
Using Different Cost Functions to Train Deep
Networks with Supervision

Telmo Amaral

30th July 2013

NNIG Technical Report No. 3/2013

Project “Reusable Deep Neural Networks: Applications to Biomedical Data”
(PDTC/EIA-EIA/119004/2010)

Neural Networks Interest Group

Instituto de Engenharia Biomédica (INEB)
Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Contents
1 Introduction 3

2 Generic case 3
2.1 Output weight . 5
2.2 Hidden weight . 5
2.3 Summary . 7

3 Specific case: CE 7
3.1 Output weight . 8
3.2 Hidden weight . 9

4 Specific case: EXP 10

5 Specific case: SSE 11

6 Paper overview: Using different cost functions to train stacked
auto-encoders 12

References 13

2

1 Introduction

In a previous report [1] we presented detailed calculations for the derivatives of
three error functions that can be used when pre-training, without supervision,
each hidden layer of a deep neural network (by unfolding the layer as an auto-
encoder). In this report we complement those calculations, by offering detailed
calculations for the derivatives of three error functions that can be used when
training, with supervision, an entire deep network (for example as a fine-tuning
stage, following an unsupervised pre-training stage).

In Section 2 we obtain generic expressions for an error’s partial derivative in
order to a given network parameter, which can be an output weight or bias, or
a hidden weight or bias. These expressions are generic in the sense that they
are valid for any number of layers, cost function, hidden activation function,
and output activation function. In Sections 3, 4 and 5 we refine the previously
obtained expressions for three specific cost functions: cross-entropy, exponential,
and sum of squared errors.

Section 6 presents an overview of a paper [2] presented at the Mexican Inter-
national Conference on Artificial Intelligence (MICAI 2013). In this paper we
describe experiments involving different combinations of pre-training and fine-
tuning cost functions.

2 Generic case

Our goal is to obtain an expression for the partial derivative ∂Ex/∂wji, where
Ex is the error associated with a particular input vector and wji is the weight
of the connection between unit i on one layer of a neural network and unit j on
the next layer. So, this section presents calculations similar to those contained
in Section 5.3.1 of Bishop [5], but here all intermediate steps are included and
the calculations are kept entirely generic, that is, independent of Ex and inde-
pendent of the activation functions used in the output layer and in the hidden
layers.

The diagram in Fig. 1 illustrates the notation used, showing some of the units
belonging to two consecutive layers of a network (which may have any num-
ber of layers). The values denoted as a and z are calculated via the forward
propagation expressions, where h(.) denotes an activation function:

aj =
∑

i

wjizi (1)

zj =h(a1, a2, ..., aj , ...) (2)

Noting that Ex “depends on the weight wji only via the summed input aj to
unit j”, we can express Ex as the function of a function:

Ex =Ex(aj(wji)) (3)

3

Figure 1: Illustration of the notation used, showing some of the units belonging
to two consecutive layers of a network (Similar to Fig. 5.7 in Bishop [5]).

So,

∂Ex

∂wji
=∂Ex

∂aj

∂aj

∂wji
(4)

We define

δj ≡
∂Ex

∂aj
(5)

So we can write

∂Ex

∂wji
=δj

∂aj

∂wji
(6)

This expression is valid for any weight, including any output weight, in a network
with any number of layers.

Using (1) we can write

∂aj

∂wji
= ∂

∂wji

∑
n

wjnzn (7)

=
∑

n

∂

∂wji
wjnzn (8)

=
∑

n

(wjn
∂zn

∂wji
+ ∂wjn

∂wji
zn) (9)

Noting that

4

∂zn

∂wji
=0 (10)

And

∂wjn

∂wji
=

{
0 if n 6= i

1 if n = i
(11)

We arrive at

∂aj

∂wji
=zi (12)

And finally

∂Ex

∂wji
=δjzi (13)

We can obtain the partial derivative in order to a bias bj (hidden or output)
simply by setting zi to 1:

∂Ex

∂bj
=δj (14)

2.1 Output weight

If wji is an output weight, we just use the definition:

δj ≡
∂Ex

∂aj
(15)

2.2 Hidden weight

If wji is a hidden weight, we note that “variations in aj give rise to variations
in the error only through variations in the variables ak”, so

Ex =
∑

k

Ex(ak(aj)) (16)

5

So we can write

δj ≡
∂Ex

∂aj
(17)

= ∂

∂aj

∑
k

Ex(ak(aj)) (18)

=
∑

k

∂

∂aj
Ex(ak(aj)) (19)

=
∑

k

∂Ex

∂ak

∂ak

∂aj
(20)

=
∑

k

δk
∂ak

∂aj
(21)

From Fig. 1 and (1),

ak =
∑

n

wknzn (22)

So

∂ak

∂aj
= ∂

∂aj

∑
n

wknzn (23)

=
∑

n

(wkn
∂zn

∂aj
+ ∂wkn

∂aj
zn) (24)

Noting that, when n 6= j ,

∂zn

∂aj
=0 (25)

And

∂wkn

∂aj
=0 (26)

We arrive at

∂ak

∂aj
=wkj

∂zj

∂aj
(27)

6

We can assume that the activation function used in a hidden layer takes only
one parameter. That is, we can simplify expression (2):

zj =h(a1, a2, ..., aj , ...)
=h(aj) (28)

So

∂ak

∂aj
=wkj

∂h(aj)
∂ak

(29)

=wkjh
′(aj) (30)

And finally,

δj =
∑

k

δkwkjh
′(aj) (31)

Or

δj =h′(aj)
∑

k

δkwkj (32)

Note that the above expression for δj depends on δk, which is associated with
the layer above (see Fig. 1). In practice, the δ values are computed starting
from the output layer, in back-propagation.

2.3 Summary

Given a specific case of error function Ex and hidden activation function h(.),
we only need to calculate two things:

1. ∂Ex/∂aj in (15) (which includes a derivation of the output activation
function, typically softmax); and

2. h′(aj) in (32).

3 Specific case: CE

Lets consider the specific case where the hidden activation function h(.) is the
logistic sigmoid, the output activation function is softmax, and the “multi-class”
version of the cross-entropy (CE) error function is used:

7

Ex(y, t) =−
∑

k

tk ln yk (33)

Ex denotes the error associated with a given input vector; y is the network’s
output vector and t is the ground-truth vector. yk is the kth element of the
output vector, that is, the posterior probability output for the kth class. tk is
the kth element of the ground-truth vector; it is 1 if the true class associated
with the input vector is the kth class, and 0 otherwise.

3.1 Output weight

If wji is an output weight, we need to calculate

δj ≡
∂Ex

∂aj
(34)

=−
∑

k

(tk
∂

∂aj
ln yk + ∂tk

∂aj
ln yk) (35)

Noting that

∂tk
∂aj

=0 (36)

We can write

δj =−
∑

k

tk
∂

∂yk
ln yk

∂yk

∂aj
(37)

=−
∑

k

tk
1
yk

∂yk

∂aj
(38)

Now we note that

yk =softmaxk(a) (39)

So, using Ikj to denote element kj of an identity matrix,

∂yk

∂aj
=yk(Ikj − yj) (40)

=
{
yk(1− yj) if j = k

−ykyj if j 6= k

8

And

δj =−
∑

k

tk
1
yk
yk(Ikj − yj) (41)

=− tj(1− yj)−
∑
k 6=j

tk(−yj) (42)

=− tj + tjyj + yj

∑
k 6=j

tk (43)

=− tj + yj

∑
k

tk (44)

But, since

∑
k

tk =1 (45)

We arrive at

δj =yj − tj (46)

Note that, using the above expression of δj , we obtain this expression for the
error derivative:

∂Ex

∂wji
=δjzi (47)

=(yj − tj)zi (48)

The above expression is the same as we would obtain for multi-class logistic
regression, and corresponds to one term of the sum in Equation 4.109 in Bishop
[5] (which shows a sum over input vectors).

3.2 Hidden weight

If wji is a hidden weight, we need to calculate

δj =h′(aj)
∑

k

δkwkj (49)

Noting that h(.) is the logistic sigmoid and recalling (28), we can write

9

h′(aj) =h(aj)(1− h(aj)) (50)
=zj(1− zj) (51)

So

δj =zj(1− zj)
∑

k

δkwkj (52)

We recall that this result is independent from error function Ex; it depends only
on the choice of hidden activation function h(.).

4 Specific case: EXP

Lets consider the specific case where the hidden activation function h(.) is the
logistic sigmoid, the output activation function is softmax, and the exponential
(EXP) error function is used:

Ex(y, t) =τ exp(1
τ

∑
k

(yk − tk)2) (53)

If wji is an output weight, we need to calculate

δj ≡
∂Ex

∂aj
(54)

=τ ∂
∂v

exp(v) ∂

∂aj

1
τ

∑
k

(yk − tk)2

︸ ︷︷ ︸
v

(55)

=τ exp(v) 1
τ

∑
k

∂

∂aj
(yk − tk)2 (56)

= exp(v)
∑

k

2(yk − tk) ∂

∂aj
(yk − tk) (57)

= exp(v)
∑

k

2(yk − tk)(∂yk

∂aj
− ∂tk
∂aj

) (58)

But

∂tk
∂aj

=0 (59)

10

So, using also (40),

δj =2 exp(1
τ

∑
k

(yk − tk)2)
∑

k

(yk − tk)yk(Ikj − yj) (60)

If wji is a hidden weight instead, we can just reuse the result obtained in Section
3.2.

5 Specific case: SSE

Lets consider the specific case where the hidden activation function h(.) is the lo-
gistic sigmoid, the output activation function is softmax, and the sum of squared
errors (SSE) is used as error function:

Ex(y, t) =1
2

∑
k

(yk − tk)2 (61)

If wji is an output weight, we need to calculate

δj ≡
∂Ex

∂aj
(62)

=1
2

∑
k

∂

∂aj
(yk − tk)2 (63)

=1
2

∑
k

2(yk − tk) ∂

∂aj
(yk − tk) (64)

=
∑

k

(yk − tk)(∂yk

∂aj
− ∂tk
∂aj

) (65)

But

∂tk
∂aj

=0 (66)

So, using also (40),

δj =
∑

k

(yk − tk)yk(Ikj − yj) (67)

If wji is a hidden weight instead, we can just reuse the result obtained in Section
3.2.

11

6 Paper overview: Using different cost
functions to train stacked auto-encoders

Deep architectures, such as neural networks with two or more hidden layers
of units, are a class of machines that comprise several levels of non-linear op-
erations, each expressed in terms of parameters that can be learned [3]. The
organization of the mammal brain, as well as the apparent depth of cognitive
processes, are among the main motivations for the use of such architectures.
In spite of this, until 2006, attempts to train deep architectures resulted in
poorer performance than that achieved by their shallow counterparts. The only
exception to this difficulty was the convolutional neural network [9], a special-
ized architecture for image processing, modeled after the structure of the visual
cortex.

A breakthrough took place with the introduction by Hinton et al. of the deep
belief network [7], a learning approach where the hidden layers of a deep net-
work are initially treated as restricted Boltzmann machines (RBMs) [11] and
pre-trained, one at a time, in an unsupervised greedy approach. Given that
auto-encoders [6] are easier to train than RBMs, this unsupervised greedy pro-
cedure was soon generalized into algorithms that pre-train the hidden levels of
a deep network by treating them as a stack of auto-encoders [4, 8].

The auto-encoder (also called auto-associator or Diabolo network) is a type of
neural network trained to output a reconstruction of its own input. Thus, in the
training of auto-encoders, input vectors can themselves be interpreted as target
vectors. This presents an opportunity for the comparison of various training cri-
teria, namely different cost functions capable of reflecting the mismatch between
inputs and targets.

The information theoretical concept of minimum error entropy has been recently
applied by Marques de Sá et al. Marques de Sá et al. [10] to data classification
machines, yielding evidence that risk functionals do not perform equally with
respect to the attainment of solutions that approximate the minimum probabil-
ity of error. In their work, the features of classic cost functions such as the sum
of squared errors (SSE) and the so-called cross-entropy (CE) cost are discussed,
and some approaches inspired by the error entropy concept are proposed. One
such approach is a parameterized function called exponential (EXP) cost, suf-
ficiently flexible to emulate the behavior of classic costs, namely SSE and CE,
and to exhibit properties that are desirable in certain types of problems, such
as good robustness to the presence of outliers.

In this work, we aimed to compare the performances of SSE, CE, and EXP costs
when employed both in the unsupervised pre-training and in the supervised
fine-tuning of deep networks whose hidden layers are regarded as a stack of
auto-encoders. To the best of our knowledge, this type of comparison has not
been done before in the context of deep learning. Using a number of artificial
and real-world data sets, we first compared pre-training cost functions in terms
of their impact on the reconstruction performance of hidden layers. Given that
the output layer of our networks was designed for classification learning, we also
compared various combinations of pre-training and fine-tuning costs in terms of
their impact on classification performance.

12

In general, the best layer-wise reconstruction performance was achieved by SSE
pre-training, though with binary data CE yielded the lowest errors for the first
hidden layer. Classification performance was found to vary little with the com-
bination of pre-training and fine-tuning costs. When pre-training with CE,
fine-tuning via SSE was found not to be a good choice. In general, the choice
of the same pre-training and fine-tuning costs yielded classification errors with
lower variance.

With a heavily unbalanced artificial data set, fine-tuning failed except for the
cost combination used to tune the model’s hyper-parameters and for those cost
combinations that involved EXP fine-tuning. This seeming robustness of EXP
fine-tuning should be further investigated, using a wider variety data sets. Fu-
ture work should also focus on improving both the pre-training early stopping
mechanism and the stability of fine-tuning after large numbers of iterations. In
future experiments we plan to adopt GPU-based processing, to allow the use
of more computationally demanding data sets, such as variants of the popular
MNIST character recognition set.

References
[1] T. Amaral, L. M. Silva, and L. A. Alexandre. Using different cost func-

tions when pre-training stacked auto-encoders. Technical Report 1/2013,
Instituto de Engenharia Biomédica / NNIG, April 2013. 3

[2] T. Amaral, L. M. Silva, L. A. Alexandre, C. Kandaswamy, J. M. Santos,
and J. Marques de Sá. Using different cost functions to train stacked auto-
encoders. In Mexican International Conference on Artificial Intelligence
(MICAI), pages 114–120, 2013. 3

[3] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009. 12

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-
wise training of deep networks. In Neural Information Processing Systems
Conference, volume 19, pages 153–160, 2007. 12

[5] C. Bishop. Pattern recognition and machine learning, volume 1. Springer,
2006. 3, 4, 9

[6] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics, 59(4-5):291–294,
1988. 12

[7] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554, 2006. 12

[8] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An
empirical evaluation of deep architectures on problems with many factors
of variation. In International Conference on Machine Learning, pages 473–
480, 2007. 12

13

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. 12

[10] J. Marques de Sá, L. Silva, J. Santos, and L. Alexandre. Minimum Er-
ror Entropy Classification, volume 420 of Studies in Computational Intel-
ligence. Springer, 2013. 12

[11] P. Smolensky. Parallel distributed processing: explorations in the mi-
crostructure of cognition, volume 1, chapter Information processing in dy-
namical systems: Foundations of harmony theory, pages 194–281. Univer-
sity of Colorado, 1986. 12

14

	Introduction
	Generic case
	Output weight
	Hidden weight
	Summary

	Specific case: CE
	Output weight
	Hidden weight

	Specific case: EXP
	Specific case: SSE
	Paper overview: Using different cost functions to train stacked auto-encoders
	References

