
Deep Transfer Learning Ensemble for
Classification

Chetak Kandaswamy123, Lúıs M. Silva24, Lúıs A. Alexandre5, and Jorge M.
Santos26

1 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
2 INEB - Instituto de Engenharia Biomédica, Portugal

3 Department of Electrical and Computer Engineering, Faculty of Engineering
University of Porto, Portugal

4 Departamento de Matemática, Universidade de Aveiro, Portugal
5 Universidade da Beira Interior & Instituto de Telecomunicações, Covilhã, Portugal

6 Instituto Superior de Engenharia, Politécnico do Porto, Portugal

Abstract. Transfer learning algorithms typically assume that the train-
ing data and the test data come from different distribution. It is better at
adapting to learn new tasks and concepts more quickly and accurately by
exploiting previously gained knowledge. Deep Transfer Learning (DTL)
emerged as a new paradigm in transfer learning in which a deep model
offer greater flexibility in extracting high-level features. DTL offers selec-
tive layer based transference, and it is problem specific. In this paper, we
propose the Ensemble of Deep Transfer Learning (EDTL) methodology
to reduce the impact of selective layer based transference and provide
optimized framework to work for three major transfer learning cases.
Empirical results on character, object and biomedical image recognition
tasks achieves that the proposed method indicate statistically signifi-
cant classification accuracy over the other established transfer learning
method.

Keywords: Deep learning, Transfer learning, Ensemble

1 Introduction

Transfer of learning is a well established concept in many fields, including ma-
chine learning. Transfer learning (TL) approach in machine learning refers to
the procedure employed to train a source model and then transfer the knowl-
edge (learning) across different problems. In principle, it gives better general-
ization with less computational effort even when the training has a considerable
amount of unlabelled data. TL offers several advantages over traditional machine
learning specially for non-stationary environments where the training and test
samples may be drawn from different marginal distributions or the classification
tasks may not be identical.

Several viable solutions have appeared in the literature to train machines
for non-stationary environments in the past two decades: in lifelong learning [1],

II

where it is assumed that the learner faces an entire family of learning tasks,
not just a single one; multi-task learning [2], where it is possible to learn the
tasks simultaneously; cross-domain learning [3], where it is possible to reuse the
learning when the distributions are correlated; self-taught learning [4], where the
machine makes use of large number of easily available unlabelled data to build
high-level representations to use for supervised classification tasks.

Recent developments in neural networks inspired by the biological structure
of the visual cortex like convolutional networks (CNN) [5], deep belief nets [6],
and Stacked denoising autoencoders [7] [8] combined with faster processing com-
putational capabilities lead to the development of deep learning. Deep learning
models extract useful information from the input data, constructing multiple
levels of representation or learning a hierarchy of features. It potentially leads
to progressively more abstract features at higher layers. It is observed that the
bottom-layer features are standard regardless of the cost function or dataset
used, called as general, while the top-layer features depend greatly on the cho-
sen dataset and task, so called as specific [9] [11] [12].

The transference of hierarchical features obtained by deep learning for solving
classification task, lead to the emergence of Deep Transfer Learning (DTL). DTL
an approach in which a deep model is trained on a source problem, and then
reused to solve a target problem. In the case of DTL, transference occurs due to
two reasons: 1) transferring supervised or unsupervised features from the source
problem [9] and 2) retraining only unlocked layers of the network by constraining
not to over train for the target task [11].

The DTL approach has proven to be successful in many object and image
recognition problems using a layer-by-layer feature transference on large-scale
data by transferring hidden layers [10] and retrain unlocked layers [11] [12].
Transferring features of convolutional neural network trained on ILSVRC dataset
and retrained to solve several visual classification task on various datasets per-
form better than state-of-the-art methods [13].

All these above DTL methods have shown that there is a limitation on choos-
ing the various selective layer based transference conditions to solve the new
target problem. They do not tackle the problem of negative feature transference
and also ambiguous in selecting the layers to be transferred and retrained for
the target task.

We may therefore pose the following question:

– Will the learning algorithm be able to adapt by combining the outputs of var-
ious selective layer based transference conditions of the deep learning model,
in a way, non-negativity constraints as required by the feature transference
are no longer needed?

It would be interesting to combine the outputs using ensemble methods. Fol-
lowing the rather standard ensemble methods with deep learning models for
classification task. The recent ensemble of deep models using different initial
weights on a multi-column CNN in [16], or using combination of different deep
learning methods like CNN and recurrent neural networks in [14], or using com-
bination of shallow and deep models in [15] have shown significant improvement

III

in accuracy. All these ensemble of deep models have shown increased storage
and computation.

We propose the Ensemble of Deep Transfer Learning (EDTL) approach which
combines the advantage of using ensemble of deep models and deep transfer
learning. We hypothesise the ensemble of various selective layer based trans-
ference on deep models removes non-negativity constraints and speeds up the
computation. We study its two conditions of feature transference: 1) transfer
specific features, and 2) retrain specific features (splitting of co-adapted neu-
rons). As we will see, EDTL not only effectively reduces the issue of selective
layer-based transference as well as improves performance over the established
positive transference situations.

We reduce the transferability gap, the gap between the performance of the
transference versus the no transference approach increases proportionally to the
distance between the source and target distributions [3]. In order to distinguish
how different the target distribution is from the source distribution, we use
Jensen-Shannon divergence [17] as a metric to measure the degree of hetero-
geneity between distributions

2 Notations and problem settings

Let’s represent a dataset by a set of tuples D = (xn, yn) ∈ X × Y , where X is the
input space and Y is a set of labels. Assume that the n instances are drawn by a
sampling process from the input space X with a certain probability distribution
P (X). The dataset is split into subsets of training, validation and test drawn
from the same distribution P (X). We assume that the “source” dataset DS with
input space XS and a set of labels YS is drawn from a distribution PS (X) and
the “target” dataset DT with input space XT and a set of labels YT is drawn
from a distribution PT (X). Such PS (X) and PT (X) may be equal or different.

Traditionally, the goal of transfer learning is to transfer the learning (knowl-
edge) from a source problem input space XS to one or more problems, or distri-
butions to efficiently develop an effective hypothesis for a new task, problem, or
distribution [3]. In supervised learning problems, the source and target marginal
distribution and classification tasks may be equal or different. In this frame-
work of transfer learning, four possible cases of transfer learning problems can
be identified:

Table 1: Transfer Learning cases
Distribution

Marginal Labels Case

PS(X) = PT (X) YS = YT no transfer learning

PS(X) 6= PT (X) YS = YT I

PS(X) = PT (X) YS 6= YT II

PS(X) 6= PT (X) YS 6= YT III

We use the well known Jensen-Shannon divergence (JSD) [17] as a measure
to compute the difference between two datasets distribution and is given by:

IV

DJS(p||q) = αDKL(p||r) + βDKL(q||r), with r = αp+ βq (1)

where DKL is the Kullback-Leibler divergence.
When α = β = 1/2 in eq.2 we are dealing with the specific Jensen-Shannon

divergence and DJS is lower- and upper-bounded by 0 and 1, respectively, when
using logarithm base 2 [17]. This means that when DJS(p||q) = 0 we can consider
that p and q are identical and when DJS(p||q) = 1, the distributions are different.

2.1 Established frameworks

Baseline (BL): Stacked Denoising Autoencoders (SDA) are multiple layer net-
works where each one is trained as a denoising autoencoder (dA) (see Fig. 1-
BL). SDA training comprises of two stages: an unsupervised pre-training stage
followed by a supervised fine-tuning stage. During pre-training (PT), the network
is generated by stacking multiple dA one on top of each other thus learning un-
supervised features, represented as a vector U(w) of optimal weights and biases.
Then, a logistic regression layer is added on top and the whole network and fine-
tuned in a supervised way, thus learning supervised features w = (w1, ..., wK),
where K is the number of layers.

Transfer learning (TL): We first train the source network with the source
data DS and YS and then copy its hidden layers to the target network. In
case YS 6= YT , then we add a classifier layer randomly initialized. The network
is trained towards the target task YT . If the performance of the newly trained
target network exceeds the performance of the baseline approach we have positive
transference; otherwise we have negative transference.

Transferred layers: We select a particular layer or set of layers of the whole
baseline network to transfer. For example we may select to transfer first layer
features of the baseline approach to the target network, that is, w1

S ⇒ w1
T . The

rest of the target network layer features are randomly initialized.
Retraining layers: Once the features are transferred to the target network,

we add a logistic regression layer for the target task YT . We have a choice to fine-
tune this entire network wT as a multi-layer perceptron using back-propagation
or lock a layer[11] [12], meaning the transferred feature from source network
w1

S ⇒ w1
T do not change during the error propagation for the target task. Thus

giving a choice of whether or not to fine-tune the certain layers of the target
network. This opens up several possible approaches to solve a problem as shown
in Fig .1, TLu and TLs, where the layers are optionally locked or unlocked. This
causes fragile co-adaptation of neurons between layers leading to optimization
difficulties. The choice of whether or not to fine-tune the first layer of the target
network depends on the size of the target dataset and number of parameters
[10]. [13]

Transfer learning unsupervised (TLu): We transfer the unsupervised
features of the SDA model from the source to the target network, i.e., U(wS)⇒
wT as depicted in Fig. 1, TLu. Once the features are transferred to the target
network, we add a logistic regression layer for the target task YT . Then we

V

fine-tune the entire classifier like a regular multi-layer perceptron with back-
propagation choosing to lock or unlock certain layers to solve the target task.

Transfer learning supervised (TLs): The trained weights of the BL ap-
proach are used. For example we transfer features from source to target network,
i.e., wS ⇒ wT . Then we back-propagate choosing to lock or unlock certain layers
to solve the target task as illustrated in Fig. 1 TLs.

Fig. 1: A pictorial representation of approaches: Pre-training (PT), Baseline (BL),
Transfer Learning unsupervised (TLu), and Transfer Learning supervised (TLs).

3 Ensemble of Deep Transfer Learning framework

In this paper we propose an Ensemble of Deep Transfer Learning (EDTL) where
we combine the main advantage of deep transfer learning with the traditional
ensemble learning. The DTL offers the knowledge (features) learnt in a source
domain providing a good initialization for the learning task in a target problem,
better than starting the learning in the target domain at random with possibility
of transferring generic features. In here we propose to ensemble the various DTL
models between both domains. The intuition is that, like in traditional ensemble,
train a DTL model with various transfer and retrain conditions and combine their
outputs, treating them as a committee of decision makers. Numerous empirical
and theoretical studies have demonstrated that ensemble (committee) models
often obtain higher accuracy than single models [20].

The overall framework of EDTL depicted in Fig. 2, employs a deep model
learnt on the source domain and apply DTL with various conditions, i.e., transfer
hidden layer (transfer or randomly initialize) and then retrain (lock or unlock)
the network to the target domain. Compute posterior probabilities PT (y|x) each
of the DTL model for target task. Then obtain class-probabilities using ensem-
ble the posterior probabilities PT (y|x) of each model. The model are trained
on baseline method (BL) using standard deep learning approach and the deep
transfer learning approach process as listed in Algorithm 1.

VI

Algorithm 1 Pseudocode for baseline and Transfer learning approach
Baseline: Initialize randomly:
Given a two datasets DA and DB , Select a
dataset and train the network with input x
{Stage 1: Pretrain the Network}
build SDA by greedy layer
for k in number of hidden layers do

randomly initialize: Wk

{Build denoising autoencoder (dA)}
for each epoch in Pretraining do

Corrupt the input, x = x + noise
hidden layer = Sigmoid(Wkx + bias)
reconstruct = Sigmoid(W ′

kx + bias′)
minimize cross-entropy loss and update
weight vector

end for
stack the dA’s

end for
{Stage 2: Fine-tune the Network}
add a logistic regression layer with Y labels
for each epoch in Fine-tuining do

backpropogate the errors
update the weights
calculate validation error on validation set
if best validation error < validation error
then

update weights of the network
best validation error = validation error
calculate test error on test set
best test error = current error

end if
end for
error = best test error

Initialize with trained features DA:
Given a two datasets DA and DB , with tasks
YA and YB ,
Select DA dataset and train the network A as
described on the left side.
{Stage 1: Transfer the features}
Select a reuse mode: TLu or and TLs
Select which hidden layers to transfer
if YA 6= YB then

chop of the logistic layer
end if
for k in number of layers do

if layer = transfer then
if mode = TLu then

transfer unsupervised features
U(wk

A) ⇒ wk
B

else if mode = TLs then
transfer supervised features
wk

A ⇒ wk
B

end if
else if layer = no transfer then

randomly initialize weights wk
B

end if
end for
{Stage 2: Fine-tune the Network}
if YA = YB then

add a logistic regression layer with YB la-
bels

end if
for each epoch in Fine-tuining do

backpropogate the errors
if lock is TRUE in each Layer then

no update of weights
else

update the weights
end if
calculate validation error on validation set
if best validation error < validation error
then

update weights of the network
best validation error = validation error
calculate test error on test set
best test error = current error

end if
end for
error = best test error

Fig. 2: A pictorial representation of Ensemble of Deep Transfer Learning.

VII

The bottom-layer features, called as general, similarly the top-layer features,
called as specific. The pseudo-code for the EDTL process is listed in Algorithm
2, study the two conditions of feature transference: 1) transfer specific features,
and 2) retrain specific features (splitting of co-adapted neurons, meaning fragile
co-adaptation of neurons is broken by splitting of transferred layer and randomly
initialized layer leads to difficulty in optimization [11]).

Algorithm 2 Pseudocode for EDTL

1: Initialize with trained features DS:
2: Given two datasets DS and DT , with tasks YS and YT , drawn from PS and PT distributions.
3: Let the total number of models in the ensemble be M

{Select type of TL interaction to evaluate}
4: if evaluate == co-adapted interactions then
5: M = possible combination of retrained layers
6: else if evaluate == generic vs. specific then
7: M = possible combination of transferred layers
8: end if
9: baseline: Train network A using source dataset, DS as shown in the baseline approach.
10: for each model M in the ensemble of TL do
11: transfer: transfer features from network A to new network B as shown in the transfer

learning approach
12: Compute posterior probabilities PT (y|x) for target dataset, DT .
13: end for

{Combine all the posterior probabilities PT (y|x) of each model, M}
14: Compute y = argmax

∑
Mi∈M PT (y|x)

4 Pre-processing of datasets

We test EDTL on three different types of tasks i.e., character, object and biomed-
ical image recognition using four original datasets7. To evaluate all possible TL
cases as listed in Table 1, we modified the four original datasets into nine different
datasets as listed in Table 2.

4.1 Character recognition dataset processing

We evaluate the framework in two different settings for the character recogni-
tion task: We use the MNIST dataset PL which has 60,000 training and 10,000
testing instances with labeled hand-written digits from 0 to 9. Additionally, the
Chars74k dataset was modified to obtain Lowercase dataset PLC labelled low-
ercase letters from a-to-z and, the Uppercase dataset PUC labelled uppercase
letters from A-to-Z and Digits PD dataset contains digits from 0-to-9. Both
MNIST and Chars74k datasets used in our experiments have images with 28 x
28 pixels and a sample of each dataset.

7 We would like to acknowledge researchers making available their datasets, Center
for Neural Science, New York University for MNIST; Microsoft Research India for
Chars74k; LISA labs, University of Montreal, Canada for BabyAI shapes; and Broad
Institute of Harvard and MIT for MCF7-wt breast cancer cells.

VIII

Fig. 3: Samples from character recognition tasks: (a) MNIST, (b) lowercase and, (c)
uppercase

4.2 Object recognition dataset processing

We generated three shapes datasets. First, the canonical dataset PSh1 has canon-
ical objects, i.e., equilateral triangle, circle and square. Second, the non-canonical
dataset PSh2 has non-canonical objects, i.e., triangle, ellipse and rectangle. Fi-
nally, the curve Vs. corner dataset PSh3 has shapes with a curved surface or
a corner. All three datasets used in our experiments have images with 28 x 28
pixels and a sample of each dataset.

Fig. 4: Samples from various shape recognition tasks: (a) Canonical, (b) Non-Canonical
and (c) Curve & corner.

4.3 Biomedical image recognition task

We used the BBBC021 image set [18] of genetically engineered MCF7-wt (breast
cancer expressing wild-type p53) cell line. The MFC7 dataset has around 4
million cancer cells including Dimethyl sulfoxide (DMSO) control samples. The
CellProfiler software was used to extract 453 features of each of the 148,649
cells of non-control samples. Each single-cell sample was clearly labelled having
one of 12 different primary mechanisms of action (MOA) from the subset of
compound-concentration combinations [19]. We modified the MFC7 dataset to
solve for two different tasks. The first task is to identify 12 different MOA using
the single-cell features of non-control samples. The second task is to categorize
38 compounds using the same samples.

IX

Fig. 5: Examples of the broad spectrum of heterogenic phenotypes captured of MCF7-
wt cancer cell assay after compound incubation. The high-content image consists of
four-wavelengths, DNA binding dye, DAPI (blue), an actin cytoskeleton marker, Phal-
loidin (red), tubulin antibody (green) to monitor the microtubule cytoskeleton, and
the cytoplasmic marker, HCS cell mask.

Table 2: Number of instances available for each dataset.
Data set Labels Instances

Ω classes Train Valid Test

MOA Pmoa 0..11 Ω12 12 74,325 37,162 37,162
Compound Pcom 0..37 Ω38 38 74,325 37,162 37,162

Lowercase PLC a-to-z Ωaz 26 13,208 6,604 6,604
Uppercase PUC A-to-Z ΩAZ 26 13,208 6,604 6,604
Digits PD 0-to-9 Ω09 10 13,208 6,604 6,604
MNIST PL 0-to-9 Ω09 10 50,000 10,000 10,000

Canonical PSh1 eqt,cir,sqr Ωsh1 3 14,000 1,000 5,000
Non-Canonical PSh2 tri,ell,rec Ωsh2 3 14,000 1,000 5,000
Curve & corner PSh3 rou,cor Ωsh3 2 14,000 1,000 5,000

5 Experimental setup and Results

Training Deep Neural Network: The network we used in character recog-
nition experiments had three hidden layers with [576, 400, 256] units in order
of [bottom, middle, top] respectively, batch size of 100 and pre-training ran for
a minimum of 25 epochs. The networks used in object recognition experiments
also had three hidden layers with [100, 200, 300] units, batch size of 300 and
pre-training ran for a minimum of 10 epochs. The networks used in biomedical
image recognition experiments with [453, 906, 1359] units, batch size of 100 and
pre-training ran for a minimum of 30 epochs. All the three networks have an
output layer appropriate to the number of classes being considered. All hidden
layers were pre-trained as denoising autoencoders via gradient descent, using
the cross-entropy cost and a learning rate of 0.001. The complete networks were
fine-tuned via gradient descent, using the cross-entropy cost and a learning rate
of 0.1. The fine-tuning ran until the validation error did not decrease below 0.1%
or until 1000 epochs for all tasks. Our code for experiments was based on the
Theano library 6 and ran with the help of an GTX 770 GPU. To determine if a
result is statistically significant over ten repetition of each experiment, we used
paired student t-test to calculate a p-value, which is the probability of observing
an effect given that the null hypothesis is true. We marked each result in Table

X

3, with ’*’ when the result was statistically significant, i.e., if an observed p-value
is lower than 0.01 (1%).

5.1 Retrain specific DTL

In this section, we study Retrain specific DTL (DTLr). In this condition of DTL,
we transfer all the hidden layers of the source network to the target network,
i.e., transfer [1 1 1 1] and retrain only unlocked layers marked as ’1’, for example
retrain [0 0 1 1]. We study the fragile splitting of the co-adapted neurons caused
due to locking of the layer, thus stopping learning in that selected hidden layer
of the target network. This avoids overfitting of the network for the target task.

Generally the features of the lower layer of the network are generic therefore
they can be used to solve a broader spectrum of problem. The higher layer
features are specific to the task the network was trained. We would like to re-
utilize the generic features of the source network and retrain the transferred
network for target specific task. In this section, we study suitable conditions
such that we obtain positive transference retraining only specific layers of the
target network.

We observe a consistent improvement in DTLr across all the cases of transfer
learning for the condition: transfer = [1111] & retrain = [1111]. We conclude that
this is due to two main reasons: 1) the transferred layer weights are better than
random initialization and, 2) retraining the network target task improves the
chances of better generalization.

We observe statistically significant result for all conditions of DTLr except
for transfer = [1111] & retrain = [0001]. This still offer good generalization than
the random accuracy, but is lower than in other conditions.

Ensemble of 4 DTLr models gives retrain specific EDTL (EDTLr). We
observe better average accuracy than BL and DTLr conditions and results are
shown in Table 3. We perform paired student t-test comparing the accuracy
results EDTLr with accuracy results of DTLr.

5.2 Transfer specific DTL

In this section, we study Transfer specific DTL (DTLt). In this condition of DTL,
we transfer only specific layers of the source network to the target network, for
example transfer [0 0 1 1] and retrain all the layers, i.e., retrain [1 1 1 1]. We
study the generic versus specific feature transference due to transferring of the
layer, thus reusing the features for the target task. This not only speeds up the
training but also improves the accuracy of the network.

We observe that DTLt, even for condition when only the logistic regression
layer is transferred and retaining the whole target network with backpropagation
algorithm had better accuracy than the BL as shown in Table 3.

Ensemble of 4 DTLt models gives transfer specific EDTL (EDTLt). We
observe better average accuracy than BL and DTLt conditions. Results are
shown in Table 3.

XI

T
ab

le
3:

P
er

ce
n
t

av
er

ag
e

cl
as

si
fi

ca
ti

on
ac

cu
ra

cy
o
b

ta
in

ed
fo

r
a
ll

th
re

e
p

o
ss

ib
le

tr
a
n
sf

er
le

a
rn

in
g

ca
se

s;
6

d
iff

er
en

t
ex

p
er

im
en

ts
ar

e
p

er
fo

rm
ed

on
th

re
e

d
iff

er
en

t
ty

p
es

of
ta

sk
s

i.
e.

,
ch

a
ra

ct
er

,
o
b

je
ct

a
n

d
b

io
m

ed
ic

a
l
im

a
ge

re
co

g
n

it
io

n
;
W

e
co

m
p

a
re

es
ta

b
li

sh
ed

fr
am

ew
or

k
s

i.
e.

,
B

as
el

in
e

(B
L

),
re

tr
ai

n
sp

ec
ifi

c
D

T
L

(D
T

L
r
),

a
n

d
tr

a
n

sf
er

sp
ec

ifi
c

D
T

L
(D

T
L
t
)

w
it

h
o
u

r
a
p

p
ro

a
ch

,
re

tr
a
in

sp
ec

ifi
c

E
D

T
L

(E
D

T
L
r
),

tr
an

sf
er

sp
ec

ifi
c

E
D

T
L

(E
D

T
L
t
),

a
n

d
E

n
se

m
b

le
o
f
D

T
L

(E
D

T
L

);
th

e
d

iff
er

en
ce

b
et

w
ee

n
tw

o
d

a
ta

se
ts

d
is

tr
ib

u
ti

on
an

d
is

gi
ve

n
b
y

J
en

se
n

-S
h

an
n

on
d

iv
er

g
en

ce
(J

S
D

)
M

a
rg

in
a
l

P
S

(X
)
6=
P
T

(X
)

P
S

(X
)

=
P
T

(X
)

P
S

(X
)
6=
P
T

(X
)

L
a
b

el
s

Y
S

=
Y
T

Y
S
6=
Y
T

Y
S
6=
Y
T

T
L

ca
se

I
II

II
I

E
x
p

er
im

en
t

1
2

3
4

5
6

S
o
u
rc

e
N

o
n
-C

a
n
o
n
ic

a
l

M
N

IS
T

N
o
n
-C

a
n
o
n
ic

a
l

C
O

M
P

M
N

IS
T

M
N

IS
T

T
a
rg

e
t

C
a
n
o
n
ic

a
l

D
ig

it
C

u
rv

e
&

co
rn

er
M

O
A

L
ow

er
U

p
p

er
J
S
D

0
.9

9
0
.9

9
0

0
0
.8

0
0
.7

9

A
p
p
ro

a
ch

es
A

v
g

A
c
c

A
v
g

A
c
c

A
v
g

A
c
c

A
v
g

A
c
c

A
v
g

A
c
c

A
v
g

A
c
c

B
L

9
9
.4

9
(0

.3
2
)

9
7
.7

4
(0

.0
9
)

9
8
.3

5
(0

.2
7
)

9
6
.3

8
(0

.5
)

9
4
.3

4
(0

.1
3
)

9
4
.9

3
(0

.1
3
)

R
e
tr

a
in

S
p

e
c
ifi

c
D

T
L

D
T

L
r

tr
a
n
sf

e
r

re
tr

a
in

[1
1
1
1
]

[1
1
1
1
]

9
9
.5

1
(0

.1
7
)

9
7
.9

2
(0

.2
7
)

*
9
9
.0

0
(0

.4
6
)

9
7
.5

4
(0

.4
0
)

*
9
4
.7

1
(0

.2
2
)

*
9
4
.9

4
(0

.2
3
)

*
[1

1
1
1
]

[0
1
1
1
]

9
6
.9

2
(1

.7
2
)

*
9
8
.0

6
(0

.1
7
)

*
9
7
.0

6
(1

.4
7
)

*
9
8
.0

7
(0

.1
8
)

9
4
.5

2
(0

.2
4
)

*
9
4
.7

4
(0

.1
5
)

*
[1

1
1
1
]

[0
0
1
1
]

9
6
.6

0
(1

.6
4
)

*
9
8
.1

4
(0

.1
8
)

*
9
6
.7

9
(1

.5
3
)

*
9
8
.2

3
(0

.1
7
)

9
3
.9

2
(0

.2
9
)

*
9
4
.1

0
(0

.1
5
)

*
[1

1
1
1
]

[0
0
0
1
]

9
5
.7

8
(1

.9
1
)

*
9
7
.3

6
(0

.5
1
)

*
9
6
.4

6
(1

.6
8
)

*
9
8
.1

6
(0

.2
2
)

8
9
.3

6
(0

.8
3
)

*
8
9
.5

7
(0

.9
9
)

*

E
D

T
L

r
9
9
.5

7
(0

.1
3
)

9
8
.6

2
(0

.1
4
)

9
9
.2

7
(0

.3
1
)

9
8
.2

4
(0

.2
7
)

9
5
.1

1
(0

.1
8
)

9
5
.3

8
(0

.1
8
)

T
ra

n
sf

e
r

S
p

e
c
ifi

c
D

T
L

D
T

L
t

tr
a
n
sf

e
r

re
tr

a
in

[1
1
1
1
]

[1
1
1
1
]

9
9
.5

1
(0

.1
7
)

*
9
7
.9

3
(0

.2
7
)

*
9
9
.0

0
(0

.4
6
)

*
9
7
.5

4
(0

.4
0
)

9
4
.7

1
(0

.2
2
)

9
4
.9

4
(0

.2
3
)

*
[0

1
1
1
]

[1
1
1
1
]

9
9
.7

3
(0

.1
2
)

*
9
7
.0

9
(0

.3
4
)

*
9
9
.6

0
(0

.1
6
)

*
9
6
.7

6
(1

.2
2
)

9
2
.8

0
(0

.2
6
)

*
9
3
.9

6
(0

.1
5
)

*
[0

0
1
1
]

[1
1
1
1
]

8
6
.8

3
(1

7
.2

6
)

9
7
.2

9
(0

.3
0
)

*
6
8
.8

1
(5

.7
1
)

9
6
.7

1
(0

.4
6
)

*
9
3
.2

8
(0

.2
8
)

*
9
3
.9

7
(0

.3
3
)

*
[0

0
0
1
]

[1
1
1
1
]

9
9
.8

4
(0

.0
8
)

9
7
.4

6
(0

.1
7
)

*
9
8
.8

6
(0

.3
8
)

*
9
6
.8

1
(0

.6
5
)

9
3
.4

0
(0

.1
7
)

*
9
4
.3

8
(0

.1
6
)

*

E
D

T
L

t
9
9
.9

1
(0

.0
3
)

9
8
.1

8
(0

.1
6
)

9
9
.5

8
(0

.1
6
)

9
7
.5

4
(0

.5
3
)

9
4
.5

6
(0

.1
1
)

9
5
.2

6
(0

.1
0
)

E
D

T
L

9
9
.8

6
(0

.0
3
)

9
8
.8

7
(0

.1
0
)

9
9
.5

2
(0

.1
6
)

9
8
.1

2
(0

.3
1
)

9
5
.1

8
(0

.0
6
)

9
5
.7

0
(0

.1
6
)

XII

5.3 Ensemble of both EDTLr and EDTLt

We observe significant improvements in average accuracy using EDTL over both
EDTLr and EDTLt using all the conditions as listed in Table 3 except for the
transfer learning case II. Firstly, we observe that in EDTLr, 6 out of 6 experi-
ments obtains better accuracy than BL and other established DTL approaches.
Secondly, we observe that in EDTLt, 5 out of 6 experiments obtains better
accuracy than BL and other established DTL approaches. Finally, we observe
in EDTL, 3 out of 6 experiments obtains better accuracy than BL and other
established DTL approaches.

6 Conclusions and discussion

We propose an ensemble of deep transfer learning approaches using 9 datasets
with varied image recognition tasks like character, object and biomedical image
recognition. We make several contributions as listed below:

1. We analyse all possible cases of transfer learning, i.e., based on change in
distribution and based on change in classification task between the source and
the target domains.

2. The experimental analysis of the retrain specific DTL approaches across
all possible cases of transfer learning show that the condition: transfer all layers
and retain all layers, obtains better overall accuracy not only than baseline but
also compared to other DTLr conditions. This is due to two main reasons: 1) the
transferred layer weights are better than random initialization and, 2) retraining
the network target task improves the chances of better generalization, i.e., by
forcing splitting of fragile co-adapted neurons the network avoids overfitting to
the target task.

3. We observe that transfer specific DTL approaches obtain better overall
accuracy than baseline but not as good as retrain specific DTL, as fine-tuning
of randomly initialized weights forces the solution to local minima.

4. The experimental analysis of retrain specific EDTL, transfer specific EDTL
and EDTL approaches show that EDTLr, ensemble of posterior probabilities
of four DTLr models, obtain a statistically significant better accuracy than
individual DTLr. EDTL outperforms baseline and other DTL approaches both
when the distributions and task are different.

In future we would like to explore the possibility of training multiple source
domain problems and combine them under ensemble of deep transfer learning
framework.

Acknowledgements

This work was financed by FEDER funds through the Programa Operacional
Factores de Competitividade COMPETE and by Portuguese funds through
FCT Fundação para a Ciência e a Tecnologia in the framework of the project
PTDC/EIA-EIA/119004/2010.

XIII

References

1. Thrun, Sebastian.: Learning to learn: Introduction. In Learning To Learn. (1996)

2. Caruana, R:. Multitask learning. Machine Learning. 28(1), 4175 (1997)

3. Daumé III, Hal, and Daniel Marcu.: Domain Adaptation for Statistical Classifiers.
J. Artif. Intell. Res.(JAIR) 26, 101–126 (2006)

4. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A. Y.: Self-taught learning: transfer
learning from unlabeled data. In Proc. (ICML) ACM Conference on, pp. 759–766,
(2007)

5. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.: Gradient-based learning applied
to document recognition. In: proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324
(1998)

6. G. E. Hinton and S. Osindero and Y. Teh.: ”A fast learning algorithm for deep belief
nets”. The Journal of Neural computation, n.. 7, pp. 1527–1554 (2006)

7. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked de-
noising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res.,vol. 11, pp. 3371–3408, (2010).

8. Bengio, Yoshua, et al. ”Towards Biologically Plausible Deep Learning.” arXiv
preprint arXiv:1502.04156 (2015).

9. Kandaswamy, Chetak, Lúıs Silva, Lúıs. Alexandre, Ricardo Sousa, J. M. Santos,
and J. Marques de Sá. Improving Transfer Learning Accuracy by Reusing Stacked
Denoising Autoencoders.Systems Man and Cybernetics, IEEE Conference on. IEEE,
(2014)

10. Kandaswamy, Chetak., Lúıs Silva, Lus Alexandre, J. Marques Sá, and J. M. San-
tos.: Improving Deep Neural Network Performance by Reusing Features Trained
with Transductive Transference. In Proc. of the 24th International Conference on
Artificial Neural Networks (2014)

11. Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson. ”How transferable are
features in deep neural networks?.” In Advances in Neural Information Processing
Systems, pp. 3320-3328. (2014)

12. Kandaswamy, Chetak., Lúıs Silva, and Jaime S. Cardoso.: Source-Target-Source
Classification using Stacked Denoising Autoencoders. In Proc. of the 7th Iberian
Conference on Pattern Recognition and Image Analysis, Santiago de Compostela,
Spain. June (2015)

13. Razavian, Ali Sharif, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
CNN Features off-the-shelf: an Astounding Baseline for Recognition. In Computer
Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on,
pp. 512-519. IEEE, (2014)

14. Deng, Li, and John C. Platt. ”Ensemble deep learning for speech recognition.”
Proceedings of the Annual Conference of International Speech Communication As-
sociation (INTERSPEECH). (2014)

15. Abdullah, Azizi, Remco C. Veltkamp, and Marco A. Wiering. An ensemble of deep
support vector machines for image categorization. In Soft Computing and Pattern
Recognition. SOCPAR’09. International Conference of, pp. 301-306. IEEE, (2009)

16. Ciresan, Dan, Ueli Meier, and Jürgen Schmidhuber.: Multi-column deep neural net-
works for image classification. Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on. IEEE, (2012)

17. Lin, Jianhua. ”Divergence measures based on the Shannon entropy”, In IEEE
Transactions on Information Theory, vol 37, pg 145–151, (1991)

XIV

18. Ljosa, Vebjorn, Katherine L. Sokolnicki, and Anne E. Carpenter.: Annotated high-
throughput microscopy image sets for validation. Nat Methods, 9.7 (2012): 637.

19. Ljosa, Vebjorn, et al.: Comparison of methods for image-based profiling of cellu-
lar morphological responses to small-molecule treatment. Journal of biomolecular
screening, (2013)

20. L.I. Kuncheva.Combining Pattern Classifiers: Methods and Algorithms. Wiley
Press, 2004

