the subsections). The independence test is complemented

with Cramer’s V measure of association for nominal variables. The level of

significance of the tests was set at 5%. The usual conditions of validity of the χ2

tests were taken into consideration: for one degree of freedom no expected value

below 5; for more than one degree of freedom no expected value below 1 and no

more than 20% of the expected values below 5. When these conditions were not

met the tests were not applied.

B.3.2.1 Type A: Data sets with well-separated clusters

In this subsection, we analyze the group of data sets with well-separated clusters.

This group is constituted by the set of data sets a, b, c, d, e, h, i, q, t, v.

For these data sets there is basically a unique solution shown in Fig. B.5

proposed by a large majority of adults and children. Connectedness and some-

times structuring direction (data sets b, c and d) are the main features valued

in this unique clustering solution. The results for these data sets are shown in
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Table B.2.

Table B.2: Experimental results with adults and children for well-separated
clusters.

Adults Children

Solutions 1 2 Others 1 2 Others

a 19 1 14 1 2

b 20 12 5

c 17 2 1 13 1 3

d 18 1 14 3

e 19 1 14 3

h 20 14 2

i 16 3 1 14 2

q 20 13 3

t 19 1 12 4

v 19 1 12 4

The χ2 test for independence was performed for a Solution variable with two

categories: major solutions; minor solutions. Thus, the 2×2 Table B.3 was used.

Table B.3: Major and minor solutions for independence test.

Adults Children

Major solutions 187 132

Minor solutions 13 33

As expected, the independence hypothesis was rejected with p≈0. The

Cramer V of the association is low (V=0.2).



172
APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ON

BI-DIMENSIONAL DATA

(a) a1. (b) b1. (c) c1.

(d) d1. (e) e1. (f) h1.

(g) i1. (h) q1. (i) t1.

(j) v1.

Figure B.5: The solutions proposed for data sets a, b, c, e, h, i, q, t and v.

B.3.2.2 Type B: Data sets with different point densities

In this subsection we analyze the data sets exhibiting clusters with different point

densities. This group is constituted by the set of data sets k, n, o, r, bb, cc. For
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data set "n" there is basically a unique proposed solution, shown in Fig. B.6.

Figure B.6: The solution proposed for data set "n".

The other Type B data sets are discussed in the following paragraphs.

Data set "k" This data set was probably the one with the largest number of

different proposed solutions (see Fig.B.7). Apart from the 4 considered solutions

(k1 to k4) the adults proposed 5 more different solutions. The reasons for this

variability can be attributed to the existence of different density regions and the

peculiar structure of the data.

Solution "k4" is the most significant for adults and solution "k2" for children

and adults. We think that solution "k3" was suggested by adults based on the

symmetry of the data set. We can see that solution "k2" gives more importance

to the global structure and that solution "k4" gives relevance to the local struc-

ture of the data. Therefore, this data set suggests that children do not value the

density feature to the point of sacrificing local connectedness.

The χ2 test for goodness of fit led us to accept the uniformity hypothesis

(equiprobability of the solutions) for the adults (p=0.66). The χ2 test for inde-

pendence, for a Solution variable with two categories ("regular clusters", "other

clusters"≡"non-regular clusters"), led us to reject the independence hypothesis

(p=0.05). The Cramer V is moderate (V=0.38). The rejection of the indepen-

dence hypothesis is related to the fact that there is a regular vs. non-regular
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(a) k. (b) k1. (c) k2.

(d) k3. (e) k4.

k1 k2 k3 k4 Oth.

Adults 2 4 4 5 5

Children 1 4 1 10

Figure B.7: The solutions proposed for data set "k".

balance for children which is the opposite for adults.

Data set "o" For the data set "o" the solution "o2" was proposed by the

majority of the adults (see Fig.B.8).

However, the χ2 test for goodness of fit led us to accept the uniformity

hypothesis for the adults (p=0.13) and for the children (p=0.26). Therefore, the

behaviour of adults and children was quite similar in this case. The χ2 test for

independence, for a Solution variable with the three categories as above, led us

to reject the independence hypothesis (p=0.056). The Cramer V is moderate

(V=0.39). These findings further support the idea of identical behaviour of

adults and children when connectedness prevails over slight differences of point
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(a) o. (b) o1. (c) o2.

o1 o2 Oth.

Adults 5 11 4

Children 5 3 8

Figure B.8: The solutions proposed for data set "o".

density.

Data set "r" This data set was produced in order to try to perceive the influ-

ence of a high density region situated inside a low density region. The performed

tests indicate that this high density region is considered by the majority of the

individuals, both adults (70%) and children (56%), as a separate cluster.

The χ2 test for goodness of fit led us to reject the uniformity hypothesis for

the adults (p=0.05) and accept it for the children (p=0.6) for the "regular"-

"non-regular" categories.

Data set "bb" The results show that solution "bb1" was overwhelmingly

chosen by the adults. For the children the two solutions "bb1" and "bb2" are

almost equally suggested, confirming what we noted previously: children are less

inclined to sacrifice connectedness to point density differences.

The χ2 test for goodness of fit rejects the uniformity hypothesis for the

adults and accepts it for the children (p=0.94), confirming the different behaviour

of children and adults. The χ2 test for independence, for a Solution variable
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(a) r. (b) r1. (c) r2.

r1 r2 Oth.

Adults 14 6

Children 9 7

Figure B.9: The solutions proposed for data set "r".

(a) bb. (b) bb1. (c) bb2.

bb1 bb2 Oth.

Adults 16 4

Children 5 6 5

Figure B.10: The solutions proposed for data set "bb".

with the three categories as above, led us to reject the independence hypothesis

(p=0.004). The Cramer V is high (V=0.594). This can be attributed to the lack

of "Others" in the adult solutions.
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Data set "cc" We prepared this data set with the aim of comparing it with

data set "r". We have included here a similar region to the one appearing in

the data set "r". We were expecting similar solutions in the similar regions. We

indeed obtained adult results for this data set very similar to the results for data

set "r". For the similar regions, the proposed solutions were also similar. In

the children results, this did not happen. Children only considered the existence

of the two most evident clusters (solution "cc2"). It seems that many adults

were able to decompose the data set on several levels of clusters (something like

hierarchical clustering). First, by mentally constructing 2 clusters and secondly,

by separating one of them in 2 clusters. Children, on the contrary, tend to value

the most prominent feature: connectedness. We think that only a hierarchical

mental process is able to justify the differences between adults and children in

this data set.

(a) cc. (b) cc1. (c) cc2.

cc1 cc2 Oth.

Adults 10 8 2

Children 1 11 4

Figure B.11: The solutions proposed for data set "cc".

Disregarding solution "Others", the χ2 test for goodness of fit accepts the

uniformity hypothesis for the adults (p=0.64). The χ2 test for independence,

for a Solution variable with the three categories as above, led us to reject the
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independence hypothesis (p=0.017). The Cramer V is high (V=0.476).

B.3.2.3 Type C: Data sets with crossing clusters

In this subsection, we analyze the group of data sets with crossing clusters. This

group is constituted by the set of data sets l, m, s. In the following subsections,

we present and comment the different proposed solutions for these data sets.

Data set "l" In this data set the tests made on adults show that the preferred

solution is the one that considers the 2 arms of the cross.

(a) l. (b) l1. (c) l2.

l1 l2 Oth.

Adults 16 5 5

Children 2 6 9

Figure B.12: The solutions proposed for data set "l".

Children prefer to consider the cross as a single cluster. Among the other

solutions proposed by children, there were a couple of them considering the

division of the cross in 4 clusters, one for each branch. These results suggest

that adults are able to trade connectedness by structuring direction, a feature

not taken into account by children.

The χ2 test for goodness of fit accepts the uniformity hypothesis for the

adults (p=0.33) and rejects it for the children (p=0.018). The χ2 test for inde-
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pendence, for a Solution variable with the three categories as above, lead us to

reject the independence hypothesis (p=0.04). The Cramer V is high (V=0.415).

These results support the different and almost opposite behaviour of adults and

children.

Data set "m" This data set was the one where there was more reluctance in

clustering the data in more than one cluster. Adults were divided between the

existence of only one cluster and the existence of several clusters.

(a) m. (b) m1. (c) m2.

(d) m3.

m1 m2 m3 Oth.

Adults 6 4 6 4

Children 9 1 1 6

Figure B.13: The solutions proposed for data set "m".

Among all the solutions, proposed by adults, the most significative was the

one that considered the existence of 5 clusters. This solution for data set "m"

is very curious when comparing with the solutions proposed for data set "l". In
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the latter, adults have not considered the hypothesis of dividing the data set in

4 clusters, one for each branch of the cross; however, in data set "m", maybe

influenced by the existence of a branch with no correspondence in the other

side of the star, adults have decided to consider each branch as a single cluster.

Children consider this to be a single cluster problem, as they do with data set "l".

The same comment made previously on connectedness and structuring direction

applies here.

The χ2 test for goodness of fit accepts the uniformity hypothesis for the

adults (0.64) and rejects it for the children (p≈0). χ2 test for independence,

for a Solution variable with two categories - "regular clusters" and "non-regular

clusters" -, led us to accept the independence hypothesis (p=0.3). The Cramer

V is low (V=0.17).

Data set "s" In this data set, almost all adults considered the existence of

2 annular clusters as shown in Figure 14c, however children were unable to do

the same. We could see on the solutions proposed by the children that, in some

cases, they have tried to represent the two clusters without success due to lack of

representation skills. This is a data set where the notion of a structuring direction

is of primordial importance, explaining the failure of children in "seeing" solution

s2.

The χ2 test for goodness of fit rejects the uniformity hypothesis for the adults

(p<0.014).

B.3.2.4 Type D: Data sets with nested clusters

In this subsection we analyze the group of data sets with nested clusters (clusters

inside clusters) not considered in previous types. This group is constituted by

the set of data sets p, z, aa. For data set "z" there was basically a unique

proposed solution, shown in Fig.B.15.

The other Type D data sets are discussed in the following subsections.
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(a) s. (b) s1. (c) s2.

s1 s2 Oth.

Adults 4 14 2

Children 4 12

Figure B.14: The solutions proposed for data set "s".

Figure B.15: The solution proposed for data set "z".

Data set "p" Data set "p" has two different proposed solutions. The majority

of both children and adults proposed solution "p1".

Disregarding the solution "Others" the χ2 test for goodness of fit accepts

the uniformity hypothesis for the adults (p=0.23) and rejects it for the children

(p=0.02. Disregarding the solution "Others" the χ2 test for independence led

us to accept the independence hypothesis (p=0.31). The Cramer V is moderate

(V=0.256). Thus, although the majority chose "p1", the behaviour of adults

and children is different and, in fact, there is a more than chance-explained

(at 5% significance level) majority choice of "p1" for the children. This is a

strange finding that at first sight could lead us to think that children valued
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(a) p. (b) p1. (c) p2.

p1 p2 Oth.

Adults 12 7 1

Children 10 3 3

Figure B.16: The solutions proposed for data set "p".

more than adults structuring direction and/or morphology. However, part of

the explanation why so many adults chose "p2" may be due to the different

point densities of the upper and lower part of the annular cluster; a feature

which most of the children didn’t see.

Data set "aa" As we previously mentioned in section 2, we made this data

set similar to data set "p" for comparison purposes. We have separated the

annular cluster and we have shifted down the circular cluster so that it touches

the lower section of the annular cluster. By doing that, we tried to perceive if

the individuals consider the circular cluster as a separate cluster.

The results show that this solution ("aa2") was not the preferred solution,

especially in the children results, but it almost equals solution "aa1" (only two

clusters) in the adult results.

Disregarding the solution "Others", the χ2 test for goodness of fit accepts the

uniformity hypothesis for the adults (p=0.49). Uniformity of the three categories

is marginally acceptable for the children (p=0.06). The χ2 test for independence,

for a Solution variable with three categories as above, led us to reject the in-
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(a) aa. (b) aa1. (c) aa2.

aa1 aa2 Oth.

Adults 11 8 1

Children 8 2 5

Figure B.17: The solutions proposed for data set "aa".

dependence hypothesis (p=0.038). The Cramer V is high (V=0.42). Therefore,

although the "aa2" solution was not the most preferred one by the adults, there

is a clear different behaviour of children and adults. Adults were significantly

(at 5% significance level) more capable of taking into account the structuring

morphological feature present in solution "aa2".

B.3.2.5 Type F: Data sets with spiral-shaped clusters

In this subsection, we analyze the group of data sets with spiral-shaped clusters.

This group is constituted by the set of data sets y, dd. For both data sets, the

individuals basically considered them as 2-cluster data sets (Fig.B.18), despite

the fact that the clusters present a very complex structure compared with the

other data sets. We were even surprised by the fact that children also recog-

nized the two spiral clusters presented in data set "dd"; a good illustration of

prevalence of a structuring direction over connectedness.
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(a) y1. (b) dd1.

Figure B.18: The most significative solutions proposed for data sets with spiral
shaped clusters.

B.3.2.6 Type E: Other data sets

In this subsection we analyze the group of data sets not considered in any of the

previous groups. This group is constituted by the set of data sets f, g, j, u, w, x.

For data set "j" there is basically a unique proposed solution that considers it as

a single cluster. The other data sets are discussed in the following subsections.

Data set "f" The results suggested by adults for data set "f" were, in our

opinion, influenced by the previous solutions given to data set "b". We have

already mentioned that these two data sets were intentionally produced with

a small difference. In this case, the two clusters of data set "b" were shifted

to be almost connected (apparently). We think that this fact, and also the

low density in the "connecting" region, was responsible for the predominant 2

clusters solution.

However, in the children tests, this fact does not happen. It seems that the

solutions that they proposed to data set "b" did not affect the proposed solutions

for data set "f", confirming the overwhelming value that children attribute to

connectedness.

Disregarding the solution "Others", the χ2 test for goodness of fit rejects

(at 5% significance level) the uniformity hypothesis for both adults and children

(p<0.01). The χ2 test for independence, for a Solution variable with the two

"regular" categories, led us to reject the independence hypothesis (p≈0). The
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(a) f. (b) f1. (c) f2.

s1 s2 Oth.

Adults 15 5

Children 2 13 2

Figure B.19: The solutions proposed for data set "f".

Cramer V is quite high (V=0.61). Thus statistical analysis confirms that adult

and children behaviours are different and opposite of each other.

Data set "g" The solutions for this data set are shown in Figure 20.

(a) g. (b) g1. (c) g2.

g1 g2 Oth.

Adults 13 6 1

Children 6 7 3

Figure B.20: The solutions proposed for data set "g".

The majority of the adults have considered this a problem with 3 clusters.

The children results are conditioned by the previous mentioned fact that they

pay a particular attention to small clusters.
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Disregarding solution "Others" the X2 test for goodness of fit lead us to ac-

cept the uniformity hypothesis for both children and adults (here, with p=0.08).

The X2 test for independence, for a Solution variable with two categories (g1,

g2), lead us to accept the independence hypothesis (p=0.21). The Cramer V is

low (V=0.22).

Data set "u" Data set "u" was designed with the objective of assessing

whether differently shaped groups, placed close to each other were considered as

one or two clusters. Briefly, to assess the influence of the "structuring morphol-

ogy" feature.

(a) u. (b) u1. (c) u2.

u1 u2 Oth.

Adults 10 7 3

Children 9 2 5

Figure B.21: The solutions proposed for data set "u".

Regarding the solutions proposed by the adults, we see that surprisingly

many adults failed to recognize the existence of three clusters, corresponding

to separating the circular cluster from the elongated one. Children, on the

contrary, seem to exhibit a definite preference by "u1", valuing the "structuring

morphology" feature. They overwhelmingly separate the circular cluster from

the elongated one.

The χ2 test for goodness of fit marginally accepts the uniformity hypothesis

for the adults (p=0.06) and rejects it for the children (p=0.03). The χ2 test for
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independence, for a Solution variable with the three categories as above, led us to

accept the independence hypothesis (p=0.23). The Cramer V is quite moderate

(V=0.29).

Data sets "w" and "x" The solutions proposed for data sets "w" and "x"

were very similar. In both cases, there are connections at the ends of the point

clouds that influence the different results. Although many two-cluster solutions

were proposed, more than 50% of the individuals considered these as one-cluster

cases.

(a) w. (b) w1. (c) w2.

(d) w3.

w1 w2 w3 Oth.

Adults 9 5 5 1

Children 2 2 9 1

Figure B.22: The solutions proposed for data set "w".

Disregarding the solution "Others", the χ2 test for goodness of fit accepts the

uniformity hypothesis for the adults and for both data sets (p=0.48 and p=0.83

for "w" and "x", respectively). The uniformity hypothesis was only accepted for

the children for data set "x". Also, the χ2 test for independence, for a Solution
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BI-DIMENSIONAL DATA

(a) x. (b) x1. (c) x2.

(d) x3.

x1 x2 x3 Oth.

Adults 8 6 6

Children 3 3 9 1

Figure B.23: The solutions proposed for data set "x".

variable with the three regular categories, yielded different results for the data

sets: rejection for "w" (p=0.046) and acceptance for "x" (p=0.2).

These findings support the different behaviour of adults and children, with

the adults valuing more than children the "structuring morphology" feature.

B.4 Conclusions

Clustering solutions proposed by children are quite different from those proposed

by adults. We found for several data sets that the X2 test for independence (at

5% significance level) either accepted the independence hypothesis (data sets

d, g, m, p, u) or rejected it because of adult and children choices in opposite

directions (data sets f, k, l, w, x, aa, bb, cc). Thus, we found statistical evi-

dence supporting the thesis of different cluster behaviour of children and adults
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in those data sets. Children and adults showed a strong agreement of their

clustering preferences for the data sets where clustering is mainly based on the

connectedness or structuring direction features (well-separated data sets, nested

clusters, spiral-shaped clusters).

Children usually "see" small clusters focusing their attention in small regions,

leading to solutions with a large number of clusters. They praise overwhelmingly

the connectedness feature to the point of sacrificing other ones.

From the analysis of the different types of data sets we draw the following

conclusions:

• Connectedness or structuring-direction features are the easiest features to

handle, by both adults and children.

• Children are often unable to sacrifice connectedness for other features. This

is especially true when data sets exhibit cross-type clusters.

• Point density and morphological structuring are the most difficult clustering

features to handle.

• Adults seem capable of performing some sort of hierarchical clustering, using

clustering features at different decision levels. This was mainly apparent in

the solutions produced for data sets "p", "k", "aa" and "cc".

• A small difference in the data sets, like in the pairs "b"-"f" and "p"-"aa", can

lead to very different clustering solutions. This is especially to be expected

when the point density and morphological structuring features come into

play.
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