
Source-Target-Source Classification using
Stacked Denoising Autoencoders

Chetak Kandaswamy123 ?, Lúıs M. Silva24, and Jaime S. Cardoso3

1 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
2 INEB - Instituto de Engenharia Biomédica, Portugal

3 INESC TEC and Faculdade de Engenharia, Universidade do Porto, Portugal
4 Departamento de Matemática, Universidade de Aveiro, Portugal

Abstract. Deep Transfer Learning (DTL) emerged as a new paradigm
in machine learning in which a deep model is trained on a source task
and the knowledge acquired is then totally or partially transferred to
help in solving a target task. Even though DTL offers a greater flexi-
bility in extracting high-level features and enabling feature transference
from a source to a target task, the DTL solution might get stuck at lo-
cal minima leading to performance degradation-negative transference-,
similar to what happens in the classical machine learning approach. In
this paper, we propose the Source-Target-Source (STS) methodology to
reduce the impact of negative transference, by iteratively switching be-
tween source and target tasks in the training process. The results show
the effectiveness of such approach.

Keywords: Deep Neural Network, Transfer Learning, Optimization

1 Introduction

Transfer learning is an approach in which the knowledge acquired by a machine
trained to solve a task is applied with minor modifications to solve a new target
task without having to follow the whole training procedure. It is anticipated that
new tasks and concepts are learned more quickly and accurately by exploiting
past knowledge. In the past, a variety of transfer learning tasks have been in-
vestigated, including lifelong learning [1], multi-task learning [2], cross-domain
learning [3], self-taught learning [4], and deep transfer learning (DTL)[5] [8] to
name a few. We investigate the DTL approach proven to be successful in ob-
ject recognition and image recognition problems using a layer-by-layer feature
transference on large-scale data in either a supervised [5] or a unsupervised [6]
setting.

All these methods have shown that there is a limitation on choosing the
source problem that would offer good features to solve the new target problem.

? This work was financed by FEDER funds through the Programa Operacional Fac-
tores de Competitividade COMPETE and by Portuguese funds through FCT
Fundação para a Ciência e a Tecnologia in the framework of the project PTDC/EIA-
EIA/119004/2010. We thank Faculdade de Engenharia, Universidade do Porto.



II

Even though the problem existed for more than a decade, very few viable solu-
tions have appeared to deal with the problem of negative transference, that is
when the knowledge leads to a lower performance on the target problem than
the no-transference approach. In the case of neural networks, negative transfer-
ence occurs due to two reasons: 1) specialization of higher layer neurons to the
source problem [7] and 2) fragile co-adaptation of neurons is broken by splitting
of transferred layer and randomly initialized layer leads to difficulty in optimiza-
tion [8]. It is observed either of these two reasons may dominate, depending on
whether features are transferred from the bottom, middle, or top of the network.
It is observed that the bottom-layer features are standard [7] [8] regardless of
the cost function or dataset used, called as general, similarly the top-layer fea-
tures depend greatly on the chosen dataset and task, called as specific. We may
therefore pose the following questions:

– If feature transference is performed, should we transfer general or specific
features?

– If feature transference is performed, can we avoid or minimize negative fea-
ture transference?

Generally problems change with environment, thus providing only a few training
observations to solve the problem. In this paper, we analyse such questions and
propose the Source-Target-Source (STS) approach and study the performance
STS for two cases: 1) using a few number of examples, and 2) using complete
data. As we will see, STS not only effectively reduces the issue of negative trans-
ference as well as improves performance over the positive transference situations.

2 Baseline, Transfer learning and STS approaches

Let’s represent a dataset by a set of tuples D = (xn, yn) ∈ X × Y , where X
is the input space and Y is a set of labels. Assume that the n instances are
drawn by a sampling process from the input space X with a certain probability
distribution P (X). The dataset is split into subsets of training, validation and
test sets, D = {(xn, yn) , (xv, yv) , (xm, ym)} drawn from the same distribution
P (X). We assume that the “source” dataset DS with input space XS and a set
of labels YS is drawn from a distribution PS (X) and “target” dataset DT with
input space XT and a set of labels YT is drawn from a distribution PT (X). Such
PS (X) and PT (X) may be equal or different.

Baseline (BL): Stacked Denoising Autoencoders (SDA) are multiple layer
networks where each one is trained as a denoising autoencoders (dA) (see Fig.
1- BL). SDA training comprises of two stages: an unsupervised pre-training
stage followed by a supervised fine-tuning stage. During pre-training (PT), the
network is generated by stacking multiple dA one on top of each other thus
learning unsupervised features, represented as a vector U(w) of optimal weights
and biases. Then a logistic regression layer is added on top and the whole network
is fine-tuned (FT) in a supervised way. Thus learning supervised features w =
(w1, ..., wK), where K is the number of layers.



III

Fig. 1: A pictorial representation of approaches: Pre-training (PT), Baseline (BL),
Combined Baseline (cBL), TL unsupervised (TLu),and TL supervised (TLs).

Combine Baseline (cBL): Given DS and DT , a cBL classifier is any func-
tion g(x) that is trained from a random combination of instances from xS ∈ XS

and xT ∈ XT and then training the SDA to solve for target task YT .
Transfer learning (TL): We first train the source network with source

data DS and YS and then copy its hidden layers to the target network. In case
YS 6= YT , then we add a classifier layer randomly initialized. The network is
trained towards the target task YT . We have a choice to fine-tune this entire
network wT as a multi-layer perceptron using back-propagation or lock a layer,
meaning the transferred feature from source network w1

S ⇒ w1
T do not change

during the error propagation for the target task. This opens up several possible
approaches to solve a problem as shown in the Fig 1 TLu and TLs, where
the layers are optionally locked or unlocked. This causes fragile co-adaptation of
neurons between layers leading to optimization difficulties. The choice of whether
or not to fine-tune the first layer of the target network or not depends on the size
of the target dataset and number of parameters [6]. When the performance of the
newly trained target network exceeds the performance of the baseline approach
we have positive transference; otherwise we have negative transference.

Transfer learning unsupervised (TLu): We transfer the unsupervised
features of the SDA model from the source to the target network, i.e., U(wS)⇒
wT as depicted in Fig. 1 TLu. Once the features are transferred to the target
network, we add a logistic regression layer for the target task YT . Then we
fine-tune the entire classifier like a regular multi-layer perceptron with back-
propagation choosing to lock or unlock certain layer to solve the target task.

Transfer learning supervised (TLs): This is same as supervised layer
based approach (SSDA) [7] where we train on the network with BL approach
and then we transfer features from source to target network. By selecting to lock
or unlock certain layer to solve the target task as illustrated in Fig. 1 TLs.

2.1 Source-Target-Source framework

In this paper we propose a STS approach 5. The main idea of transfer learning is
that the knowledge (features) learnt in a source domain provide a good initializa-

5 The naming ‘source’ and ‘target’ is some what misleading in our learning framework.



IV

Algorithm 1 Pseudocode for STS
1: Initialize with trained features DT :
2: Two datasets DS and DT , with tasks YS and

YT are drawn from PS and PT distributions.
3: Select DS dataset to train
4: baseline: train network A as shown in the

baseline approach
5: Set value to max cycles
6: list of max cycles errors to zero
7: for M in max cycles do
8: transfer: transfer features from network

A to new network B as shown in the trans-
fer learning approach

9: update errors list with best test error
10: if cycle = odd number then
11: STS M = test error for Dataset DS

12: else
13: STS M = test error for Dataset DT

14: end if
15: if error < avg(errors list) then
16: BREAK
17: end if
18: Switch between dataset DS and DT

19: end for

tion for the learning task in a target problem, better than starting the learning
in the target domain at random (likely to get stuck in a poor local optimum).
In here we propose to iterate the learning between both domains. The intuition
is that, like in typical metaheuristics in optimization (i.e. tabu search and simu-
lated annealing), moving the learning from one domain to the other will ‘shake’
the current local optimal solution, allowing us to keep exploring the space of
solutions (ideally, allowing us to reach a better solution in the process). Likewise
the metaheuristics in optimization, we keep track of the solutions reached in
each iteration, and the outputted solution is the best of all. The pseudo-code for
the STS process is listed in Algorithm 1.

Evaluation: We are interested in measuring the improvement using the
transferred features over random initialization. We use relative improvement
as a measure for comparing the performance of baseline over transfer approach.

relative improvement = Baseline Avg. error rate−compared method Avg. error rate
Baseline Avg. error rate

3 Experimental Setup and Results

We evaluate the framework in two different settings for the character recogni-
tion task: We use the MNIST dataset PL which has 60,000 training and 10,000
testing instances with labeled hand-written digits from 0 to 9. Additionally, the
Chars74k dataset was modified to obtain Lowercase dataset PLC labelled low-
ercase letters from a-to-z and, the Uppercase dataset PUC labelled uppercase
letters from A-to-Z. Both lowercase and uppercase dataset have 19,812 training
and 6,604 testing instances.

For object recognition tasks: We generated three shapes datasets each with
6,000 training and 14,000 testing instances. First, the canonical dataset PSh1

have canonical objects, i.e., equilateral triangle, circle and square. Second, the
non-canonical dataset PSh2 have non-canonical objects, i.e., triangle, ellipse and
rectangles. Finally, the curve Vs. corner dataset PSh3 have objects shapes with
a curved surface or a corner. All the datasets6 used in our experiments have
images with 28 x 28 pixels and a sample of each dataset are shown in Fig 2.

6 We would like to acknowledge researchers making available their datasets, Center
for Neural Science, New York University for MNIST; Microsoft Research India for
Chars74k; and LISA labs, University of Montreal, Canada for BabyAI shapes.



V

Fig. 2: Samples from character recognition tasks: (a) digits PL, (b) lowercase PLC

and, (c) uppercase PUC ; Samples from shape recognition tasks: (d) Canonical Psh1, (e)
Non-Canonical Psh2 and (f) curve Vs. corner Psh3

Training Deep Neural Network: The network we used in character recog-
nition experiments had three hidden layers with [576, 400, 256] units i.e., and
the networks used in object recognition experiments also had three hidden layers
with [100, 200, 300] units, in order of [bottom, middle, top] respectively. Both
networks have an output layer appropriate to the number of classes being consid-
ered. All hidden layers were pre-trained as denoising autoencoders via gradient
descent, using the cross-entropy cost and a learning rate of 0.001. Pre-training
ran for a minimum of 50 epochs in the case of character recognition tasks, and
for a minimum of 60 epoch when using object recognition tasks. The complete
networks were fine-tuned via gradient descent, using the cross-entropy cost and
a learning rate of 0.1. The fine-tuning ran until the validation error did not de-
crease below 0.1% or until 1000 epochs for all tasks. Our code for experiments
was based on the Theano library 6 and ran with the help of a GTX 770 GPU.

3.1 Transferring specific Vs. generic for STS approach

In this experiment, we intentionally set adverse configurations for feature trans-
ference, to study the two main causes of negative feature transference. First, by
transferring specific features on tasks that are different, YS 6= YT we focus on
feature specialization in tasks 1 to 4 as listed in Table 1. Second, by transfer-
ring generic features on distribution that are similar, we focus on splitting of
co-adapted neurons between layers in tasks 5 & 6 in Table 1. Here we study the
effects of negative feature transference problems with few training samples.

First, we study the effects of transferring specific features on character recog-
nition problem. In Table 1 for TLu and TLs approach, tasks 1 & 2 shown negative
transference for classifying handwritten digits PL by reusing source network PLC

and PUC . Tasks 3 & 4 show positive transference for classifying either PLC and
PUC by reusing source network PL training on complete data. Using STS we
observe for tasks 1 to 4 outperforms other approaches for few target samples. In
tasks 1 & 2 on STS outperforms BL approaches with a relative improvement of
≈59% and in tasks 3 & 4 on STS shows ≈30% improvement for 0.05% of target
data. Fig 4. illustrates the relative improvement performance of BL, TLu, TLs
and STS approaches for the tasks 1 & 2.

Second, tasks 5 & 6 analyse the effects of transferring generic features on
object recognition problem as shown in Table 1. Intuitively canonical objects
belong to a subset of non-canonical objects (equilateral triangles belong to a



VI

Table 1: Comparison of percentage average error rate (ε) for BL, cBL, TLu, TLs and
STS approach for different ratios of target data (PT ) reusing source (PS) distribution.
Tasks 1 to 4 study specific feature transfer on character recognition problem and tasks
5 & 6 study generic feature transfer on object recognition problem.

Approach Ratio of total number of training samples

PT PS 0.05 0.1 0.2 0.3 0.4 0.5 1 #

C
h
a
ra

ct
er

s

T
a
sk

s
a
re

d
iff

er
en

t

BL PL 6.4 (0.1) 4.7 (0.1) 3.3 (0.1) 2.7 (0.2) 2.3 (0.0) 2.3 (0.4) 1.5 (0.1)

TLu PL PLC 7.4 (0.2) 5.3 (0.1) 3.8 (0.2) 3.5 (0.7) 2.7 (0.2) 2.5 (0.2) 2.3 (0.0) 1

TLs PL PLC 7.4 (0.1) 5.8 (0.2) 4.6 (0.2) 3.7 (0.0) 3.2 (0.2) 2.9 (0.1) 2.1 (0.1)
STS PL PLC 2.6 (0.1) 2.1 (0.0) 2.0 (0.1) 1.9 (0.1) 1.8 (0.0) 1.7 (0.1) 1.5 (0.0)
BL PL 6.4 (0.1) 4.7 (0.1) 3.3 (0.1) 2.7 (0.2) 2.3 (0.0) 2.3 (0.4) 1.5 (0.1)

TLu PL PUC 7.4 (0.3) 5.6 (0.6) 4.0 (0.2) 3.1 (0.1) 2.8 (0.2) 3.0 (0.5) 2.1 (0.3) 2

TLs PL PUC 7.6 (0.3) 5.8 (0.2) 4.4 (0.2) 3.5 (0.0) 3.1 (0.0) 2.7 (0.0) 2.0 (0.1)
STS PL PUC 2.4 (0.0) 2.2 (0.2) 1.9 (0.0) 1.7 (0.1) 1.7 (0.1) 1.6 (0.1) 1.5 (0.0)
BL PLC 17.1 (0.1) 13.3 (0.2) 10.8 (0.1) 9.5 (0.1) 8.4 (0.1) 7.7 (0.6) 4.8 (0.1)

TLu PLC PL 17.1 (0.6) 13.8 (0.6) 10.9 (0.2) 9.2 (0.4) 8.2 (0.4) 7.2 (0.2) 4.7 (0.2) 3

TLs PLC PL 18.9 (0.2) 14.6 (0.8) 11.3 (0.2) 9.6 (0.2) 8.7 (0.4) 7.5 (0.2) 5.3 (0.3)
STS PLC PL 12.3 (0.3) 9.7 (0.0) 8.5 (0.6) 7.2 (0.4) 6.7 (0.2) 6.0 (0.1) 5.0 (0.2)
BL PUC 16.2 (0.2) 12.9 (0.2) 10.4 (0.2) 9.1 (0.1) 8.5 (0.7) 7.3 (0.5) 4.9 (0.2)

TLu PUC PL 15.9 (0.3) 13.2 (0.4) 10.8 (0.3) 9.1 (0.3) 8.0 (0.1) 7.4 (0.3) 4.6 (0.1) 4

TLs PUC PL 16.5 (0.3) 13.6 (0.5) 10.8 (0.2) 9.2 (0.2) 8.5 (0.2) 7.4 (0.1) 5.0 (0.2)
STS PUC PL 10.8 (0.4) 9.1 (0.1) 7.8 (0.2) 6.8 (0.1) 6.6 (0.1) 6.1 (0.1) 4.7 (0.1)

O
b

je
ct

s

T
a
sk

s
a
re

si
m

il
a
r BL PSh2 37.9 (10.2) 36.6 (4.8) 25.1 (3.6) 16.9 (9.6) 14.7 (7.8) 11.9 (7.1) 4.2 (2.3)

cBL PSh2 PSh1 28.7 (6.3) 13.6 (2.2) 12.6 (10.4) 9.9 (8.0) 6.6 (3.0) 13.0 (8.4) 10.6 (6.7) 5

TLs PSh2 PSh1 32.3 (2.3) 32.0 (3.3) 30.7 (4.1) 26.9 (1.7) 26.4 (1.9) 27.0 (1.3) 24.0 (0.3)
STS PSh2 PSh1 7.7 (2.6) 6.2 (2.4) 5.9 (3.5) 5.4 (3.1) 5.3 (2.6) 5.0 (3.0) 5.2 (2.2)
BL PSh2 37.9 (10.2) 36.6 (4.8) 25.1 (3.6) 16.9 (9.6) 14.7 (7.8) 11.9 (7.1) 4.2 (2.3)

cBL PSh2 PSh3 31.0 (1.8) 30.5 (8.8) 18.4 (11.3) 20.0 (11.2) 5.6 (1.7) 12.4 (7.6) 8.9 (6.6) 6

TLs PSh2 PSh3 25.0 (3.3) 20.7 (1.8) 18.4 (2.0) 18.4 (1.1) 16.8 (1.8) 17.2 (1.7) 15.5 (2.5)
STS PSh2 PSh3 6.1 (2.3) 5.9 (2.7) 5.8 (2.6) 4.9 (2.1) 5.0 (2.2) 5.7 (3.0) 5.6 (2.6)

subset of triangles), thus PSh1 ∈ PSh2 and also number of categories to classify
in source and target tasks are equal YS = YT . Thus the only change are due
to splitting of co-adapted neurons between the layers while fine-tuning. As we
have forced to lock the bottom layer, making the optimization harder. cBL, TLu
and TLs approaches show negative transference as intended. As solving non-
canonical objects is more difficult than solving canonical objects [7]. Using STS
approach we observe a relative improvement of ≈81% for the same task using
0.05% of total training data, and baseline approach performs better when using
complete training data. Fig 3. shows the non-canonical task features for BL,
cBL, TL and STS approach using 0.05% of total training data.

To solve for complete target data using STS, we implement repeating several
cycles of STS (see Algorithm 1) till a certain stop criteria is reached. we observe
significant improvements using STS over both positive and negative transferred
features using TLs as listed in Table 2.

4 Conclusions and discussion

Our experiments with the character and object recognition tasks show a deep
neural network learns new task more quickly and accurately using transfer learn-



VII

Fig. 3: Feature samples from first layer of non-canonical object recognition task. We
observe the transition of same features becoming more distinct, from BL towards STS
approach are marked in red circle and from TLs towards STS marked in blue box.

Fig. 4: (Left:) Relative improvement over baseline approach for character recognition
tasks 3 & 4 as listed in Table 1; (Right:) Relative improvement for the tasks on the
left, the regions are enclosed to observe relative improvement between two different
approaches. We observe negative transference for TLs (supervised) approach as it gets
stuck at local solution space of specialized features. TLu (unsupervised) approach eas-
ily recovers the fragile co-adapted neurons as the unsupervised features are not target
specific. Also TLu improves over the baseline for complete training data. STS approach
as intended shake the current local optimal solution, thus overcoming the specialized
features of source network unlike TLs approach. The STS shows performance improve-
ment, but unable to recover the fragile co-adapted neurons thus using complete target
data, had lower performance than TLu and baseline.

Table 2: Comparison of positive vs. negative transference using complete target data
and retraining all layers; Performance is measured using percent average test error (ε)
with 10 repetitions; TLs shows positive transference for classifying MNIST PL reusing
Lowercase PLC same as Task 1. And negative transference for classifying PLC reusing
PL, same as Task 3. In both cases iteratively repeating STS outperforms both BL and
TLs approaches.

Iterative STS -ve transference +ve transference
DB DA ε DB DA ε

BL DA PLC PL 1.7 (0.3) PL PLC 4.9 (0.2)
TLs DB ⇒ DA PLC PL 1.9 (0.2) PL PLC 4.5 (0.2)

STS1 DA ⇒ DB ⇒ DA PLC PL 1.6 (0.1) PL PLC 4.9 (0.1)
STS2 DB ⇒ DA ⇒ DB ⇒ DA PLC PL 1.9 (0.1) PL PLC 4.4 (0.2)
STS3 DA ⇒ DB ⇒ DA ⇒ DB ⇒ DA PLC PL 1.6 (0.1) PL PLC 4.9 (0.1)
STS4 DB ⇒ DA ⇒ DB ⇒ DA ⇒ DB ⇒ DA PLC PL 1.9 (0.1) PL PLC 4.5 (0.2)
STS5 DA ⇒ DB ⇒ DA ⇒ DB ⇒ DA ⇒ DB ⇒ DA PLC PL 1.5 (0.1) PL PLC 5.0 (0.1)



VIII

ing approach. Unfortunately, they are unreliable for different source and target
distribution, because sometime they lead to negative feature transference. The
STS algorithm was designed to avoid negative transfer, by recovering fragile
co-adapted interactions of neurons between the layers. We make several con-
tributions as listed: 1. The STS approach outperform both baseline and trans-
fer learning approaches. 2. We observe TLu and TLs approach for transferring
generic features on distribution that are similar and transferring specific features
on tasks that are different to study the impact of splitting of co-adapted neurons.
3. Finally, using the cyclic STS approach reduced the transferability gap between
the source and the target tasks. We summarize that the STS outperforms both
the baseline and the transfer learning approaches.

Even though the cyclic STS reduced the transferability gap between the
source and the target tasks. A pattern is observed when the initial transference
was negative. In negative transference case of cyclic STS, we observe odd cycles
perform better than even cycles. Iteratively switching the training between the
source and the target did not sufficiently perturb the solution out of local minima
to a new solution space. We would like to explore this issue by repeating the
transference several times and train the network to jump to a new solution space
to obtain good generalization. Also exploring the possibility of using multiple
source problem to obtain diverse and generic features.

References

1. Thrun, Sebastian.: Learning to learn: Introduction. In Learning To Learn. (1996)
2. Caruana, R:. Multitask learning. Machine Learning. 28(1), 4175 (1997)
3. Daumé III, Hal, and Daniel Marcu.: Domain Adaptation for Statistical Classifiers.

J. Artif. Intell. Res.(JAIR) 26, 101–126 (2006)
4. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A. Y.: Self-taught learning: transfer

learning from unlabeled data. In Proc. (ICML) ACM Conference on, (2007)
5. Ciresan, Dan, Ueli Meier, and Jürgen Schmidhuber.: Multi-column deep neural net-

works for image classification. Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on. IEEE, (2012)

6. Kandaswamy, Chetak., Lúıs Silva, Lúıs Alexandre, J. Marques Sá, and J. M. San-
tos.: Improving Deep Neural Network Performance by Reusing Features Trained
with Transductive Transference. In Proc. of the 24th International Conference on
Artificial Neural Networks (2014)

7. Kandaswamy, Chetak, Lúıs Silva, Lúıs. Alexandre, Ricardo Sousa, J. M. Santos,
and J. Marques de Sá. Improving Transfer Learning Accuracy by Reusing Stacked
Denoising Autoencoders. SMC, IEEE Conference on. IEEE, (2014)

8. Yosinski, Jason, et al.: How transferable are features in deep neural networks?.
Advances in Neural Information Processing Systems, (2014)


