
Report: Improving CNN by Reusing Features
Trained with Transductive Transfer Setting

Chetak Kandaswamy?, Lúıs Silva, and Lúıs Alexandre

Instituto de Engenharia Biomdica (INEB),Porto, Portugal,
NNIG Technical Report No. 2/2014,

Project Reusable Deep Neural Networks: Applications to Biomedical Data,
(PDTC/EIA-EIA/119004/2010)
http://paginas.fe.up.pt/~nnig

1 Transfer Learning Paradigm

The behavioral neuroscientist believe that the knowledge gained to distinguish
an apple becomes useful when one tries to distinguish a orange or a pear. The
study of transfer learning is inspired by this ability of human to a learn from
a problem and able to reuse on a different but related problem. Reusing the
knowledge of a network trained on source problem S to improve performance of
target problem T to attain its goal function is called transfer learning and we
use “⇒” symbol to denote transference. The various types of transfer learning
approaches and settings are discussed in [1][2].

In Inductive transfer learning solves a more general problem before solving a
more specific problem. In this case, distributions from source and target problems
are related, P (XS) ≈ P (XT). In transductive transfer the machine trains on a
specific problem to solve another specific problem. In this paper we are interested
in transductive transfer problems with arbitrary distribution but not necessarily
related to the distribution of the source problem P (XS) 6= P (XT). In this
paper we are interested in transductive transfer setting as it performs better
than inductive transfer settings from Vladmir Vapnik et al. [12] and Chetak et
al. [1].

Let design data set Xds = {x1, x2, ..., xn} has nds distinct training instances.
These nds instances are assumed to be random samples with probability dis-
tribution P (X) from the classifier input X. The label set Ω = {1, ..., c} has c
distinct class labels. The source and target problems may have complete or par-
tial or no information about labels. Even when the information is available, the
label set for the source ΩS and target ΩT may be same or different. Similarly the
number of instances for the source nS and target nT may be equal or different.

The features (or filters) corresponds to a vector of weights and biases of
neural network. The feature set w =

{
w1, w2, ..., wK

}
represent features of K

? This work was financed by FEDER funds through the Programa Operacional Fac-
tores de Competitividade COMPETE and by Portuguese funds through FCT
Fundação para a Ciência e a Tecnologia in the framework of the project PTDC/EIA-
EIA/119004/2010.

2 Feature Transference With Reusable Convolutional Neural Network

layers of the network. The unsupervised feature set is represented as U(w) and
supervised feature set is represented as S(w).

2 Related Work

The Neocognitron, a seminal work of Fukushima [3] in early 1980’s introduced
Convolutional Neural Network (CNN). CNN is a self-organizing neural network
which is unaffected by shift in position for pattern recognition. This work was
later improved by LeCun [4] in 1998 by training multi-layer neural network
with back propagation algorithm for gradient based learning. CNN algorithm
outperformed all the algorithms till date on hand written digit recognition and
many more image classification datasets and became a mile stone for object and
speech recognition algorithms.

CNN belongs to hierarchal neural network whose convolutional layers [4]
alternate with subsampling layers inspired by primary visual cortex of Wiesel and
Hubel [5] in 1959 made up of simple and complex cells. CNN is better explained
in three stages. The image processing stage, the alternating convolutional and
subsampling stage and finally the classification stage. The image processing stage
is a pre-processing stage of predefined filters that are kept fixed during training.
The convolutional and subsampling are architectural ideas to ensure some degree
of shift and distortion invariance. The convolution layer convolute the input with
set of filters like Gabor filters or trained filters producing feature maps(Simple
cells). These feature maps are further reduced by subsampling (Complex cells).
Finally, feature or kernal size of convolution filters and subsampling are chosen
such that the output maps of the last convolutional layer are downsampled to 1
pixel per map or fully connected layer and fed to classification stage. The depth
of the CNN is a function of number of alternating convolutional and subsampling
stage.

Max-pooling [6][7] is a form of non-linear down-sampling. Max-pooling is used
instead of subsampling layer. Max-pooling partitions the input image into a set of
non-overlapping rectangles and, for each such sub-region, outputs the maximum
value. Scherer et al. [7] found that max-pooling can lead to faster convergence,
select superior invariant features, and improve generalization. The Multi Column
CNN [8] shows that averaging several CNN into multiple columns reduces the
overall error rate. CNN using transfer learning approaches [14] perform better
for latin and Chinese characters.

3 Architectures

Convolutional neural network: Given design set Xds.source and test set
Xts.source, we can design a classifier to train CNN [4] with baseline approach
by applying Algorithm 1.

The convolutional network with filter size of the kernal as [20, 50] and max
training epochs of 200. The learning rate of 0.1 is set with batch training of 100.
All the experiments was done with 10 repetition.

Feature Transference With Reusable Convolutional Neural Network 3

Algorithm 1 Baseline approach for either SDA or CNN.

Given design set Xds.source and test set Xts.source,

1. Randomly initialise a classifier network;
2. IF “Model == Stacked Denoising Autoencoder”;

Pre-train the network using Xds.source;
Fine-tune the network using Xds.source;

3. IF “Model == Convolution Neural Network”;
Train (Fine-tune) the network using Xds.source;

4. Test the network using Xts.source, obtaining baseline classification error ε.

Stacked denoising Autoencoder: An Autoencoder is a simple neural net-
work that reconstructs the original input from the hidden representations. It
encodes the input to generate hidden representations and attempts to decode
by reconstructing the original input X. A denoising Autoencoder is a variant
of the autoencoder where corrupted version of the input is used to reconstruct
the original input X. Stacking multiple denoising Autoencoder’s one on top of
another, gives the model the advantage of hierarchical features, hence it is called
Stacked Denoising Autoencoders (SDA) [13].

Given design set Xds.source and test set Xts.source, we can design a classifier
to train SDA with baseline approach by applying Algorithm 1. Training a SDA
in baseline approach is composed mainly of two stages [1]: an unsupervised pre-
training stage followed by a supervised fine-tuning stage.

We used pre-training and fine-tuning learning rates of 0.001 and 0.1, respec-
tively. The stopping criteria for pre-training was fixed to 40 epochs; stopping
criteria for fine-tuning was set to a maximum of 1000 epochs. The number of
neurons in three hidden layers and one output layer is pyramidal structure with
[16× 62, 16× 52, 16× 42, c] neurons.

4 Supervised Layer based Feature Transference

In Supervised Layer based Feature Transference approach we transfer the fine-
tuned parameters of a model from the source to the target problem. Inspired by
the human primary visual cortex has simple cells that correspond to low-level
feature representations. The higher level visual cortex that has complex cells
that correspond to higher-level feature representations [9]. This concept is ex-
tended to deep representation. We use low-level feature transference to transfer
low-level representations and similarly we use high-level feature transference to
transfer high-level representations, or both low and high-level feature transfer-
ence depending on the target problem.

In this approach only in case of SDA the source features wS are pre-trained
pretrain (wS) until the Kth hidden layer. Then we fine-tune the already pre-
trained features, finetune (pretrain (wS)) with labeled source data using stochas-
tic gradient descent and back-propagation.

4 Feature Transference With Reusable Convolutional Neural Network

In case of CNN we fine-tune the filters, finetune (pretrain (wS)) with labeled
source data using stochastic gradient descent and back-propagation.

Table 1: S-CNN feature transference approach and respective methods
Methods Transference Target problem1

reuse FT wS ⇒ wT finetune (wT)
reuse L1+L2+L3 w1

S , w
2
S , w

3
S ⇒ w1

T , w
2
T , w

3
T finetune (cT)

reuse L1+L3 w1
S , w

3
S ⇒ w1

T , w
3
T finetune

(
w2

T , cT
)

reuse L2+L3 w2
S , w

3
S ⇒ w2

T , w
3
T finetune

(
w1

T , cT
)

reuse L1+L2 w1
S , w

2
S ⇒ w1

T , w
2
T finetune

(
w3

T , cT
)

reuse L3 w3
S ⇒ w3

T finetune
(
w1

T , wT
3, cT

)
reuse L2 w2

S ⇒ w2
T finetune

(
w1

T , w
3
T , cT

)
reuse L1 w1

S ⇒ w1
T finetune

(
w2

T , w
3
T , cT

)
Baseline# - -

Baseline means traditional CNN, fully trained for the target problem without reusing
anything. * Transfer only pre-trained parameters of the source problem. 1 Transfered
parameters used for fine-tuning on the target problem

We use supervised layer based feature transference to choose which layer or
layers to transfer. For example if we only need low-level features, we choose to
transfer first layer parameters i.e., w1

S ⇒ w1
T which is listed as reuse L1 method in

Table 2. This enables us to use deep transference of supervised features. Then we
again fine-tune the entire model like a regular multi-layer perceptron with back-
propagation except that at first layer we do not update the parameter, w1

T with
the target problem dataset. In essence we are transferring the low-level features
of source problem to the target problem. Similarly if we need both low-level and
middle-level features to transfer both we choose to transfer both first and second
layer parameters i.e., w1

S , w
2
S ⇒ w1

T , w
2
T which is listed as reuse L1+L2 method

in Table 2. It is interesting to see that this enables various combinations to reuse
supervised features for the target problem. In case of reuse FT method we reuse
the fully trained supervised features of source problem and then refine-tune the
entire network for the target problem. And for inductive transfer setting the
reuse FT method cannot reuse the logistic regression layer as the label set for
the source problem ΩS with cS classes is not equal to the target problem label
set ΩT with cT classes.

5 Data and Experimental Results

We performed all our experiments on a computer with i7-377 (3.50GHz) 16GB
RAM using Theano [11] a GPU compatible machine learning library on a GTX
770 GPU. The GPU paralle processing alows training both CNN’s and SDA’s
deep neural networks with millions of neural connection, for very small learning
rate, for large number of epochs, for very large datasets within several days.

Feature Transference With Reusable Convolutional Neural Network 5

Each of these experiments are repeated 10 times to increase confidence level of
the results.

MNIST1 and MADbase2 are hand-written Latin and Arabic digits datasets
respectively. Latin and Arabic datasets are representative names for the well-
known MNIST and MADbase datasets of hand-written Latin and Arabic digits,
respectively. The original Chars74k has 64 classes consisting of typed digits,
lowercase and uppercase English language characters that was broken into three
smaller datasets: Digits dataset with the 0-to-9 digits, the Lowercase dataset
with the a-to-z lowercase letters and finally, the Uppercase dataset with the A-
to-Z uppercase letters. All the three modified datasets are resized to 28 × 28
pixels from original 128 × 128 pixels image. The Latin-2 dataset is a modified
version of MNIST to match the number of training and validation instances of
the Lowercase datasets.

6 Transductive transfer: From digits to letters

Let us consider a problem of classifying images of English lowercase a-to-z by
reusing fine-tuned features of English handwritten digits 0-to-9. In case of reuse
L1, the average error rate of uppercase letters was significantly lower than the
baseline. Similar results are obtained for the lowercase letters. Reusing single
layer: L1, L2 or L3, we observe that the features of the lower layer leads to
lower classification error. Reusing multiple layers: L1+L2, L2+L3, L1+L3, we
observe that reusing L1+L3 perform better than the reusing L1+L2 for both
uppercase and lowercase datasets. Reusing all three layers: L1+L2+L3 has de-
graded performs as the supervised features are well tuned for the source problem
and fine-tuning only the logistic regression layer does not compensate for good
features for the target problem. Thus reusing higher layer supervised features
are not as good as reusing lower layer supervised features.

Table 2: Average Test Error for Transductive transfer setting
Source: latin digits
Target: uppercase letters lowercase letters
nds.source/c: 1320 5000 1320 5000

SCNN Approach Error Error Error Error

reuse L1+L2+L3 5.96(0.13) 5.32(0.18) 6.13(0.13) 5.63(0.15)
reuse L1+L3 4.49(0.14) 4.24(0.10) 4.75(0.13) 4.57(0.09)
reuse L1+L2 3.61(0.12) 3.39(0.12) 3.83(0.06) 3.63(0.13)
reuse L3 4.30(0.13) 4.20(0.16) 4.62(0.18) 4.61(0.14)
reuse L2 3.54(0.14) 3.43(0.06) 3.72(0.11) 3.58(0.15)
reuse L1 3.43(0.11) 3.35(0.09) 3.64(0.06) 3.56(0.11)
Baseline 3.42(0.10) 3.42(0.10) 3.65(0.12) 3.65(0.12)

1 http://yann.lecun.com/exdb/mnist/
2 http://datacenter.aucegypt.edu/shazeem/

6 Feature Transference With Reusable Convolutional Neural Network

Algorithm 2 Experimental procedure.

Given design sets Xds.source.full, Xds.target.full and test set Xts.source, Xts.target, For

each data type (Latin handwritten digits, Arabic handwritten digits)

1. For each nds such that nds
c
∈[100, 250, 500, 1000, 1320, 2500, 5000],

(a) Run the baseline approach;
(b) Obtain Xds.target by randomly picking nds samples from Xds.target.full;
(c) For each reuse LK approach such that LK∈[L1, L1 + L2],

i. Fix LKth layer of the network trained on Xds.source;
ii. Retrain the network using Xds.target except the LKth layers;

iii. Test the network using Xts.target, obtaining classification error ε.

7 Importance of Sample size in Supervised Feature
transference

From the previous result reusing L1, L2, L3, L1+L2, L2+L3, L1+L3, L1+L2+L3
we observe that reusing L1 and L1+L2 perform better other approaches for
both uppercase and lowercase datasets. Thus we perform experiment to test the
importance training sample size on the supervised feature transference.

In this section we describe the algorithm for the experimental procedure used.

100 250 500 1000 2500 5000
nds/c

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Te
st

 E
rr

or
 (

%
)

Xarabic (Baseline)
Xarabic reuse Xlatin [L1]
Xarabic reuse Xlatin [L1+ L2]

100 250 500 1000 2500 5000
nds/c

0
200
400
600
800

1000
1200
1400
1600
1800

 T
im

e
(s

ec
)

Xarabic (Baseline)
Xarabic reuse Xlatin [L1]
Xarabic reuse Xlatin [L1+ L2]

Fig. 1: Classification results on MAHDBase dataset (Arabic digits) for SCNN
feature transference approach by reusing various layers, for different numbers
nds/c of training samples per class. Left: Average classification test error rate.
Right: Average time taken for classification.

Feature Transference With Reusable Convolutional Neural Network 7

100 250 500 1000 2500 5000
nds/c

0

1

2

3

4

5

6

7

Te
st

 E
rr

or
 (

%
)

Xlatin (Baseline)
Xlatin reuse Xarabic [L1]
Xlatin reuse Xarabic [L1+ L2]

100 250 500 1000 2500 5000
nds/c

0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

ec
)

Xlatin (Baseline)
Xlatin reuse Xarabic [L1]
Xlatin reuse Xarabic [L1+ L2]

Fig. 2: Classification results on MNIST dataset (Latin digits) for SCNN feature
transference approach by reusing various layers, for different numbers nds/c of
training samples per class. Left: Average classification test error rate. Right:
Average time taken for classification.

8 Classification Results and discussion

The transductive transfer setting does perform better than the inductive trans-
fer setting. Thus we have conducted our experiments based on the transductive
transfer settings. The conclusions and the results of transductive transfer learn-
ing [1] are used to continue experiments with CNN.

Table 3: Average Error by reusing latin-2 in transductive setting
Approaches Lowercase Uppercase

Test Error % Test Error %

SDA Baseline [1] 4.95±0.16 5.01±0.27
SDA Baseline + reuse L1 (SSDA) [1] 4.72±0.17 4.72±0.18
SDA Baseline + pre-trained all layers (USDA) [1] 4.67±0.38 4.65±0.19
SDA Baseline + reuse FT (SSDA) [1] 4.57±0.08 4.58±0.19

CNN Baseline + reuse L1+L2 (SCNN) 3.83±0.06 3.61±0.12
CNN Baseline 3.65±0.12 3.42±0.10
CNN Baseline + reuse L1 (SCNN) 3.64±0.06 3.43±0.11

9 Conclusion

The supervised feature transference show better feature transference than the
unsupervised feature transference of Stacked denoising autoencoder. Also looking
at the layers of the convolution neural network the larger samples show lower
feature transference. Thus the feature transference are more useful for the lower
number of sampler per class.

8 Feature Transference With Reusable Convolutional Neural Network

References

1. C. Kandaswamy, J. Marques de S, L. M. Silva, L. A. Alexandre, J. M. Santos.:
Improving Accuracy on Transductive Transfer Learning by Reusing SDA. (Under
review), (2013)

2. S. J. Pan and Q. Yang.: A survey on transfer learning. Knowledge and Data Engi-
neering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–1359 (2010)

3. K. Fukushima.: Neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position. Biological Cybernetics,
vol. 36, no. 4, pp. 193–202 (1980)

4. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.: Gradient-based learning applied
to document recognition. In: proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324
(1998)

5. D. H. Hubel and T. N. Wiesel.: Receptive fields of single neurones in the cats striate
cortex. The Journal of physiology, vol. 148, no. 3, pp. 574–591 (1959)

6. D. C. Cirecsan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flex-
ible, high performance convolutional neural networks for image classification. In:
22nd International joint conference on Artificial Intelligence. vol. 2, pp. 1237–1242
(2011)

7. D. Scherer, A. Muller, and S. Behnke.: Evaluation of pooling operations in con-
volutional architectures for object recognition. in Artificial Neural Network, 2010.
Springer, pp. 92–101 (2010)

8. D. Ciresan, U. Meier, and J. Schmidhuber.: Multi-column deep neural networks for
image classification. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 3642–3649 (2012)

9. Y. Bengio.: Learning deep architectures for AI. Foundations and Trends in Machine
Learning, vol. 2, no. 1, pp. 1–127. now Publishers (2009)

10. T. de Campos, B. R. Babu, and M. Varma.: Character recognition in natural
images. (2009)

11. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J.
Turian, D. Warde-Farley, and Y. Bengio.: Theano: a CPU and GPU math expression
compiler. In: Python for Scientific Computing Conference, vol. 4, (2010)

12. G. Alexander, V. Vovk, and V. Vapnik. ”Learning by transduction. In: 14th con-
ference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
(1998).

13. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked de-
noising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res.,vol. 11, pp. 33713408, (2010).

14. D. Ciresan, U. Meier, and J. Schmidhuber.: Transfer learning for Latin and Chinese
characters with deep neural networks. In: 2012 IJCNN Conference, IEEE, (2012).

