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Abstract. Binary decision trees based on univariate splits have traditionally
employed so-called impurity functions as a means of searching for the best
node splits. Such functions use estimates of the class distributions. In the pre-
sent paper we introduce a new concept to binary tree design: instead of working
with the class distributions of the data we work directly with the distribution of
the errors originated by the node splits. Concretely, we search for the best splits
using a minimum entropy-of-error (MEE) strategy. This strategy has recently
been applied in other areas (e.g. regression, clustering, blind source separation,
neural network training) with success. We show that MEE trees are capable of
producing good results with often simpler trees, have interesting generalization
properties and in the many experiments we have performed they could be used
without pruning.

Keywords: decision trees, entropy-of-error, node split criteria.

1 Introduction

Decision trees are mathematical devices largely applied to data classification tasks,
namely in data mining. The main advantageous features of decision trees are the se-
mantic interpretation that is often possible to assign to decision rules at each tree node
(a relevant aspect e.g. in medical applications) and to a certain extent their fast com-
putation (rendering them attractive in data mining applications).

We only consider decision trees for classification tasks (although they may also be
used for regression). Formally, in classification tasks one is given a dataset X as an
nxf data (pattern feature) matrix, where n is the number of cases and fis the number
of features (predictors) and a target (class) vector T coding in some convenient way
the class membership of each case x;, @; = axXx;), j=1,...,c, where c is the number
of classes and @is the class assignment function of X into Q ={@;}. The tree deci-
sion rules also produce class labels, y(x;) e Q.

In automatic design of decision trees one usually attempts to devise a feature-based
partition rule of any subset L < X, associated to a tree node, in order to produce m
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subsets L; < L with “minimum disorder” relative to some m-partition of (2, ideally! ~ recent
with cases from a single class only. For that purpose, given a set L with distribution off separd
the partitioned classes P(w; | L), i=1,...,m, it is convenient to define a so-called trainit
impurity (disorder) function, ¢(L)= ¢(P((01 tL),..., P(w, IL)), with the followi f Th
properties: a) ¢ achieves its maximum at (1/m, 1/m,..., 1/m); b) @ achieves its minj. % mente
mum at (1,0,...,0), (0,1,...,0),...,(0,0,...,1); ¢) @is symmetric. & prese
We only consider univariate decision rules, y j(x;)relative to two-class partitiong fssue
(m=2), also known as Stoller splits (see [3] for a detailed analysis), which may he § in se¢
stated as step functions: x; <Ay j(xi)=ay; @, otherwise (x; is one of the x, A
features). The corresponding trees are binary trees. For this setting many impurity § 21
functions have been proposed with two of them being highly popularized in praised & ;
algorithms: the Gini Index (GI) applied in the well-known CART algorithm pioneered  In ac
by Breiman and co-workers [2], and the Information Gain (/G) applied in the equally .i  dictc
well-known algorithms ID3 and C4.5 developed by Quinlan [7, 8]. 3 " We
The GI function for two-class splits of a set L is defined in terms of for )
#(L) = g(L)=1-32_ P*(w; IL)e [0,05]; T
e; =
namely, GI,,(L)= g(L)~¥2, P(L; 1L)g, (L; I L) | f:l‘;
In other words, GI depends on the average of the impurities 8y(L;) of the descend- :
ing nodes L; of L produced by rule y. Since g(L) doesn’t depend on y, the CART rule
of choosing the feature which maximizes GI y(L) is equivalent to minimizing the §
average impurity. 3 wh
The /G function is one of many information theoretic measures that can be applied 3§ tra
as impurity functions. Concretely, it is defined in terms of the average of the Shannon he
entropies (informations) of the descending nodes of node set L: S ful
IG , (L) = info(L)~ 37 P(L; | Linfo , (L; 1 L) -
with @(L) = info(L)=~32_, P(ay, | L)In P, 1 L)e [0, In(2)] o

Again, maximizing G is the same as minimizing the average Shannon entropy (thdf E
average disorder) of the descending nodes. In ID3 and C4.5 log, is used instead of In -
but this is inessential. Also many other definitions of entropy were proposed as alter- &
natives to the classical Shannon definition; their benefits remain unclear. k.

A fundamental aspect of these impurity measures is that they all are defined in
terms of the probability mass functions of the class assignments Py | L) and node 8
prevalences P(L; | L). The algorithms use the corresponding empirical estimates. E

The present paper introduces a completely different “impurity” measure. One that 8
does not directly depend on the class distribution of a node, Plawy, | L), and the preva- |
lences P(L; | L), but instead it solely depends on the etrors produced by the decision rule:

ei = o{x;)-y(x;),
with convenient numerical coding of @(x;) and y(x).

We then apply as “impurity” measure to be minimized at each node the Shannon
entropy of the errors e;. This Minimum Entropy-of-Error (MEE) principle has in

si
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t years been used with success in many different areas (regression, blind source
Jtion, clustering, etc.); it has also been applied with success in neural network
ng for data classification (see e.g. [10]).

The present paper describes in section 2 how MEE decision trees can be imple-
nted and how they perform in several real-world datasets in section 3. We also
at a comparison of MEE and /G behaviors in section 4 and discuss the pruning
. in section 5. Finally we draw some conclusions and present future perspectives

The MEE Approach

accordance with [9] we consider x;; € R (i.e. we do not consider categorical pre-
ctors), and at each node we assign a code t e {-1, 1} to the each candidate class ).
e thus have: t =1 o(x)) =w;; t= -1, a(x;) = Ej (¢t meaning f(a(x;)). Likewise
for y{x:)-

" The support of the error random variable E, associated to the errors
= t(ehx; ))—-t(y(x,' ) is therefore {-2, 0, 2}, with: O corresponding to a correct
decision; 2 to a misclassification when x; class is the candidate class and the splitting
ule produces the complement; and -2 the other way around.

The splitting criterion is based on the Shannon entropy of E:

H,(E\L)=-[PInP+PInPy+PFln ple 0. 1m@3)),

where P, = P(E =-2), Py = P(E=12) and Py = P(E =0)=1- P, - P,. Note that con-
trary to what happened with GI, IG (and other divulged impurity measures) there is
here no room for left and right node impurities and subsequent average. One single

function does it all.

Ideally, in the case of a perfect split, the error probability mass function is a Dirac
function; i.e., the “errors” are concentrated at zero. Minimizing H, corresponds to
constraining the probability mass function of the errors to be as narrow as possible

and usually around zero.
The main algorithmic operations for growing a MEE tree are simple enough and
similar to what is done with other impurity measures:

1. At each tree node we are given an nxf feature matrix X and an nxm class ma-
trix T (filled with -1, 1).
2. The error probabilities are estimated using:
P2 = an_l /n; P_2 = (l—p) n_l’l /n; PO =1—P2 —P_2

with n, , meaning the number of cases classified as £’ and p=ng, /n the preva-
lence of the candidate class @.
3. A univariate split y is searched for in the fxm space minimizing H,.
4. If a stopping criterion is not satisfied the corresponding left and right node
sets are generated and steps 1 through 3 are iterated.

Figure 1 illustrates two entropy-of—error curves relative to the Breast Tissue dataset
presented later. In Figure la there is a clear class separation: the entropy curve is of
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Fig. 2. Tree structure for the Ecoli4 dataset (see below) showing 2-class combinations

3 Application to Real-World Datasets

The MEE algorithm was applied to the datasets presented in Table 1 and its results
confronted with those obtained with the CART algorithm implemented by Statistica
(StatSoft, Inc.) and the C4.5 implemented by Weka (open source software).

Table 1. Datasets (main characteristics)

Breast (a) Breast4 Olive Ecoli Ecoli4 ImSeg  Glass

(a) (b) (©) (©) (©) (©)
No. cases 106 106 572 327 327 2310 214
No. features 9 9 8 5 5 18 9
No. classes 6 4 9 5 4 7 6
(a) “Breast Tissue” dataset described in [6]. Breast4 is Breast reduced to 4 classes: merging

{fad,mas,gla}.

(b) “Olive Oils” dataset described in [4].

(¢) “E-coli”, “Image Segmentation” and “Glass” datasets described in [1]. We removed
classes omL, imL and im$ from E-coli because they have a low number of cases (resp., 5,
2, 2). Ecoli4 is Ecoli reduced to 4 classes: merging (im, imU}.

All algorithms used unit misclassification costs (i.e., tree costs are misclassification
rates). CART and C4.5 used, as is common practice, the so-called midpoint splits:
candidate split points lie midway of feature points. In our algorithm we kept the origi-
nal feature values as split candidate points.

CART was applied with the Gini criterion an cost-complexity pruning [2]. Weka
C4.5 applied a postpruning scheme. The MEE algorithm was applied without pruning
(justification below).

We applied cross-validation procedures to all datasets, namely leave-one-out with
C4.5 and MEE and 25-fold cross-validation to CART (the leave-one-out method
wasn’t available for CART). Confusion matrices and estimates of the probability of
error were computed as well as statistics regarding the tree size (number of nodes).

Table 2 shows the mean error rate and standard deviation (between brackets) for
the cross-validation experiments. For the Breast and Ecoli datasets the errors for some
classes were always quite high (also found with other classification methods). This
led us to merge the poorly classified classes setting up the Breast4 and Ecoli4 datasets
(see Table 1).
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Table 2. Comparative table of results with mean (std) in cross-validation experime

Breast Breast4 Olive Ecoli Ecoli4 Imseg

CART 03679 01698  0.0962 02049  0.1040 00675 (373

0.047)  (0.036)  (0.012)  (0.022)  (0017)  (0.005) (0,03

cas 03396 01226 00979 00743 01498  0.0290 (.39

' (0.046)  (0.032)  (0.012) (0.021) (0.020)  (0.003) -
vEg 03679 00943 01031 02110 01070  0.1182

0.047) (0.028) (0.013) (0.023) (0.017) (0.012)

The three methods were compared using multiple comparison tests based ej
the Oneway Anova or the Kruskal-Wallis test according to the p-value of a var;
homogeneity test (p < 0.05 selects Kruskal-Wallis, otherwise selects Oneway Ap
Multiple comparison was performed at 5% significance level. In Table 2 the sis
cantly best results are printed bold and the significantly worst results are underling

4 MEE versus Information Gain

In order to compare both entropy-based criteria, MEE and IG, we generated two-c qg.
datasets with an equal number of points, n, represented by 2 features (x;, x2) with

Fig. 3. Comparing IG (top figures) and MEE (bottom figures) in the separation of balls from - v
crosses. IG prefers feature x; with 1G,,,=0.1639, whereas for x; 1G,,,=0.1325. MEE prefers
feature x, with MEE=0.4609, whereas no valid minimum is found for X|. .
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omly and uniformly distributed values in [0,1{. One of the features was then se-
-+ od according to MEE and to IG decision criteria.

“For n = 10 and several batches of 1000 repetitions of the experiment we found that
: average only 1% of the experiments where MEE found a solution that was differ-
ot from the IG solution. Moreover, we found that all differences between MEE and
~ were of the type illustrated in Figure 3. The error probability mass functions for
' jgure 3a (IG selects x,) and Figure 3d (MEE selects x,) are shown in Figure 4. From
b se figures one concludes that whereas MEE preferred a more “balanced” solution,
Fesembling a Dirac function at zero, IG emphasized the good classification of only
2 e of the two classes, even at the cost of increased errors of the other class.

0.8

0.7,

0.6

s

0.4

0.3

0.2

01

‘ Fig. 4. Probability mass functions of the errors corresponding to: a) Figure 3a (IG selects x;); b)
Figure 3d (MEE selects x,)

5 The Pruning Issue

Tree pruning is a means of obtaining simpler trees, i.e., simpler models, therefore
with better generalization capabilities. CART, C4.5 and other tree design methods
employ pruning techniques whenever some evidence of overfitting is found. The
MEE method has an important characteristic: it doesn’t attempt to find a split when-
ever the class distributions show a considerable degree of overlap. The quantifica-
tion on theoretical grounds of what “considerable” means isn’t easy. Taking into
account the results in [9] one may guess that whenever the distance of the class
means is below one pooled standard deviation the entropy-of-error curve will be
“concave” and no valid split under the MEE philosophy is found. We believe that
this characteristic is one of the reasons why the MEE algorithm always produced
smaller trees, on average, than those produced by C4.5 (no tree size statistics were
available for CART).

In our experiments MEE trees also showed a tendency to generalize better than
those produced by other methods, as measured by the difference between resubstitu-
tion estimates of the error rate and the cross-validation estimates with significantly
lower R=|mR —mCV|/§ , where my is the mean resubstitution error and mcy the
mean cross-validation error.
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Fig. 5. Mean (solid) and meantstd (dashed) of the training set error (black) and test set error '

(grey) in 50 experiments on trees designed with 80% of the cases (randomly drawn) and tested f
in the remaining cases k

We have also performed a large number of experiments with the MEE algorithm

designing the tree with 80% of randomly chosen cases and testing in the remaining $
20% cases, and plotted the mean and meantstandard deviation of the training and - &
test set error estimates along the tree level for 50 repetitions of each tree design. = 5
The results of Figure 5 clearly indicate the absence of overfitting. The same = 8
conclusion could be drawn in all experiments (over 20 for each dataset) we have ~ &8

carried out.

6 Conclusions

The basic rationale of the MEE approach is that it searches for splits concentrating the 37

error distribution at zero. For the classic approaches what the split is doing in terms of
the error distribution is unclear.
From the large number of experiments we carried out we conclude that possible

benefits of the MEE trees are the no need of applying a pruning operation and the ;_'-".-_

obtaining of more interesting splits corresponding to errors distributed in a more bal-

anced way as exemplified in section 4. This last aspect could be of interest for some
datasets. The results obtained with MEE trees applied to real-world datasets, de- ""
scribed in section 3, look quite encouraging especially taking into account that they

were obtained with the first version of the algorithm and that there is still much space -
for improvements.
Besides of introducing obvious improvements in the algorithm (e.g. using mid- -

point splits) we also intend to study in more detail the following issues: the turning = 4

point from “convex” to “concave” behavior of the empirical error distribution; the
stopping conditions of the algorithm; Generalization issues such as the evolution of
training and test errors with the number of cases. We also intend to study in a
comparative way the performance of MEE trees in a larger number of real-world
datasets.
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