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Entropy-based cost functions are enjoying a growing attractiveness in
unsupervised and supervised classification tasks. Better performances in
terms both of error rate and speed of convergence have been reported.
In this letter, we study the principle of error entropy minimization (EEM)
from a theoretical point of view. We use Shannon’s entropy and study
univariate data splitting in two-class problems. In this setting, the error
variable is a discrete random variable, leading to a not too complicated
mathematical analysis of the error entropy. We start by showing that for
uniformly distributed data, there is equivalence between the EEM split
and the optimal classifier. In a more general setting, we prove the nec-
essary conditions for this equivalence and show the existence of class
configurations where the optimal classifier corresponds to maximum
error entropy. The presented theoretical results provide practical guide-
lines that are illustrated with a set of experiments with both real and
simulated data sets, where the effectiveness of EEM is compared with
the usual mean square error minimization.
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1 Introduction

Entropy and related concepts of mutual information and Kulback-Leibler
divergence have been used in learning systems (supervised or unsu-
pervised) in several ways. The principle of minimum cross-entropy
enunciated by Kullback (1959) was introduced as a powerful tool to
build complete probability distributions when only partial knowledge is
available.

The maximization of mutual information between input and output
of a neural network (the Infomax principle) was introduced by Linsker
(1988) as an unsupervised method that can be applied, for example,
to feature extraction. Recently Principe, Xu, and Fisher (2000) proposed
new approaches to the application of entropic criteria to learning sys-
tems. In particular, they proposed the minimization of Rényi’s quadratic
entropy of the error for regression, time series prediction, and feature
extraction tasks (Erdogmus & Principe, 2000, 2002). The principle is as
follows. Having an adaptive system (e.g., a neural network) with output
variable Y and a target variable T , the error variable is measured as the
difference between the target and the output of the system, E = T − Y.
The minimization of error entropy implies a reduction on the expected
information contained in the error, which leads to the maximization of
the mutual information between the desired target and the system output
(Erdogmus & Principe, 2000). This means that the classifier is learning the
target variable.

Entropy-based cost functions, as functions of the probability density
functions, reflect the global behavior of the error distribution; therefore,
learning systems with entropic cost functions are expected to outperform
those that use the popular mean square error (MSE) rule, which reflects
only the second-order statistics of the error.

In this letter, we are concerned with the criterion of error entropy min-
imization (EEM) between the output of a classifier and the desired target.
Santos, Alexandre, and Marques de Sá (2004) and Santos, Marques de Sá,
Alexandre, and Sereno (2004) applied the EEM rule using Renyi’s quadratic
entropy to classification tasks, obtaining better results than with MSE rule.
Silva, Marques de Sá, and Alexandre (2005) have also proposed the use of
Shannon’s entropy with the EEM principle; the results were also better than
those obtained with MSE.

Despite the evidence provided by these experimental results, which sug-
gests that EEM is an interesting alternative to the MSE principle, very little
is known about the theoretical properties of EEM when applied to data
classification, in terms of convergence to the optimal classifier, as well as
whether Bayes error is attainable. This letter is meant as a contribution to
the theoretical study of the EEM principle, using Shannon’s entropy, in clas-
sification tasks. We analyze the case of univariate data splitting in two-class
problems. We will use Shannon’s formula (Shannon, 1948) for the entropy
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of a discrete random variable X, HX, taking N values with probability
pi

HX = −
N∑

i=1

pi log pi . (1.1)

Despite the simplicity of the univariate data splitting model, this analy-
sis will provide interesting insights and practical guidelines for the error
entropy minimization rule.

The organization of the letter is as follows: In section 2 we introduce the
univariate data splitting problem: In section 3 we analyze univariate EEM
splits in the case of uniformly distributed data and show their convergence
to the optimal classifier: In section 4 we present a more generalized analysis
of univariate EEM splits and show the existence of situations where the
optimal classifier corresponds to maximum error entropy. In section 5 we
illustrate with simulated and real data the presented theoretical results:
Finally, in section 6, we draw some conclusions and discuss future work.

2 The Univariate Split Problem

Let us consider the two-class classification problem with class-conditional
distributions given by Ft(x) = P(X ∈] − ∞, x]|T = t), t ∈ {−1, 1}, where X
and T are univariate input and target random variables, respectively, and
ft(x) the corresponding probability density functions (pdf). The simplest
possible linear discrimination rule corresponds to a classifier output, y, as

y = g(x) =
{

y′, x ≤ x′

−y′, x > x′ , (2.1)

where x′ is a data-splitting threshold and y′ ∈ {−1, 1} is a class label. The
theoretic optimal rule corresponds to a split point x∗ and class label y∗ such
that

(x∗, y∗) = arg min P(g(X) �= T) (2.2)

with minimum probability of error, P∗, given by

P∗ = inf{Iy′=−1(pF1(x′) + q (1 − F−1(x′)))

+ Iy′=1(p(1 − F1(x′)) + q F−1(x′))}, (2.3)

where p = P(T = 1) and q = P(T = −1) (the class priors). In equation 2.3,
the first term inside braces corresponds to the situation where P∗ is reached
when y′ = −1 is at the left of x′; the second term corresponds to swapping
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the class labels. A split given by (x∗, y∗) is called a theoretical Stoller split
(for details see Devroye, Gyorfi, & Lugosi, 1996).

We define the error variable E = T − Y, as the difference between the
target and the classifier’s output and notice that E ∈ {−2, 0, 2}1.

What does it mean to minimize the error entropy in this situation? Does
it also lead to the optimal solution for the class of linear threshold decision
rules represented by equation 2.1?

As we are dealing with a discrete random variable, entropy is a concave
function of the pi in equation 1.1 (Kapur, 1993), where each pi corresponds
to the probability of E taking one of the values {−2, 0, 2}. These are precisely
the probabilities of error Pt for each class t ∈ {−1, 1} and the probability of
correct classification 1 − ∑

t Pt . Denoting Ft(x′) simply as Ft and considering
from now on, without loss of generality, that y′ = −1, one has

P−1 = P(E = −2) = q (1 − F−1)

P1 = P(E = 2) = p F1

1 − P−1 − P1 = P(E = 0) = q F−1 + p (1 − F1). (2.4)

Thus, the discrete entropy is

HE = −[P−1 log P−1 + P1 log P1 + (1 − P−1 − P1) log (1 − P−1 − P1)].

(2.5)

In the following sections, we study the behavior of equation 2.5 as we
vary x′. Section 3 is devoted to the case of uniform distributions, and the
following sections consider the situation where the data distributions can
be described in terms of continuous class-conditional density functions,
where the following applies:

Theorem 1. For continuous class-conditional density functions f−1 and f1, the
Stoller split occurs at an intersection of either q f−1 with p f1 or at +∞ or −∞.

Proof. See section B.1.

3 EEM Splits for Uniform Distributions

Let us consider that the two classes have univariate uniform distributions,

f−1(x) = 1
b − a

I[a ,b](x) f1(x) = 1
d − c

I[c,d](x), (3.1)

1 E = −2 and E = 2 means a misclassification for class t = −1 and t = 1, respectively.
E = 0 means correct classification.
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Figure 1: Schematic drawing of the simple problem of setting x′ to classify two
uniform overlapped classes.

where I (x) is the indicator function. We first assume that the classes over-
lap, such that a < c ≤ b < d . Figure 1 depicts this situation in terms of the
density functions ft(x).

For this problem and making use of the formulas in equation 2.4, it is
straightforward to compute HE as in equation 2.5 for x′ varying on the real
line. Indeed, one has

HE (x′) =

−




q log q + 0 log 0 + p log p, x′ < a

q b−x′
b−a log

(
q b−x′

b−a

)
+ 0 log 0 +

(
q x′−a

b−a + p
)

log
(

q x′−a
b−a + p

)
, x′ ∈ [a , c[

q b−x′
b−a log

(
q b−x′

b−a

)
+ p x′−c

d−c log
(

p x′−c
d−c

)
+

(
q x′−a

b−a + p d−x′
d−c

)
log

(
q x′−a

b−a + p d−x′
d−c

)
, x′ ∈ [c, b[

0 log 0 + p x′−c
d−c log

(
p x′−c

d−c

)
+

(
q + p d−x′

d−c

)
log

(
q + p d−x′

d−c

)
, x′ ∈ [b, d[

0 log 0 + p log p + q log q , x′ ≥ d.

(3.2)

Figure 2 (dashed line) shows some examples for p = 1/2, [a , b] = [0, 1] and
different values of c and d .

First, one can see that although within each interval of x′ (corresponding
to the different cases above), HE is a concave function, as a whole HE is
not concave. Second, whenever the overlap is nondegenerate (all figures of
Figure 2 except 2c), we have two local minima located at the extremes of the
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Figure 2: Shannon entropy (dashed line) and probability of error (solid line)
plotted as functions of x′.

overlapped regions. A local maximum (global in some cases, as in Figure
2d), say, at x0, is located within the overlapped region. If we have equal
support for the two distributions (and equal priors), entropy is perfectly
symmetric at x0, and this is exactly the midpoint of the overlapped region
(see Figure 2a). In the other cases, we have a local and a global minimum,
and x0 is deviated toward the former. Let us now determine the probability
of error P for this example. Making use of the above expressions, we have

P(x′) = P−1(x′) + P1(x′) =




q , x′ < a

q
b − x′

b − a
, x′ ∈ [a , c[

q
b − x′

b − a
+ p

x′ − c
d − c

, x′ ∈ [c, b[

p
x′ − c
d − c

, x′ ∈ [b, d[

p, x′ ≥ d.

(3.3)
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Figure 3: (a) Contour lines of HE with a general path, Ppath, produced by P .
(b) P and HE plotted as functions of x′ for the path Ppath in (a).

Figure 2 (solid line) plots P as a function of x′ for the same values of
a , b, c, and d . One can see that the global minimum of the error entropy
corresponds to the theoretical Stoller split. In fact, for this problem, it also
corresponds to the optimal decision in the Bayes sense. If we take the special
case where b − a = d − c (see Figure 2a), using the minimum probability
of error criteria, we may locate x∗ anywhere in [c, b]; for entropy, it is
preferable to choose either x∗ = c or x∗ = b. The reason is that the choice
x∗ ∈]c, b[ increases the uncertainty or unstability of the system. At c or b,
E takes only two values of {−2, 0, 2}; otherwise, E can assume every value
in that set, which implies an increase in entropy. In other words, entropy
prefers to classify correctly one class and leave all the errors to the other one.

Figure 2 can be easily reproduced for unequal priors, where the general
behavior is the same. In fact, we can show that:

Theorem 2. Suppose we have two overlapped uniform distributions as in equa-
tion 3.1 such that a < c ≤ b < d . HE and P have the same global minimum.

Proof. Consider the P−1 × P1 plane. First, notice that a probability path,
Ppath, produced by P as in equation 3.3 is always composed by three linear
segments: two along the axes connected by the remaining one (in some
situations degenerated in one point). Second, notice that HE , as a function
of the probabilities, is concave and symmetric about the vertical plane
P−1 = P1. Therefore, the global minimum of HE always coincides with the
global minimum of the probability of error. The demonstration is illustrated
in Figure 3a, where the contour lines of HE are plotted as functions of P−1

and P1. The solid line represents Ppath (see Figure 3b plots P and HE as
functions of x′ for this path), and the dashed lines are contours of equal
probability.
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Figure 4: Stoller split problem for two univariate continuous distributions.

When we have separable classes, it is obvious that we should set x∗ any-
where in ]b, c[. The minimum entropy value (HE = 0) also occurs in that
interval because P(E = 0) = 1. Again we are led to the minimum probabil-
ity of error.

4 EEM Splits for Mutually Symmetric Distributions

4.1 Critical Points of the Error Entropy. Suppose the two classes Ct, t ∈
{−1, 1} are represented by arbitrary continuous pdf’s, ft(x). We define the
center at of a distribution as its median. Let us consider, without loss of
generality, that class C1 is centered at 0 and the center of class C−1 lies in the
nonpositive part of the real line. Figure 4 depicts this setting.

Theorem 3. In the univariate two-class problem, the Stoller split x∗ is a critical
point of the error entropy if the error probabilities of each class at x∗ are equal.

Proof. From formula 2.5, one derives

d H
dx′ = q f−1 log (P−1) − (q f−1 − p f1) log (1 − P−1 − P1) − p f1 log (P1) .

(4.1)
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A critical point (roots of first derivative) of H must satisfy

d H
dx′ = 0 ⇔ p

q
f1

f−1
= log(P−1/(1 − P−1 − P1))

log(P1/(1 − P−1 − P1))
. (4.2)

If the densities are continuous, the Stoller split x∗ is obtained either at a p f1

versus q f−1 intersection p f1(x∗) = q f−1(x∗) or at +∞ or -∞ (see theorem 1).
In the last case, the error probabilities of each class are unequal. In the first
case, we have, from equation 4.2,

p f1(x∗) = q f−1(x∗) ⇔ P−1(x∗) = P1(x∗), (4.3)

where P−1(x∗), P1(x∗) are the probabilities of error of each class with split
point at x∗.

Example: In the uniform example of Figure 2a, the Stoller split can be at
any point of [c, b] = [0.7, 1], but the critical point (in this case a maximum)
of entropy occurs at the middle point of that interval, which corresponds
precisely to the split where the two classes have equal error probabilities.

The above result states the conditions for a correspondence between the
Stoller split and an entropy extremum. This means that the EEM principle
cannot be applied in general situations. Moreover, theorem 3 says nothing
about the nature (maximum or minimum) of the critical point. As we will
see, the solution in theorem 3 is not guaranteed to be an entropy minimum.
Let us determine the sign of d2 H

dx′2
∣∣
x∗ . One has

d2 H
dx′2 = q

d f−1

dx′ log
(

P−1

1 − P−1 − P1

)
− p

d f1

dx′ log
(

P1

1 − P−1 − P1

)

− (q f−1 − p f1)2

1 − P−1 − P1
− q 2 f 2

−1

P−1
− p2 f 2

1

P1
. (4.4)

In order to deal with expression 4.4, we make a simplification by analyz-
ing the case of mutually symmetric distributions defined as:

Definition 1. Two class distributions represented by probability densities g1

and g2 and priors p and q , respectively, are mutually symmetric if pg1(a1 − x) =
qg2(x − a2) where at is the center of the density gt .
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If the classes are mutually symmetric, one must have p = q = 1/2 and

d f−1

dx′

∣∣∣∣
x∗

= − d f1

dx′

∣∣∣∣
x∗

. (4.5)

In the conditions of theorem 3, we have

f1(x∗) = f−1(x∗) and P−1(x∗) = P1(x∗). (4.6)

If we define 1
2 f1(x∗) ≡ f and P1(x∗) ≡ P , then

d2 H
dx′2

∣∣∣∣
x∗

= −2
(

d f
dx′

∣∣∣∣
x∗

log
P

1 − 2P
+ f 2

P

)
. (4.7)

Therefore, for mutually symmetric distributions, we need to analyze
only what happens at one side of one of the distribution centers (in this
case, a1). Since we have set a1 = 0, x∗ occurs at half distance of the median
of C−1 to the origin, somewhere in ] − ∞, 0]. Let

G(x∗) = d f
dx′ log

P
1 − 2P

+ f 2

P
, (4.8)

where we let fall the dependence of the derivative on x∗ in order to simplify
notation. G(x∗) plays the key role in the analysis of the error entropy critical
points. If the classes are sufficiently distant, that is, C−1 sliding to the left
(x∗ → −∞ or x∗ tends to the infimum of the support of C1), then d f

dx′ > 0,
and we can rewrite expression 4.8 as

G(x∗) = d f
dx′

(
log

P
1 − 2P

+ f 2

d f
dx′ P

)
. (4.9)

Using the results given in section A.1, the second term between the paren-
theses is finite, while P can be made sufficiently small such that the first
term is greater in absolute value than the second one. Thus, G(x∗) < 0,
and equation 4.7 is positive. Hence, the Stoller split x∗ is an entropy
minimum.

If the classes are sufficiently close, that is, C−1 sliding rightward (x∗ → 0),
there are three situations to consider. Define xM and xm as the abcissas where
f has the mode and the median, respectively. Then:

1. xM = xm. In this case, f is symmetric, and by the continuity of G(·)
and the fact that G(xM) > 0 (since d f

dx′
∣∣
xM

= 0), G(x∗) is positive in a
neighborhood of xM.
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2. xM < xm. Again, G(x∗) > 0 in a neighborhood of xM, because G(xM) >

0.

3. xM > xm. We have no guarantee on a sign change in G(x∗).

The first two situations show that G(x∗) changes its sign, which means
that the Stoller split turns to be an entropy maximum if the distributions
are close enough.

In the third situation we may or may not have a sign change of G(x∗).
In fact, as shown in section 4.2.3 for the log normal distribution, we have
situations where there is always an entropy minimum in an intersection
of the posterior densities, but the Stoller split changes its location as the
distributions get closer.

Furthermore, for each probability distribution, the ratio x∗/� between
the possible solution of G(x∗) = 0 and the distribution’s scale � is a constant.
In fact, for two variables X and Y, with Y = � · X (Y is a scaled version of
X), we have x∗

Y/� = x∗
X.

4.2 Critical Points for Some Distributions. This section presents three
examples of univariate split problems that illustrate the results of previous
sections. In the first two examples, for the triangular and gaussian distri-
butions, we determine the minimum distance between classes such that
the Stoller split is an entropy minimum. We define d/� as a normalized
distance between the centers of the two classes where d = a1 − a−1 and �

is the distributions scale. Remember from the end of the previous section
that it is only needed to set � = 1. We also set p = q = 1/2 in all examples.
The third example shows that one can have an entropy minimum in an
intersection point where the probabilities of error are equal but it is not the
location of the Stoller split.

4.2.1 The Triangular Distribution Case. The triangular density function
with width (scale) � is given by

f (x) =




0, x < 0

2
�

−
(

2
�

)2 ∣∣∣∣x − �

2

∣∣∣∣ , 0 ≤ x ≤ �

0, x > �.

(4.10)

Setting � = 1, class C1 is centered at 1/2 and class C−1 is moving between
−1/2 and 1/2. The Stoller split occurs at x∗ = (1/2 + a−1) /2. Carrying out
the computation of G(x∗), one finds that x∗ will be a minimum of entropy
iff

1
2

22 log
1
4 22x∗2

1 − 1
2 22x∗2

+ 22 < 0 ⇔ x∗ <
1√

e2 + 2
(4.11)

and a maximum otherwise.



Error Entropy in Classification Problems 2047

Thus, for any �, the Stoller split is an entropy minimum if

d
�

> 1 − 2√
e2 + 2

≈ 0.3473. (4.12)

4.2.2 The Gaussian Distribution Case. For gaussian distributions, one has
at = µt , where µt is the distribution mean of class Ct . G(x∗) can be easily
rewritten as a function of d . Indeed, setting � ≡ σ = 1,

G(x∗) ≡ d

4
√

2π
exp(−d2/8) log

(
1 − �(d/2)

2�(d/2)

)
− exp

(−d2/4
)

4π (1 − � (d/2))

(4.13)

where �(·) is the standard gaussian cumulative distribution function.
If d is below some value, expression 4.13 will be positive, and the Stoller

split is an entropy maximum. If it is above, the Stoller split is an entropy
minimum. This turning value was numerically determined to be tvalue =
1.405231264.

4.2.3 The Log Normal Distribution Case. The log normal distribution has
density

g (x|µ, σ ) = 1

xσ
√

2π
exp

(
− (log(x) − µ)2

2σ 2

)
. (4.14)

We consider the splitting problem where f−1(x) ≡ g(x) and f1(x) ≡ g(−x +
a−1 + xm) where xm ≡ a1 is the center (median) of f1. Note that this is pre-
cisely the situation 3 referred to in section 4.1 (xM > xm). In fact, xm = eµ

and xM = eµ−σ 2
. Figure 5 shows the splitting problem in two different con-

ditions: in Figure 5a, the distributions are distant, and in Figure 5b, the
distributions have the inner intersection point at their centers. We found
that this intersection is always an entropy minimum (thick solid line),
but the Stoller split moves to one of the outer intersections (as we can see
from the minimum probability of error curve represented by the dashed
line) as the distributions get closer. This illustrates the way theorem 3 was
enunciated, because one can have an intersection point with equal proba-
bilities of error and thus an entropy critical point, but it may not correspond
to the Stoller split intersection.
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Figure 5: The log normal distribution case. (a) If the distributions are distant,
the Stoller split is an entropy minimum at the inner intersection. (b) The inner
intersection is still an entropy minimum, but the Stoller split is at one of the
outer intersections.

5 EEM Splits in Practice

5.1 The Empirical Stoller Split and MSE. In section 2 we saw how to
obtain a theoretical Stoller split for a given problem when the class dis-
tributions are known. However, in practice, one has available only a set
of examples whose distributions are in general unknown. Stoller (1954)
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proposed the following practical rule to choose (x′, y′) such that the empir-
ical error is minimal:

(x′, y′) = arg min
(x,y)∈R×{−1,1}

1
N

N∑
i=1

(
I{Xi ≤x,Ti �=y} + I{Xi >x,Ti �=−y}

)
. (5.1)

The probability of error of Stoller’s rule converges to the Bayes error for
N → ∞ (for details, see Devroye et al., 1996). If we take the MSE cost
function,

MSE = c
N∑

i=1

(ti − yi )2, (5.2)

where c is a constant,2 it is easy to see that it is equivalent to Stoller’s rule,
equation 5.1, in the sense that the same discrimination rule, equation 2.1, is
determined. In fact,

MSE = c


 ∑

Xi ∈C−1

(ti − yi )2 +
∑

Xi ∈C1

(ti − yi )2


 (5.3)

= c


 ∑

Xi ∈C−1

4I{Xi >x} +
∑

Xi ∈C1

4I{Xi ≤x}


 (5.4)

= 4c
N∑

i=1

(
I{Xi ≤x,Ti �=−1} + I{Xi >x,Ti �=1}

)
, (5.5)

which is the same as in equation 5.1 if we take c = 1/4N and use the
convention that class C−1 is at the left of the splitting point. Thus, the
solution to

(x′, y′) = arg min
(x,y)∈R×{−1,1}

MSE (5.6)

is the same as in equation 5.1.

5.2 EEM Empirical Procedure. We have to develop a practical rule to
minimize (or maximize, depending on the conditions of the problem) the

2 The value of c (which can be 1/N for MSE definition or 1/2 for derivative simplifica-
tion reasons) has no influence on the minimization of the cost function.
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error entropy,

H(x) = −P−1(x) log P−1(x) − P1(x) log P1(x)

− (1 − P−1(x) − P1(x)) log (1 − P−1(x) − P1(x)) , (5.7)

where

P−1(x) =
∫ −∞

x
q f−1(s)ds = q

[
1 −

∫ x

−∞
f−1(s)ds

]
(5.8)

P1(x) = p
∫ x

−∞
f1(s)ds. (5.9)

Since we do not know the true class distributions, we estimate them using
the gaussian kernel density estimator (Parzen, 1962),

ft(x) ≈ 1
Nh

∑
xi ∈Ct

1√
2π

exp
(

− (x − xi )2

2h2

)
. (5.10)

Hence,

∫ x

−∞
ft(s)ds ≈ 1

N

∑
xi ∈Ct

�

(
x − xi

h

∣∣∣∣ 0, 1
)

, (5.11)

where �(x|µ, σ 2) is the cumulative gaussian distribution, with mean µ and
variance σ 2, at x. Expression 5.11 is used to compute and optimize H(x) as
in equation 5.7, and expression 5.1 is used to obtain the optimal solution for
MSE. The optimization algorithm we have used in our experiments is based
on the Golden Section search with parabolic interpolation (Press, Teukolsky,
Vetterling, & Flannery, 1992).

5.3 Experiments

5.3.1 Simulated Data: The Two-Class Gaussian Problem. We first studied
how the EEM procedure works with simulated gaussian data, where all
the conditions can be controlled. To ensure the conditions of theorem 3,
two classes with gaussian distribution differing only in location (σ was set
to 1) were generated. We also set p = q = 0.5. Several experiments were
made varying the normalized distance d/σ between classes. Taking into
account the tvalue for gaussian classes, the distance values were chosen so as
to have a maximization problem (d/σ = 1) and two minimization problems
(d/σ = 1.5 and 3), one of them very close to tvalue . We also varied the number
of available training (# train) and test (# test) patterns for each class. The
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Table 1: Test Error (%) and Standard Deviations Obtained with EEM and MSE
for the Simulated Gaussian Data.

# train 100 1000 100000

# test EEM MSE EEM MSE EEM MSE

d = 3; Bayes error: 6.68%
50 6.79(2.41) 7.02(2.59) 6.75(2.51) 6.72(2.60) 6.75(2.51) 6.66(2.41)
500 6.82(0.83) 7.07(1.00) 6.70(0.81) 6.76(0.81) 6.66(0.81) 6.69(0.81)
5000 6.81(0.30) 7.11(0.59) 6.69(0.25) 6.72(0.27) 6.68(0.25) 6.67(0.25)
50,000 6.81(0.20) 7.11(0.60) 6.69(0.08) 6.74(0.13) 6.68(0.08) 6.68(0.08)

d = 1.5; Bayes error: 22.66%
50 25.23(4.65) 23.22(4.22) 24.67(4.58) 22.74(4.23) 22.61(4.21) 22.54(4.10)
500 25.33(2.75) 23.30(1.54) 24.82(2.48) 22.84(1.36) 22.83(1.38) 22.67(1.32)
5000 25.32(2.49) 23.22(0.84) 24.72(2.15) 22.82(0.48) 22.80(0.46) 22.68(0.42)
50,000 25.46(2.54) 23.27(0.77) 24.83(2.21) 22.81(0.23) 22.82(0.24) 22.67(0.13)

d = 1; Bayes error: 30.85%
50 30.63(4.64) 31.56(4.60) 30.90(4.48) 31.05(4.61) 30.70(4.82) 30.69(4.56)
500 30.95(4.64) 31.56(4.60) 30.88(1.45) 31.01(1.46) 30.80(1.49) 30.75(1.44)
5000 30.93(0.47) 31.37(0.84) 30.87(0.47) 31.04(0.50) 30.84(0.46) 30.84(0.45)
50,000 30.93(0.17) 31.39(0.70) 30.86(0.14) 31.02(0.26) 30.85(0.14) 30.86(0.15)

Notes: Different values of d were used, and the Bayes error was determined for each case.
Standard deviations are in parentheses.

solution was determined for both EEM and MSE with the training set and
tested with the test set over 1000 repetitions. To determine the value of
h to use in each problem, we conducted preliminary experiments where
we varied h in order to choose the best one. The final values used were
h = 1.7, 0.1 and 0.8 for d = 1, 1.5, and 3, respectively. As these problems
can be solved optimaly, in the Bayes sense, by a unique split, we have
determined the Bayes error for each experiment for comparison purposes.
Table 1 shows the mean values and standard deviations for the test error of
each experiment.

For d = 1 and d = 3, both EEM and MSE achieve Bayes discrimination
if the training sets are asymptotically large, with slightly better results for
EEM. However, with small training sets, EEM outperforms MSE. In fact,
we encounter less test error and standard deviations for EEM, which means
that its solutions have more stability and more generalization capability.
Increasing the number of test patterns has the major effect of decreasing the
standard deviation of the error estimates.

In this sense, the results for d = 1.5 were quite unexpected. As we can
see, the results of EEM are always worse than with MSE, mainly for small
sample sizes. Further investigation revealed that the problem was due to
the proximity of d = 1.5 to the turning value. The estimate of entropy has
high variance, and the location of extrema is highly dependent on the value
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Table 2: Test Error (%) and Standard Deviations Obtained with EEM (Maxi-
mization Approach) and MSE for the Simulated Gaussian Data (d = 1.5).

# train 100 1000 100,000

# test EEM MSE EEM MSE EEM MSE

50 22.95(3.93) 23.22(4.22) 22.78(4.01) 22.74(4.23) 22.47(4.14) 22.54(4.10)
500 22.73(1.28) 23.30(1.54) 22.71(1.32) 22.84(1.36) 22.63(1.33) 22.67(1.32)
5000 22.73(0.41) 23.22(0.84) 22.65(0.43) 22.82(0.48) 22.66(0.41) 22.68(0.42)
50,000 22.75(0.17) 23.27(0.77) 22.67(0.14) 22.81(0.23) 22.67(0.13) 22.67(0.13)

Note: Standard deviations are in parentheses.

of h. To solve this problem, we investigated the possibility of transforming
the minimization problem into a maximization problem, getting a more
accurate and stable procedure. This is achieved by increasing the value of h
(the details are described in section A.2). The performance is increased not
only in terms of lower test error but also lower number of iterations needed.
Table 2 presents the comparison between MSE and the maximization ap-
proach, where h was determined by formula A.5 with c = 3. As we can see,
EEM now behaves similarly as for d = 1 and d = 3 above, outperforming
the results of MSE.

5.3.2 Real Data. The EEM and MSE procedures were also applied to
real data. We’ve used four data sets: Corkstoppers from Marques de Sá
(2001) and Iris, Wine, and Glass from the UCI repository (Newman, Hettich,
Blake, & Merz, 1998). We intended to use the previous results for gaussian
distributions; therefore, we have conducted hypothesis testing on the nor-
mality of the samples and homogeneity of variances. Table 3 shows a brief
description of the data used and the results of these tests.

All samples except the ones from Glass verify the normality assumption
(for a significance level α = 0.05). The homogeneity of variance property
can also be ensured for the same significance level, except for Wine and
Glass. Thus, we expect a worse performance of EEM in these data sets,
because the conditions of theorem 3 are not ensured. Taking into account
the d/σ values, we have two minimization (Corkstoppers and Iris petal
length) and four maximization problems.

The train and test procedure was a simple holdout method: half of the
data set for training and half for testing. This was repeated over 1000 times,
varying the train and test sets. The results obtained are shown in Table 4.

The results show that EEM outperforms MSE in most cases with defi-
nitely better results in four of the six data sets (according to the µEEM = µMSE

test). Even in Wine, EEM outperformed MSE. In Corkstoppers, the mini-
mization of error entropy performed poorly. This is in agreement with the
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Table 3: Description of the Univariate Two-Class Problems Used from Real
Data.

Iris Wine
Corkstoppers Glass

Sepal Sepal Petal Alcalinity
x N Length Width Length of Ash NA

classes 1 vs. 2 2 vs. 3 1 vs. 2 1 vs. 2
d/σ 1.474 1.036 0.629 2.341 0.717 0.068
Normality 0.97; 0.76 0.58; 0.91 0.45; 0.53 0.25; 0.29 0.18; 0.43 0.04; 0.00
σ 2

1 = σ 2
2

test
0.72 0.15 0.85 0.26 0.01 0.02

Notes: x is the input variable used, and classes is the two classes used from each data set.
The last two rows show the p-values for the normality and homogeneity of variance tests.

Table 4: Percentage of Test Error for the Univariate Split Problems of Table 3
with EEM and MSE.

Corkstoppers Iris Wine Glass

EEM 22.94(4.50) 27.25(4.62) 41.25(8.30) 8.15(2.73) 33.64(4.13) 52.64(3.22)
MSE 26.19(4.84) 30.24(5.43) 40.77(8.2) 8.52(3.17) 35.43(4.50) 52.81(3.29)
µEEM
= µMSE 0.00 0.00 0.098 0.005 0.00 0.122

Notes: The last row presents the p-values of the test of equality of means µEEM = µMSE.
Standard deviations are in parentheses.

results obtained for the gaussian simulated problem with d = 1.5. Thus, the
results of Corkstoppers in Table 4 were obtained with the maximization
procedure using equation A.5 with c = 3 to set h.

In Iris petal length, we used the minimization approach with better
results than MSE, but it was interesting to notice that the maximization
approach achieved even better results: test error of 7.18% and standard
deviation 2.78%. We sought an explanation for the difference of the max-
imization and minimization results and found it on the small number of
patterns used each time in the training sets, where each class density is
estimated with approximately 25 patterns. Also, the optimal value used
for the minimization was a mere h = 0.16 (empirically found), which in
conjunction with the small number of patterns produces very rough den-
sity estimates (see Figure 6a), contrasting with those obtained with a large
h (Figure 6b, for the maximization procedure). Furthermore, as the training
sets (remember that each experiment is repeated 1000 times) may vary a
lot, the same value of h = 0.16 for all of them is certainly not an optimal
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Figure 6: Density estimates of a training set for the two class problem of Iris
petal length with h = 0.16 in (a), minimization procedure and h = 1 in (b),
maximization procedure.

choice. On the other hand, as the maximization approach uses larger h, the
possible differences between different training sets are smoothed out and
have less influence on the final result. This explains the difference between
the minimization and maximization results. In conclusion, for very small
data sets (when the sample may not be representative of the distribution),
one should consider the maximization approach.

6 Discussion and Conclusions

We analyzed the relation between the theoretical Stoller split (univari-
ate two-class discrimination problem) and the error entropy minimization
(EEM) principle. Besides the possible practical applications of this analysis
to univariate data splitting with EEM (e.g., in tree classifier design, using
the popular univariate data splitting approach), the results derived from the
analysis are also important as a first step to a needed theoretical EEM assess-
ment when applied to neural networks (e.g., multilayer perceptrons, MLP).
For instance, this work has shown that for certain class configurations, one
must use entropy maximization instead of minimization.

We started by verifying that for two uniform classes, the EEM principle
leads to the optimal classifier for the class of Stoller split decision rules. This
optimal solution also corresponds to the optimal decision rule obtained us-
ing the minimum probability of error criterion. Thus, Bayes error is also
guaranteed in this situation. For general class density functions, it was
proven (in theorem 3) that a Stoller split occurs at an entropy extremum
only if the error probabilities for both classes are equal; this restricts the
applicability of the EEM principle to univariate splitting in the sense that
the optimal classifier may not be achieved. Moreover, we showed that for
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mutually symmetric distributions and in the conditions of theorem 3, the
Stoller split may be either an entropy minimum or maximum, depending on
the proximity of the classes. In particular, it was possible to determine the
turning proximity values for triangular and gaussian distributions. These
were used as a guideline for the empirical procedure, where EEM outper-
formed MSE, especially for small sample sizes.

With simulated data, we concluded that the EEM principle requires fewer
training data than MSE and also fewer iterations of the optimization algo-
rithm. This fast convergence evidence will be studied in more detail in
future work, particularly when EEM is applied to general MLP classifica-
tion.

We also encountered a high sensitivity of the discrimination process
to the smoothing parameter, h. This phenomenon has already been re-
ported in previous work (Santos, Alexandre, et al., 2004; Santos, Marques
de Sá, et al., 2004; Silva et al. 2005). Meanwhile, our analysis enlightened
the fact that in the cases where d/� is near the turning proximity value,
it is preferable to set h so as to convert the minimization process into a
maximization process. Furthermore, our maximization results show that
exact density estimation is not needed; a density estimation that is capa-
ble of extracting the main characteristics of the data is sufficient. All of
these findings are certainly important for future study of the influence
of h for MLP classifiers with either threshold or continuous activation
functions.

Appendix A: Additional Results

A.1 A Result on the Hölder Exponent

Definition 2. Let α ∈ R
+ and x0 ∈ R. A function f : R → R is said to be

C [α](x0) if there exists L > 0 and a polynomial P of degree [α]3 such that

∀δ > 0 : |x − x0| < δ ⇒ ∣∣ f (x) − P(x − x0)
∣∣ ≤ L |x − x0|α . (A.1)

The maximum value of α that satisfies equation A.1 is known as the Hölder exponent
of f at x0.

The polynomial P is the Taylor expansion of order [α] of f at x0. The
Hölder exponent α measures how irregular f is at the point x0. The higher
the exponent α, the more regular is f . Figure 7 shows the behavior of f in
a neighborhood of x0 for different values of α.

3 [α] represents the largest integer less than α. If α is not an integer, [α] ≡ �α�; otherwise,
[α] ≡ α − 1.
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xx0
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α=1

α<1

α>1

Figure 7: Local behavior of f for different values of α.

Theorem 4. Let f : R → R be a continuous function, such that f ≡ 0 for
x ≤ x0 and differentiable for x > x0. If the Hölder’s exponent of f at x0 is α, then

limx→x+
0

f 2(x)[∫ x
x0

f (y)dy
]

d f
dx (x)

= α + 1
α

. (A.2)

The idea of the previous theorem is that in a sufficiently small neighbor-
hood of x0, f behaves like L(x − x0)α . Then

f 2(x)[∫ x
x0

f (y)dy
]

d f
dx (x)

= L2(x − x0)2α

L(x−x0)α+1

α+1 αL(x − x0)α−1
= α + 1

α
.

The left-hand side of equation A.2 is also bounded if f has left unlimited
support. The proof of this result can be made using a geometrical argument.
In fact,

[∫ x

−∞
f (y)dy

]
d f
dx

>
f (x)b

2
f (x)
b

,
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where b is the base of the shadowed triangle in Figure 7.4 Thus,

f 2(x)[∫ x
−∞ f (y)dy

] d f
dx (x)

< 2.

A.2 Turning Minimization into Maximization. Estimating a density
function with kernel method leads to an estimate with

µ̂ = x̄, σ̂ 2 = h2 + s2 (A.3)

where x̄ is the sample mean and s2 is the sample (not corrected) variance.
When h is too small, the kernel estimate has a large variance leading to a
nonsmooth entropy function. When h is large, we have an oversmoothed
density, but entropy is smooth and preserves the extrema. Figure 8 depicts
this dichotomy. In Figures 8b and 8c, the values of h are given by the optimal
rule for gaussian distributions (Silverman, 1986) and by expression A.5 with
c = 3, respectively. The vertical solid line shows the theoretical Stoller split
for the problem. It is important to note that this is a minimization problem.
In practice, the increased h has the effect of approximating classes and thus
the maximum instead of the minimum in Figure 8c. This means that it is
more efficient to maximize entropy when d/σ is close to the turning value.

How can one set h in order to have a maximization problem? Just ensure
that

d
σ

≈ tvalue

c
(A.4)

where c > 1 and σ is the standard deviation of the estimated density. Thus,
with straightforward calculations, one has

h2 ≈
(

d c
tvalue

)2

− s2, (A.5)

or h equal to some large value (empirically obtained) if the right-hand
side of equation A.5 is nonpositive. An evident choice for c may be
c = tvalue , because this implies d/σ = 1, which is the third gaussian prob-
lem of section 5.3.1. The increase in c leads to increased h, and the entropy
function becomes smoother. Of course, one cannot increase h indefinitely,
because with almost flat H, the optimization algorithm may fail to find its
maximum.

4 Note that the behavior of f in this situation is similar to the case of f with left limited
support and α > 1.
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Figure 8: Error entropy for different values of h in the gaussian distribution
example with d = 1.5.

Appendix B: Proof of Theorem 1

Proof. First, assume that there is no intersection of q f−1 with p f1 (see
Figure 9a). Then P∗ = min(p, q ) ≤ 1/2 occurs at +∞ or −∞.

For intersecting posterior densities, one has to distinguish two cases.
First, assume that for δ > 0,

p f1(x) < q f−1(x) x ∈ [x0 − δ, x0] and

p f1(x) > q f−1(x) x ∈ [x0, x0 + δ], (B.1)

where x0 is an intersection point (see Figure 9b). The probabilities of error
at x0 and x0 − δ are

P(x0) = p
[∫ x0−δ

−∞
f1(t)dt +

∫ x0

x0−δ

f1(t)dt
]

+ q
∫ +∞

x0

f−1(t)dt (B.2)
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Figure 9: Possible no-intersection or intersection situations in a two-class prob-
lem with continuous class-conditional density functions. The light shadowed
area in b and c represents P(x0) where x0 is the intersection point. The dark
shadowed area in b represents the amount of error probability added to P(x0)
when the splitting point is deviated to x0 − δ. The dashed area in c is the amount
of error probability subtracted from P(x0) when the splitting point is deviated
to x0 − δ.

P(x0 − δ) = p
∫ x0−δ

−∞
f1(t)dt + q

[∫ x0

x0−δ

f−1(t)dt +
∫ +∞

x0

f−1(t)dt
]

. (B.3)

Hence,

P(x0) − P(x0 − δ) = p
∫ x0

x0−δ

f1(t)dt − q
∫ x0

x0−δ

f−1(t)dt < 0 (B.4)
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by condition B.1. It is easily seen, using similar arguments, that P(x0) −
P(x0 + δ) < 0. Thus, x0 is a minimum of P(x). Now, suppose that (see
Figure 9c)

p f1(x) > q f−1(x) x ∈ [x0 − δ, x0] and

p f1(x) < q f−1(x) x ∈ [x0, x0 + δ]. (B.5)

Then x0 is a maximum of P(x). This can be proven as above or just by notic-
ing that this situation is precisely the same as above but with a relabeling
of the classes. For relabeled classes, the probability of error P (r )(x) is given
by

P (r )(x) = p(1 − F (r )
−1(x)) + q F (r )

1 (x)

= 1 − [q (1 − F−1(x)) + pF1(x)] = 1 − P(x). (B.6)

Thus, P (r )(x) is just a reflection of P(x) around 1/2, which means that P(x)
maxima are P (r )(x) minima and vice versa. The Stoller split is chosen as the
minimum up to a relabel (see expression 2.3).
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