
Using Different Cost Functions to Train Stacked Auto-encoders

Telmo Amaral∗, Luís M. Silva∗†, Luís A. Alexandre‡,
Chetak Kandaswamy∗, Jorge M. Santos∗§, Joaquim Marques de Sá∗¶

∗Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Portugal. Email: tga@fe.up.pt
†Departamento de Matemática, Universidade de Aveiro, Portugal. Email: lmas@ua.pt
‡Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal

§Departamento de Matemática, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Portugal
¶Dep. de Engenharia Electrotécnica e de Computadores, Fac. de Engenharia da Univ. do Porto, Portugal

Abstract—Deep neural networks comprise several hidden
layers of units, which can be pre-trained one at a time via
an unsupervised greedy approach. A whole network can then
be trained (fine-tuned) in a supervised fashion. One possible
pre-training strategy is to regard each hidden layer in the
network as the input layer of an auto-encoder. Since auto-
encoders aim to reconstruct their own input, their training
must be based on some cost function capable of measuring
reconstruction performance. Similarly, the supervised fine-
tuning of a deep network needs to be based on some cost
function that reflects prediction performance. In this work we
compare different combinations of cost functions in terms of
their impact on layer-wise reconstruction performance and on
supervised classification performance of deep networks. We
employed two classic functions, namely the cross-entropy (CE)
cost and the sum of squared errors (SSE), as well as the
exponential (EXP) cost, inspired by the error entropy concept.
Our results were based on a number of artificial and real-world
data sets.

Keywords-cost functions; stacked auto-encoders; deep neural
networks

I. INTRODUCTION

Deep architectures, such as neural networks with two

or more hidden layers of units, are a class of machines

that comprise several levels of non-linear operations, each

expressed in terms of parameters that can be learned [2].

The organization of the mammal brain, as well as the

apparent depth of cognitive processes, are among the main

motivations for the use of such architectures. In spite of

this, until 2006, attempts to train deep architectures resulted

in poorer performance than that achieved by their shallow

counterparts. The only exception to this difficulty was the

convolutional neural network [8], a specialized architecture

for image processing, modeled after the structure of the

visual cortex.
A breakthrough took place with the introduction by

Hinton et al. of the deep belief network [6], a learning

approach where the hidden layers of a deep network are

initially treated as restricted Boltzmann machines (RBMs)

[10] and pre-trained, one at a time, in an unsupervised

greedy approach. Given that auto-encoders [5] are easier to

train than RBMs, this unsupervised greedy procedure was

soon generalized into algorithms that pre-train the hidden

levels of a deep network by treating them as a stack of

auto-encoders [3], [7].

The auto-encoder (also called auto-associator or Diabolo

network) is a type of neural network trained to output a

reconstruction of its own input. Thus, in the training of

auto-encoders, input vectors can themselves be interpreted

as target vectors. This presents an opportunity for the

comparison of various training criteria, namely different cost

functions capable of reflecting the mismatch between inputs

and targets.

The information theoretical concept of minimum error

entropy has been recently applied by Marques de Sá et al. [9]

to data classification machines, yielding evidence that risk

functionals do not perform equally with respect to the attain-

ment of solutions that approximate the minimum probability

of error. In their work, the features of classic cost functions

such as the sum of squared errors (SSE) and the so-called

cross-entropy (CE) cost are discussed, and some approaches

inspired by the error entropy concept are proposed. One

such approach is a parameterized function called exponential

(EXP) cost, sufficiently flexible to emulate the behavior of

classic costs, namely SSE and CE, and to exhibit properties

that are desirable in certain types of problems, such as good

robustness to the presence of outliers.

In this work, we aimed to compare the performances

of SSE, CE, and EXP costs when employed both in the

unsupervised pre-training and in the supervised fine-tuning

of deep networks whose hidden layers are regarded as a

stack of auto-encoders. To the best of our knowledge, this

type of comparison has not been done before in the context

of deep learning. Using a number of artificial and real-world

data sets, we first compared pre-training cost functions in

terms of their impact on the reconstruction performance of

hidden layers. Given that the output layer of our networks

was designed for classification learning, we also compared

various combinations of pre-training and fine-tuning costs in

terms of their impact on classification performance.

2013 12th Mexican International Conference on Artificial Intelligence

978-1-4799-2604-6/13 $31.00 © 2013 IEEE

DOI 10.1109/MICAI.2013.20

114

2013 12th Mexican International Conference on Artificial Intelligence

978-1-4799-2605-3/13 $31.00 © 2013 IEEE

DOI 10.1109/MICAI.2013.20

114

II. STACKED AUTO-ENCODERS

The auto-encoder (AE) is a simple network that tries to

produce at its output what is presented at the input. As

exemplified in Fig. 1a, the basic AE is in fact a simple

neural network with one hidden layer and one output layer,

subject to two restrictions: the weight matrix of the output

layer is the transposed of the weight matrix of the hidden

layer (i.e. weights are clamped); and the number of output

neurons is equal to the number of inputs.

The values of the hidden layer neurons, called the en-
coding, are obtained via Equation (1), where x is the input

vector, s denotes the sigmoid function, b is the vector of hid-

den neuron biases, and W is the matrix of hidden weights.

The values of the output neurons, called the decoding, are

computed as in Equation (2), where c is the vector of output

neuron biases. Unsupervised learning of the weights and

biases of AEs can be achieved by gradient descent, based

on a training set of input vectors.

h(x) = s (b + Wx) (1)

x̂(h(x)) = s
(

c + WT h(x)
)

(2)

The deep networks we used for classification had an

architecture similar to that shown in Fig. 1c, with a layer

of inputs, two or more hidden layers, and an output layer L
with as many units as target classes. The hidden layers of

such a network can be pre-trained in an unsupervised way,

one at a time, starting from the bottom layer. In order to

be pre-trained, a hidden layer is “unfolded” to form an AE.

Once a given AE has learned to reconstruct its own input,

its output layer is no longer needed and its hidden layer

becomes the input to the next level of the deep network, as

shown in Fig. 1b. The next level is in turn pre-trained as an

individual AE, and the process is repeated until there are no

more hidden layers.

The goal of unsupervised pre-training is to bring the

network’s hidden weights and biases to a region of the

parameter space that constitutes a better starting point than

random initialization, for a subsequent supervised training

stage. In this context, the supervised training stage is usually

called fine-tuning and can be achieved by conventional

gradient descent, based on a training set of paired input

and target vectors. It should be noted that the output layer

weights W(L) are not involved in the pre-training stage, so

they are randomly initialized and learned only in the fine-

tuning stage.

III. COST FUNCTIONS

A. Pre-training

Since the goal of AE training is to obtain at the output the

same data values fed into the input, an adequate cost function

C should compare these two vectors. The classical approach

is to use an empirical version of either the SSE cost, as in

Equation (3), or the CE cost, as in Equation (4). Another

possibility is to use the EXP cost shown in Equation (5),

which features an extra parameter τ . In these expressions,

x̂k and xk denote the kth elements of the output and input

vectors, respectively.

CSSE(x̂,x) =
∑
k

(x̂k − xk)
2 (3)

CCE(x̂,x) =−
∑
k

(
xk ln(x̂k) + (1− xk) ln(1− x̂k)

)

(4)

CEXP (x̂,x) =τ exp
(1
τ

∑
k

(x̂k − xk)
2
)

(5)

Given a training input vector, the change that it implies

in weight Wji connecting input i to hidden neuron j can be

computed via gradient descent [4], in terms of the partial

derivative of the cost with respect to that weight. This

derivative can be expressed as in Equation (6), where A and

Bk take the values shown in Table I [1]. The expression

for the derivative with respect to a hidden bias bj can be

obtained from this equation by setting xi and x̂i to 1, and the

derivative with respect to an output bias ci can be obtained

by setting hj to 1.

∂C

∂Wji
=

A
(
Bi(x̂i − xi)hj + xihj(1− hj)

∑
k

Bk(x̂k − xk)Wjk

)

(6)

Table I
EXPRESSIONS FOR A AND Bk IN EQUATION (6), FOR EACH COST

FUNCTION.

Cost A Bk

SSE 2 x̂k(1− x̂k)
CE 1 1

EXP 2 exp
(

1
τ

∑
k(x̂k − xk)

2
)

x̂k(1− x̂k)

B. Fine-tuning

The expressions for the SSE and EXP cost functions used

in the supervised training stage are identical to Equations

(3) and (5), respectively, keeping in mind that x̂ and x now

become output vector y and target vector t, respectively. As

to the CE cost, it now assumes the multi-class expression

shown in Equation (7), where index k iterates through the

network’s outputs.

CCE(y, t) =−
∑
k

tk ln yk (7)

As before, partial derivatives are needed to obtain weight

changes via gradient descent. According to Bishop [4], the

115115

(a) (b) (c)

Figure 1. (a) An auto-encoder. (b) Pre-training of hidden layers of a deep network using auto-encoders. (c) A complete deep network with two hidden
layers and an output layer. (Based on Larochelle et al. [7].)

partial derivative of the cost with respect to a weight Wji

connecting unit (or input) i to unit (or output) j can be

expressed generically as in Equation (8), where δj is the so-

called delta error associated with unit j. The expression for

the derivative with respect to a hidden or output bias bj can

be obtained by setting zi to 1.

∂C

∂Wji
= δjzi (8)

If Wji belongs to the output layer of the network, δj
should be obtained from the definition in Equation (9),

where aj represents the jth argument of the output activation

function (in our case the logistic softmax). For different cost

functions, the expression of δj takes the forms shown in

Table II, where Ikj is a selection variable corresponding to

element kj of an identity matrix.

δj ≡ ∂C

∂aj
(9)

Table II
EXPRESSION OF δj FOR A UNIT IN THE OUTPUT LAYER, AS DEFINED IN

EQUATION (9), FOR EACH COST FUNCTION.

Cost δj associated with output unit j
SSE

∑
k(yk − tk)yk(Ikj − yj)

CE (yj − tj)

EXP 2 exp
(

1
τ

∑
k(yk − tk)

2
)∑

k(yk − tk)yk(Ikj − yj)

If Wji belongs to a hidden layer, δj can be obtained

recursively from Equation (10), using the errors δk already

computed for the layer above. In this expression, h′(.) de-

notes the derivative of the hidden layer’s activation function

(in our case always a logistic sigmoid).

δj =h′(aj)
∑
k

δkWkj (10)

Table III
(A) CHARACTERISTICS OF EACH DATA SET. (B) HYPER-PARAMETER

VALUES SELECTED FOR THE MODEL USED WITH EACH DATA SET.

(a)
Data set # Features # Targets # Instances

Train. Valid. Test
adult 123 2 5000 1414 26147
cb4x4(10) 2 2 2000 1000 1000
cb4x4(25) 2 2 2000 1000 1000
ocr_letters 128 26 32152 10000 10000
environ2cl 7 2 1700 850 850
environ4cl 7 4 1700 850 850

(b)
Data set Arch. Pre-training Fine-tuning

ηu τu ηs τs L.a.
adult 02,02 0.0100 10.00 0.10 10.00 25
cb4x4(10) 25,25 * 1.5000 7.00 0.05 0.75 100
cb4x4(25) 25,25,25 * 0.0100 0.31 0.05 2.00 160
ocr_letters 50,50,50 0.0007 10.00 0.10 4.00 50
environ2cl 10,10,10 0.3500 -2.70 0.10 2.00 130
environ4cl 10,10,10 0.3500 -2.70 0.10 2.00 120

IV. EXPERIMENTS AND RESULTS

A. Data Sets and Selection of Hyper-parameters

We used six data sets appropriate for classification exper-

iments, whose numbers of features, targets, and instances

are shown in Table III. The adult1 and ocr_letters2

sets contain publicly available, real-world binarized data;

cb4x4(10) and cb4x4(25) are artificially generated sets

with a 4×4 checkerboard pattern, real-valued features, and

proportions of the minority class of 0.10 and 0.25, re-

spectively; environ2cl and environ4cl are private, real-

world sets containing real-valued environmental data. Each

data set was divided into three fixed subsets, for training,

validation, and test purposes.

For each data set, we built a deep network of the type

exemplified in Fig. 1c. Hyper-parameters were selected

via a simplified procedure, starting from default values,

then tuning each parameter individually to minimize the

classification error on the validation set, averaged over 10

repetitions. Table III shows the values obtained for all

1See http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a5a.
2See http://ai.stanford.edu/~btaskar/ocr/.

116116

Table IV
RECONSTRUCTION MSE ACHIEVED FOR EACH DATA SET, HIDDEN

LAYER, AND COST FUNCTION, COMPUTED OVER TEST DATA.

Data set Hidden Pre-training cost function
layer CE SSE EXP

adult 2 0.0088±0.0010 0.0090±0.0008 0.0305±0.0046
1 6.5199±0.0088 6.7640±0.0269 6.5465±0.0061

cb4x4(10) 2 0.0003±0.0001 0.0003±0.0001 0.0003±0.0001
1 0.0005±0.0003 0.0022±0.0000 0.0022±0.0000

cb4x4(25) 3 0.0046±0.0018 0.0002±0.0000 0.0011±0.0002
2 0.0025±0.0007 0.0003±0.0001 0.0013±0.0002
1 0.0021±0.0000 0.0021±0.0000 0.0066±0.0008

ocr_letters 3 0.4727±0.0124 0.3378±0.0074 0.5294±0.0143
2 0.6687±0.0158 0.5694±0.0125 0.8502±0.0222
1 4.6354±0.0456 4.7581±0.0367 4.8055±0.0317

environ2cl 3 0.0080±0.0038 0.0026±0.0004 0.0023±0.0007
2 0.0054±0.0023 0.0031±0.0005 0.0107±0.0026
1 0.0089±0.0013 0.0071±0.0006 0.0476±0.0052

environ4cl 3 0.0022±0.0007 0.0015±0.0011 0.0012±0.0002
2 0.0027±0.0007 0.0014±0.0008 0.0054±0.0010
1 0.0070±0.0009 0.0034±0.0010 0.0144±0.0015

parameters, namely: the architecture (e.g. three layers with

50 units each for the ocr_letters data set); the pre-

training learning rate ηu and EXP parameter τu, the fine-

tuning learning rate ηs and EXP parameter τs; and the so-

called look-ahead, a parameter that controls the mechanism

for early stopping of the fine-tuning. We chose to use the

same number of units in all hidden layers. Values marked

with an asterisk are not fixed learning rates, but initial values

for an adaptive form of learning rate [9]. All parameters were

selected for the CE/CE cost combination (i.e. pre-training

CE cost and fine-tuning CE cost), except naturally for the

two EXP τ parameters.

For each data set, we pre-trained the network’s hidden

layers, tested their reconstruction performances, fine-tuned

the whole network, and tested its classification accuracy.

All nine combinations of pre-training and fine-tuning cost

functions were tried, plus a combination of no pre-training

with CE cost. For each combination, 20 repetitions of full

training and testing were executed. In order to incorporate

the SSE and EXP cost functions, we adapted an implementa-

tion of stacked auto-encoders originally developed by Hugo

Larochelle, based on the MLPython library3.

B. Experimental Results

We compared the three pre-training cost functions in terms

of their impact on the reconstruction performance achieved

by each hidden layer, when “unfolded” as an auto-encoder.

For that purpose, we chose to use the reconstruction mean

squared error (MSE) as a common metric, computed over

test data. Table IV shows the obtained results. The best MSE

values and standard deviations computed over 20 repetitions

are shown in bold.

The main conclusion that can be drawn from these results

is that SSE is a good choice of pre-training cost, regardless

of the data set. In all cases except one (cb4x4(10)), SSE

yielded a reconstruction MSE that was either the lowest or

3See http://www.dmi.usherb.ca/~larocheh/mlpython/.

CE SSE EXP

0.000

0.005

0.010

0.015

reconstruction MSE on test set, hidden layer 3

CE SSE EXP

0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

reconstruction MSE on test set, hidden layer 2

CE SSE EXP

0.00
0.01
0.02
0.03
0.04
0.05
0.06

reconstruction MSE on test set, hidden layer 1

Figure 2. Box plots of reconstruction MSE for the environ2cl data set,
for each hidden layer and cost function, computed over test data.

close to the lowest. SSE also tended to yield the lowest

variances. This superiority could arguably be attributed to

the fact that the SSE cost, expressed in Equation (3),

coincides in practice with the MSE metric being used.

Nevertheless, with the binary data sets adult and

ocr_letters, CE yielded the lowest mean errors for the

first layer. These were the only two situations where the

xk values in Equation (4) were binary, and this equation in

fact assumes binary xk (though it produces meaningful cost

values even with real-valued xk). It appears that CE could

be the best choice for pre-training the first hidden layer in

the presence of binary data.

It is interesting to note that the MSE associated with

each given cost function tended to decrease from the bottom

hidden layer to higher layers, meaning that the learned

representations became progressively easier to reconstruct.

In the case of EXP, this happened with all data sets. This

effect, as well as the tendency of SSE to yield the best

results, can be observed e.g. in the box plots shown in Fig.

2 for the environ2cl data.

More detail on what happens during pre-training could

be obtained by plotting the evolution of the reconstruction

performance on training data, throughout the training of each

hidden layer, as exemplified in Fig. 3a for the third layer of

the architecture selected for the environ4cl data. These

plots illustrate a problem observed with several data sets,

in that the pre-training based on either CE or EXP appears

to have prematurely ended due to the implemented early-

stopping mechanism. The application of this mechanism

[7] should therefore be improved in future work, possibly

by selecting the value of an associated hyper-parameter for

each data set individually (as was done with the look-ahead

parameter, used to control early-stopping of fine-tuning).

We compared different combinations of pre-training and

117117

0 2 4 6 8 10 12 14 16 18
pre-training iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

p
re
-t
ra
in
in
g
re
c
o
n
s
tr
u
c
ti
o
n
S
S
E
o
n
tr
a
in
in
g
d
a
ta

hidden layer 3

['AE', 'CE']

['AE', 'SSE']

['AE', 'EXP']

(a)

0 200 400 600 800 1000 1200 1400 1600
sup. training iteration

0.00

0.05

0.10

0.15

0.20

0.25

s
u
p
.
tr
a
in
in
g
e
rr
o
r
o
n
v
a
li
d
a
ti
o
n
d
a
ta

['AE', 'CE', 'CE']

['AE', 'CE', 'SSE']

['AE', 'CE', 'EXP']

(b)

Figure 3. (a) Evolution of reconstruction performance on training data
during pre-training, for each pre-training cost, for the third layer of
the model selected for environ4cl data. (b) Evolution of classification
error on validation data during fine-tuning, for each fine-tuning cost, for
cb4x4(25) data. (Best viewed in color.)

fine-tuning costs in terms of their impact on the classification

error computed over test data. Table V shows the obtained

results. Since all data sets were unbalanced, we chose to

compute the balanced classification error (i.e. the average

of intra-class errors). For each data set, the best mean error

and error standard deviation computed over 20 repetitions

are shown in bold. For each particular pre-training cost, the

best mean error and error variance are marked with A and

B, respectively. For each particular fine-tuning cost, the best

mean error and error variance are marked with C and D,

respectively.

For four of the data sets, the results achieved with no

pre-training (and fine-tuning with CE) were clearly worse

than those obtained with at least some of the pre-training

cost functions, as would be expected. This was not the case,

however, with the adult and ocr_letters sets.

At any rate, the main conclusion that can be drawn from

the obtained results is that none of the combinations of pre-

training and fine-tuning costs stood out as yielding either the

lowest mean errors or the lowest error variances for most

data sets.

For the cb4x4(10) data the training phase failed for

several cost combinations, which yielded a balanced error

of 50% or close. This failure happened necessarily at the

fine-tuning stage, since no problems were observed at the

pre-training stage (see Table IV). Interestingly, the only

successful cost combinations were CE/CE and the three

combinations involving the fine-tuning EXP cost. It should

be noted that CE/CE was the combination for which the

learning rate and look-ahead parameters were selected. This

may indicate that, for heavily unbalanced data sets, the fine-

tuning stage is not particularly robust to a departure from

the cost function used to select parameters. Indeed, with the

more balanced cb4x4(25) data, fine-tuning converged for

all cost functions. On the other hand, this also suggests that

the fine-tuning EXP cost may help to overcome this type of

limitation.

It can be observed that, when the pre-training cost is CE,

the lowest mean errors (marked with A) and the lowest error

variances (marked with B) were achieved when the selected

fine-tuning cost was either CE or EXP. In other words, when

pre-training with CE, fine-tuning with SSE is not a good

choice. This can be observed in more detail e.g. in the box

plots for the adult and ocr_letters data shown in Fig.

4.

The C markers in Table V help to verify that, when

fine-tuning with CE, three of the lowest mean errors were

achieved in combination with SSE pre-training. Similarly,

when fine-tuning with SSE, four lowest mean errors were

achieved with SSE pre-training and, when fine-tuning with

EXP, three lowest mean errors were achieved with SSE

pre-training. Thus, given a particular fine-tuning cost, SSE

appears to be a reasonable choice for the pre-training stage,

as can be observed e.g. in Fig. 4a for the adult data.

This suggests that the superiority of pre-training via SSE

(previously observed in Table IV) is real and not merely

a consequence of using MSE to measure reconstruction

performance.

The D markers in Table V indicate that, curiously, when

fine-tuning with CE, five lowest error variances were yielded

in combination with CE pre-training, whereas, when fine-

tuning with SSE, four lowest error variances were achieved

with SSE pre-training and, when fine-tuning with EXP, four

lowest error variances were achieved with EXP pre-training.

In other words, given a particular fine-tuning cost, using the

same pre-training cost appears to be beneficial if one wishes

to achieve low error variance. This is exemplified also in Fig.

118118

Table V
PERCENT BALANCED CLASSIFICATION ERROR FOR EACH DATA SET AND COST COMBINATION, COMPUTED OVER TEST DATA. (BEST VIEWED IN

COLOR.)

Data set Pre-training / fine-tuning cost functions
None CE SSE EXP
CE CE SSE EXP CE SSE EXP CE SSE EXP

adult 24.7±01.1 25.2±00.4 26.2±00.7 25.8±01.0 24.4±00.6 25.6±00.1 25.2±00.8 25.3±00.5 25.8±00.3 25.7±00.3
A B D A C B C D C A B B D

cb4x4(10) 50.0±00.0 13.6±03.3 50.0±00.0 20.2±06.1 45.4±11.0 50.0±00.0 19.6±03.8 45.7±10.3 50.0±00.0 18.6±02.0
A B C D A B A B C D

cb4x4(25) 50.0±00.0 05.8±01.2 23.8±20.4 05.4±01.1 05.2±01.3 04.7±00.8 05.6±01.3 05.4±01.2 21.9±20.7 04.8±00.9
D A B C A B C D D A B C D

ocr_letters 24.1±00.5 24.4±00.7 26.5±01.2 24.8±00.7 23.6±00.9 24.9±00.9 23.7±00.7 23.4±00.7 25.1±01.1 23.8±00.8
A B D B D A C D B C D A B C D

environ2cl 50.0±00.0 37.5±02.6 37.3±03.2 35.7±04.6 38.2±03.2 38.1±03.5 36.7±03.2 39.5±02.6 38.8±03.0 39.9±01.7
B C D C A C B A B D A B D

environ4cl 75.0±00.0 58.9±03.4 58.2±04.5 58.0±04.0 57.9±03.2 55.4±03.6 57.7±02.4 59.4±02.5 58.5±03.8 60.1±04.2
B A C A C D B C D B D A

None / CE CE / CE CE / SSE CE / EXP SSE / CE SSE / SSE SSE / EXP EXP / CE EXP / SSE EXP / EXP

0.22

0.23

0.24

0.25

0.26

0.27

0.28

supervised balanced test error

(a) adult

None / CE CE / CE CE / SSE CE / EXP SSE / CE SSE / SSE SSE / EXP EXP / CE EXP / SSE EXP / EXP

0.22

0.24

0.26

0.28

supervised balanced test error

(b) ocr_letters

Figure 4. Box plots of balanced classification errors computed over test data, for each cost combination, for (a) adult data and (b) ocr_letters data.

4a, for the adult data.

Fig. 3b exemplifies the evolution of the classification error

on validation data during training, for the cb4x4(25) data

set. It can be seen that the errors associated with CE and

EXP fine-tuning costs evolved in very similar ways. To an

extent, this happened with all data sets and was an expected

behavior, since positive values were always selected for the

EXP τs parameter (see Table III), leading the EXP cost

function to approximate the behavior of the CE cost [9].

The increasing instability of all three errors towards the end

of training was observed also with the environmental data

sets, and may be due to insufficient amounts of training and

validation data. This effect should be further investigated.

Table VI shows the average times taken by pre-training

and fine-tuning iterations, in seconds, for each cost function.

In the case of pre-training, layer-wise times are shown. The

last row shows the average ratios to the CE time, for both

SSE and EXP. In terms of pre-training, it can be observed

that SSE and EXP were actually slightly faster than CE,

though it should be noted that each pre-training iteration in-

volved the computation not only of cost derivatives, but also

of the cost itself, used by the implemented early-stopping

mechanism. In terms of fine-tuning, both SSE and EXP

took approximately 60% more training time. All experiments

were executed on Linux using a desktop computer equipped

with an Intel Core i7-950 processor and enough physical

119119

Table VI
AVERAGE ITERATION TIMES IN SECONDS, FOR EACH DATA SET AND

COST FUNCTION: (A) DURING PRE-TRAINING OF EACH HIDDEN LAYER;
AND (B) DURING FINE-TUNING.

(a)
Data set Pre-training

Hidden layer CE SSE EXP
adult 2 3.453 3.253 3.481

1 3.135 2.772 3.106
cb4x4(10) 2 0.806 0.631 0.671

1 0.614 0.450 0.489
cb4x4(25) 3 0.916 0.867 0.937

2 0.788 0.718 0.806
1 0.611 0.545 0.633

ocr_letters 3 16.331 14.657 15.377
2 13.949 12.338 13.181
1 13.399 12.503 13.362

environ2cl 3 0.833 0.812 0.862
2 0.715 0.690 0.739
1 0.585 0.562 0.613

environ4cl 3 0.833 0.812 0.445
2 0.713 0.689 0.387
1 0.589 0.560 0.318

Average ratios to CE: 1.000 0.912 0.895

(b)
Data set Fine-tuning

Hidden layer CE SSE EXP
adult 00.476 00.839 0.956
cb4x4(10) 0.238 0.317 0.367
cb4x4(25) 0.291 0.434 0.518
ocr_letters 6.601 9.621 10.072
environ2cl 0.260 0.437 0.493
environ4cl 0.265 0.441 0.275
Average ratios to CE: 1.000 1.565 1.632

memory to prevent swapping.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we compared different cost functions used

in the pre-training and fine-tuning of deep networks, by per-

forming experiments with a variety of data sets. In general,

the best layer-wise reconstruction performance was achieved

by SSE pre-training, though with binary data CE yielded

the lowest errors for the first hidden layer. Classification

performance was found to vary little with the combination

of pre-training and fine-tuning costs. When pre-training with

CE, fine-tuning via SSE was found not to be a good choice.

In general, the choice of the same pre-training and fine-

tuning costs yielded classification errors with lower variance.

With a heavily unbalanced artificial data set, fine-tuning

failed except for the cost combination used to tune the

model’s hyper-parameters and for those cost combinations

that involved EXP fine-tuning. This seeming robustness of

EXP fine-tuning should be further investigated, using a

wider variety data sets. Future work should also focus on

improving both the pre-training early stopping mechanism

and the stability of fine-tuning after large numbers of

iterations. In future experiments we plan to adopt GPU-

based processing, to allow the use of more computationally

demanding data sets, such as variants of the popular MNIST
character recognition set.

ACKNOWLEDGMENT

This work was financed by FEDER funds through the Pro-
grama Operacional Factores de Competitividade – COM-

PETE and by Portuguese funds through FCT – Fundação
para a Ciência e a Tecnologia in the framework of the

project PTDC/EIA-EIA/119004/2010.

REFERENCES

[1] T. Amaral, Luís M. Silva, and Luís A. Alexandre. Using dif-
ferent cost functions when pre-training stacked auto-encoders.
Technical Report 1/2013, Instituto de Engenharia Biomédica
/ Neural Networks Interest Group (INEB/NNIG), April 2013.

[2] Y. Bengio. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127, 2009.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In Neural
Information Processing Systems (NIPS), volume 19, pages
153–160, 2007.

[4] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[5] H. Bourlard and Y. Kamp. Auto-association by multilayer
perceptrons and singular value decomposition. Biological
Cybernetics, 59(4-5):291–294, 1988.

[6] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18(7):1527–
1554, 2006.

[7] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and
Y. Bengio. An empirical evaluation of deep architectures on
problems with many factors of variation. In International
Conference on Machine Learning (ICML), pages 473–480,
2007.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[9] J. Marques de Sá, L. Silva, J. Santos, and L. Alexandre.
Minimum Error Entropy Classification, volume 420 of Studies
in Computational Intelligence. Springer, 2013.

[10] P. Smolensky. Parallel distributed processing: explorations
in the microstructure of cognition, volume 1, chapter In-
formation processing in dynamical systems: foundations of
harmony theory, pages 194–281. University of Colorado,
1986.

120120

