
Batch-Sequential Algorithm for Neural

Networks Trained with Entropic Criteria�

Jorge M. Santos1,3, Joaquim Marques de Sá1, and Lúıs A. Alexandre2

1 INEB - Instituto de Engenharia Biomédica
2 IT - Networks and Multimedia Group, Covilhã

3 Instituto Superior de Engenharia do Porto, Portugal
jms@isep.ipp.pt, jmsa@fe.up.pt, lfbaa@di.ubi.pt

Abstract. The use of entropy as a cost function in the neural network
learning phase usually implies that, in the back-propagation algorithm,
the training is done in batch mode. Apart from the higher complexity
of the algorithm in batch mode, we know that this approach has some
limitations over the sequential mode. In this paper we present a way of
combining both modes when using entropic criteria. We present some
experiments that validates the proposed method and we also show some
comparisons of this proposed method with the single batch mode algo-
rithm.

1 Introduction

In our previous work we introduced the use of Entropy as cost function in the
learning process of Multi Layer Perceptrons (MLP) for classification [1]. This
method computes the entropy of the error between the output of the neural
network and the desired targets as the function to be minimized. The entropy is
obtained using probability density estimation with the Parzen window method
which implies the use of all available samples to estimate its value. This fact
forces the use of the batch mode in the Back-propagation algorithm limiting
the use of, in some cases most appropriate, sequential mode. To overcome this
limitation we propose a new approach that combines these to modes (the batch
and the sequential) to try to use their mutual advantages. What we call the
batch-sequential mode divides, in each epoch, the training set in several groups
and sequentially presents each one to the learning algorithm to perform the
appropriate weight updating.

The next section of this work introduces the Error Entropy Minimization
Algorithm and several optimizations to achieve a faster convergence by manip-
ulating the smoothing parameter and the learning rates. Section 3 presents the
new batch-sequential algorithm and section 4 several experiments that show the
applicability of the proposed method. In the final section we conclude with some
discussion of the paper.
� This work was supported by the Portuguese Fundação para a Ciência e Tecnolo-

gia(project POSI/EIA/56918/2004).

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 91–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 J.M. Santos, J.M. de Sá, and L.A. Alexandre

2 The EEM Algorithm

The use of entropy and related concepts in learning systems is well known.
The Error Entropy Minimization concept was introduced in [2] and, using the
same approach, we introduced in [1] the Error Entropy Minimization Algorithm
for Neural Network Classification. This algorithm uses the entropy of the error
between the output of the neural network and the desired targets as the function
to be minimized in the training phase of the neural network. Despite the fact
that we use Renyi’s Quadratic Entropy we may as well use other kinds of entropy
measures, like Shannon’s entropy, as in [4].

Let y = {yi} ∈ R
m, i = 1, ..., N , be a set of samples from the output vector

Y ∈ R
m of a mapping R

n �→ R
m : Y = g(w, X), where w is a set of neural

network weights, X is the input vector and m is the dimensionality of the out-
put vector. Let d = di ∈ { − 1, 1}m be the desired targets and ei = di − yi

the error for each data sample. In order to compute the Renyi’s Quadratic En-
tropy of e we use the Parzen window probability density function (pdf) esti-
mation using Gaussian kernel with zero mean and unitary covariance matrix,
G(e, I) = 1

(2π)
m
2

exp
(− 1

2eT e
)
. This method estimates the pdf as

f(e) =
1

Nhm

N∑

i=1

G(
e − ei

h
) (1)

where h is the bandwidth or smoothing parameter.
Renyi’s Quadratic Entropy of the error can be estimated, applying the inte-

gration of gaussian kernels [5], by

ĤR2(e) = − log

⎡

⎣ 1
N2h2m−1

N∑

i=1

N∑

j=1

G(
ei − ej

h
, 2I)

⎤

⎦

= − log V (e)

(2)

The gradient of V (e) for each sample i is:

Fi = − 1
2Nh2m+1

N∑

j=1

G(
ei − ej

h
, 2I)(ei − ej) (3)

The update of the neural network weights is performed using the back-
propagation algorithm with ∆w = −η ∂V

∂w .
One of the first difficulties in estimating the entropy is to find the best value

for h in pdf estimation. In our first experiments with this entropic approach the
value of the smoothing parameter was experimentally selected. Latter, we have
developed a formula to obtain an appropriate value for h, as a function of the
number of samples and the dimensionality of the neural network output (related

Batch-Sequential Algorithm 93

with the number of classes in the classification problem). This formula, proposed
in [6]

hop = 25
√

m

N
(4)

gives much higher values than those formulas usually proposed for probability
density function estimation and gives very good results for the EEM algorithm.

3 Batch-Sequential Algorithm

The Batch-Sequential algorithm tries to combine the two methods applied in
the back propagation learning algorithm: the sequential mode, also referenced
as on-line or stochastic, where the update is made for each sample of the training
set, and the batch mode, where the update is performed after the presentation
of all samples of the training set.

We know that, the estimated pdf approximates the true pdf as N → ∞ but,
in the EEM algorithm, we only need to compute the entropy and its gradient; we
do not need to estimate the probability density function of e. This is a relevant
fact because, in the gradient descent method, more important than computing
with extreme precision the gradient is to get accurately its direction. Also, the
computation with extreme accuracy of the probability density function causes
the entropy to have high variability. This fact could lead to the occurrence of
local minima. The sequential mode updating of the weights leads to a sample by
sample stochastic search in the weight space implying that becomes less likely
for the back-propagation algorithm to be trapped in local minima [7]. However,
we still need some samples to estimate the entropy what limits the use of the
sequential mode. Other advantage of the sequential mode occurs when there
are some redundancy in the training set. The batch mode also presents some
advantages: the gradient vector is estimated with more accuracy guarantying
the convergence to, at least, a local minima and the algorithm is more easily
parallelized than using sequential mode.

In order to make use of the advantages of both modes and also to speedup the
algorithm, we developed a batch-sequential algorithm consisting of the splitting
of the training set in several groups that are presented to the algorithm in a
sequential way. In each group we apply the batch mode.

Let {Ts} be the training set of a given data set and {Tsj} the subsets
obtained by randomly dividing Ts in several groups with an equal number of
samples, such as

#Ts = n +
L∑

j=1

#Tsj (5)

where L is the number of subsets and n the remainder. Leaving, in each epoch,
some samples out of the learning process (when n �= 0) is not significant because
those samples will most likely be included in the next epoch. The partition of the

94 J.M. Santos, J.M. de Sá, and L.A. Alexandre

training set in subsets being performed in a random way reduces the probability
of the algorithm getting trapped in local minima. The subsets are sequentially
presented to the learning algorithm, that applies to each one, in batch mode, the
respective computation and subsequent weight update. The pseudo code for the
Error Entropy Minimization Batch-Sequential algorithm (EEM-BS) is presented
in Table 1.

Table 1. Pseudo-code for the EEM-BS Algorithm

For k:=1 to number of epochs
Create L subsets of Ts
For j:=1 to L

- Compute the error entropy gradient of Tsj applying formula 3
- Perform weight update

End For
End For

One of the advantages in using the batch-sequential algorithm is the decrease
of the algorithm complexity. The complexity of the original EEM algorithm, due
to formulas 2 and 3, is O(Ts2). We clearly see that, for large training sets, the
algorithm is highly time consuming. With the EEM-BS algorithm the complexity
is proportional to:

L

(
Ts

L

)2

(6)

Therefore, the complexity ratio of both algorithms is:

Ts2

L(Ts
L)2

= L (7)

which means that, in terms of computational processing time, we achieve a reduc-
tion proportional to L. For a complete experiment, similar to the one presented
in the next section with the data set ”Olive”, we reduce the processing time from
about 30 to 6 minutes in our machine.

The number of subsets, L, is determined by the size of the data set. If, in a
given problem, the training set has a large number of data samples, we can use
a higher number of subsets than if we have a small training set. We recommend
the division of the training set in a number of subsets with a number of samples
not less than 40, even though we had some good results with less elements.

In order to perform the experiments with the batch-sequential algorithm, we
tried to use the optimization proposed in [3], the EEM-VLR. This optimization
is based on the use of a global variable learning rate (VLR) during the training
phase, as a function of the entropy value in consecutive iterations. Since this op-
timization compares HR2 of a certain epoch with the same value in the previous
one, we could not use it because, in each epoch, we use different sets of samples
and, by this simple fact, we would have different values of HR2. To overcome
this limitation we implemented a similar process, also using variable learning

Batch-Sequential Algorithm 95

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

T
ra

in
in

g
E

rr
or

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

Epochs

EEM−BS EEM−BS (SA) EEM−BS (RBP)

Fig. 1. Training Error for the EEM-BS and the two optimizations

rate, but this time, the variation of the learning rate is done for each neural
network weight by comparing the respective gradient in consecutive iterations
(EEM-BS(SA)). This approach was already used in back-propagation with MSE
[8]. We also used, for the same purpose of speeding up the convergence, the com-
bination of this implementation with the resilient back-propagation, achieving
very good results (EEM-BS(RBP)). Examples of the training phase for the three
different methods, with data set ”Olive”, are depicted in Fig.1.

4 Experiments

In order to establish the validity of the proposed algorithm we performed several
classification experiments, comparing the results obtained with the EEM-BS
algorithm and with the simple EEM-VLR algorithm. The characteristics of the
data sets used in the experiments are summarized in Table 2.

In all experiments we used (I, n h, m) MLP’s, where I is the number of input
neurons, n h is the number of neurons in the hidden layer and m is the number
of output neurons. We applied the cross-validation method using half of the
data for training and half for testing. The experiments for each data set were
performed varying the number of neurons in the hidden layer, the number of
subsets used and the number of epochs. Each result is the mean error of 20
repetitions. In Table 3 we only present the best results for each experiment with
4 and 8 subsets for the EEM-VLR and the EEM-BS algorithms.

The results of EEM-BS algorithm are, in some cases, even better than those
of EEM-VLR. The complexity of the neural networks for each experiment is very

Table 2. Data sets used for the experiments.

Data set # Samples # Features # Classes

Ionosphere 351 33 2
Olive 572 8 9
Wdbc 569 30 2
Wine 178 13 3

96 J.M. Santos, J.M. de Sá, and L.A. Alexandre

Table 3. Results for EEM-VLR and EEM-BS (Tpe: Time per epoch ×10−3 sec.)

Ionosphere Error (Std) L n h Epochs Tpe Olive Error (Std) L n h Epochs Tpe
EEM-VLR 12.06 (1.11) - 12 40 16.7 EEM-VLR 5.04 (0.53) - 25 200 77.7
EEM-BS 12.00 (1.22) 4 16 80 6.4 EEM-BS 5.17 (0.51) 4 30 140 17.6
EEM-BS 12.22 (1.14) 8 16 60 4.8 EEM-BS 5.24 (0.70) 8 20 180 12.8

Wdbc Error (Std) L n h Epochs Tpe Wine Error (Std) L n h Epochs Tpe
EEM-VLR 2.33 (0.37) - 4 40 38.7 EEM-VLR 1.83 (0.83) - 14 40 5.8
EEM-BS 2.31 (0.35) 5 10 60 13.6 EEM-BS 1.88 (0.80) 4 16 60 3.2
EEM-BS 2.35 (0.48) 8 10 40 9.6 EEM-BS 1.88 (0.86) 8 16 60 2.5

similar for both algorithms what reenforces the validity of the proposed method.
Since the best results were obtained with different neural network complexity
we present in column Tpe the processing time per epoch for each algorithm.

5 Conclusions

We presented, in this paper, a way of combining the sequential and batch modes
when using entropic criteria in the learning phase, taking profit of the advantages
of both methods. We show, using experiments, that this is a valid approach that
can be used to speed-up the training phase, maintaining a good performance.

References

1. Jorge M. Santos, Luis A. Alexandre, and Joaquim Marques de Sá. The Error Entropy
Minimization Algorithm for Neural Network Classification. Int. Conf. on Recent
Advances in Soft Computing, pages 92–97, 2004.

2. D. Erdogmus and J. Prncipe. An error-entropy minimization algorithm for su-
pervised training of nonlinear adaptive systems. Trans. On Signal Processing,
50(7):1780–1786, 2002.

3. Jorge M. Santos, Joaquim Marques de Sá, Luis A. Alexandre, and Fernando Sereno.
Optimization of the Error Entropy Minimization Algorithm for Neural Network
Classification. In C.H.Dagli, A. L. Buczak, D. L. Enke, M. J. Embrechts, and
O. Ersoy, editors, Intelligent Engineering Systems Through Artificial Neural Net-
works, volume 14, pages 81–86. ASME Press, 2004.

4. Luis M. Silva, Joaquim Marques de Sá, and Luis A. Alexandre. Neural Network
Classification using Shannon’s Entropy. In European Symposium on Artificial Neural
Networks (Accepted for publication), 2005.

5. D. Xu and J. Princpe. Training mlps layer-by-layer with the information potential.
In Intl. Joint Conf. on Neural Networks, pages 1716–1720, 1999.

6. Jorge M. Santos, Joaquim Marques de Sá, and Luis A. Alexandre. Neural Networks
Trained with the EEM Algorithm: Tuning the Smoothing Parameter. In 6th WSEAS
Int. Conf. on Neural Networks, (accepted), 2005.

7. Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, New
Jersey, 2 edition, 1999.

8. F. Silva and L. Almeida. Speeding up backpropagation. In Eckmiller R., editor,
Advanced Neural Computers, pages 151–158, 1990.

	Introduction
	The EEM Algorithm
	Batch-Sequential Algorithm
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

