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1 Introduction

This report presents an overview of three manuscripts. First, an overview of a
paper [1] presented at the Mexican International Conference on Artificial Intelli-
gence (MICAI 2013). Second, manuscript [6] that we have recently submitted to
International Joint Conference on Neural Networks conference (IJCNN 2014).
Finally, ongoing experiments on Stacked autoencoders and Convolutional neural
networks.

We performed all our experiments on a computer with i7-377 (3.50GHz) 16GB
RAM. For faster processing of larger datasets we used Theano Bergstra et al.
[4] a GPU compatible machine learning library on a GTX 770 GPU. We used
Theano on GPU parallel processing to increase the computation capability than
a CPU.

In Section 2 presents an overview GPU Parallel Processing capability in compar-
ison with CPU. In Section 3 presents an overview of paper presented at MICAI
2013. In this paper we describe experiments involving different combinations of
pre-training and fine-tuning cost functions. In Section 4 presents an overview of
a manuscript submitted to IJCNN 2014, reporting on experiments in which we
explored the use of transfer learning to improve the performance of deep neural
networks with transductive transfer problems [6].

2 GPU Parallel Processing

The GPU parallel processing allows training both Convolutional Neural Net-
work’s and Stacked denoising Autoencoder’s with millions of neural connection,
for very small learning rate, for large number of epochs, for very large datasets
within several days. Each of these experiments are repeated 10 times to increase
confidence level of the results. The performance GPU parallel process over CPU
is shown in Fig 1b.

The PyCUDA runs like a regular compiler except the ‘‘edit-run-repeat’’ working
as shown in Fig1a. The compilation and caching operations in the gray box are
performed without user involvement.

(a) PyCUDA workflow for GPU [11] (b) GPU vs CPU

Figure 1: Performance of GPU over CPU with PyCUDA
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3 Paper overview: Using different cost
functions to train stacked auto-encoders

Deep architectures, such as neural networks with two or more hidden layers
of units, are a class of machines that comprise several levels of non-linear op-
erations, each expressed in terms of parameters that can be learned [2]. The
organization of the mammal brain, as well as the apparent depth of cognitive
processes, are among the main motivations for the use of such architectures.
In spite of this, until 2006, attempts to train deep architectures resulted in
poorer performance than that achieved by their shallow counterparts. The only
exception to this difficulty was the convolutional neural network [13], a special-
ized architecture for image processing, modeled after the structure of the visual
cortex.

A breakthrough took place with the introduction by Hinton et al. of the deep
belief network [9], a learning approach where the hidden layers of a deep net-
work are initially treated as restricted Boltzmann machines (RBMs) [17] and
pre-trained, one at a time, in an unsupervised greedy approach. Given that
auto-encoders [5] are easier to train than RBMs, this unsupervised greedy pro-
cedure was soon generalized into algorithms that pre-train the hidden levels of
a deep network by treating them as a stack of auto-encoders [3, 12].

The auto-encoder (also called auto-associator or Diabolo network) is a type of
neural network trained to output a reconstruction of its own input. Thus, in the
training of auto-encoders, input vectors can themselves be interpreted as target
vectors. This presents an opportunity for the comparison of various training cri-
teria, namely different cost functions capable of reflecting the mismatch between
inputs and targets.

In this work, we further investigate the information theoretical concept of min-
imum error entropy has been recently applied by Marques de Sá et al. Mar-
ques de Sá et al. [14] to data classification machines, yielding evidence that risk
functionals do not perform equally with respect to the attainment of solutions
that approximate the minimum probability of error. By compare the perfor-
mances of squared errors (SSE), cross-entropy (CE), and exponential (EXP)
costs when employed both in the unsupervised pre-training and in the super-
vised fine-tuning of deep networks whose hidden layers are regarded as a stack
of auto-encoders. To the best of our knowledge, this type of comparison has not
been done before in the context of deep learning. Using a number of artificial
and real-world data sets, we first compared pre-training cost functions in terms
of their impact on the reconstruction performance of hidden layers. Given that
the output layer of our networks was designed for classification learning, we also
compared various combinations of pre-training and fine-tuning costs in terms of
their impact on classification performance.

In general, the best layer-wise reconstruction performance was achieved by SSE
pre-training, though with binary data CE yielded the lowest errors for the first
hidden layer. Classification performance was found to vary little with the com-
bination of pre-training and fine-tuning costs. When pre-training with CE,
fine-tuning via SSE was found not to be a good choice. In general, the choice
of the same pre-training and fine-tuning costs yielded classification errors with

4



lower variance.

We performed experiments using CPU and GPU to allow the use of more compu-
tationally demanding data sets, such as variants of the popular MNIST character
recognition set.

4 Paper overview: Improving Accuracy on
Transductive Transfer Learning by Reusing
SDA

In this work we show using Stacked Denoising Auntoencoders the unsupervised
feature transference outperform randomly initialized machine on a new problem.
We achieved 7% relative improvement on average error rate and 50% on average
computation time with uppercase letters dataset. In the case of supervised
feature transference, we achieved 5.7% relative improvement for average error
rate by reusing first or second hidden layer to classify the uppercase letters
dataset, and 8.5% relative improvement for average error rate by reusing all
three hidden layers of a problem that was fine-tuned again with the uppercase
letters dataset.

A good machine learning method should be able to self-learn the patterns and
extract information from the data, able to reuse the information to solve a
similar but different problem, and possible to compete with state-of-the-art
technology. Deep learning and Transfer learning are machine learning methods,
mimics the multi-layered, deep, and sparsely connected model of the human
brain. Deep learning method extracts information same as hierarchical learning
method of Human. In Transfer learning, human learns simple concepts first
and then builds complicated ideas. In this project, we are interested in reusable
deep learning methods for classification of data.

The transfer learning survey [15] also indicates various transfer settings which
are commonly classified as Inductive, Transductive and Unsupervised transfer
learning. In inductive transfer learning the source and target problems have
different but related distribution. Research on inductive transfer by Heigold et
al. [8] and Huang et al. [10] has shown that by transferring supervised features
for classifying cross-lingual speech recognition problems, using deep architec-
tures, improved performance over the one achieved by shallow architectures.
The research work of Ciresan et al. [7] has shown transfer learning for latin and
chinese characters with deep convolution neural network achieve better trans-
ference. The study by Raina et al. [16] shows that a machine is able to learn
higher-level features by transferring unsupervised features from source to target
problem, for both inductive and transductive transfer settings.

In this paper, we analyze feature transference using Stacked Denoising Autoen-
coders (SDA) for two different approaches: 1) unsupervised feature transference
(USDA); 2) supervised layer based feature transference (SSDA). For that pur-
pose we have carried out experiments to study the transductive transfer learn-
ing of arbitrary distribution of source and target problems for both USDA and
SSDA approaches, for example, by training a machine to classify images of digits
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0-to-9 and reusing these trained features to classify images of English characters
a-to-z. We also performed experiments by reversing the problem roles: training
a machine with images of English characters a-to-z and reusing the features to
classify images of digits 0-to-9. Furthermore, we also studied inductive transfer
learning of different but related problem for USDA approach. Processing large
numbers of instances as we did, on millions of neural connections, would take
several weeks using traditional CPUs. We used instead a GPU parallel proces-
sor for faster processing of these large networks involving several repetitions for
both inductive and transductive transfer settings.

We studied the performance of feature transference for both transductive and
inductive transfer settings. Both unsupervised (USDA) and supervised (SSDA)
feature transference approach significantly reduced the average error and com-
putation time of the baseline for the harder case problems.

5 Present Experiment overview: Improving
Deep Convolutional Neural Network by
Reusing Features Trained with Transductive
Transfer Setting

From the previous paper reusing L1, L2, L3, L1+L2, L2+L3, L1+L3, L1+L2+L3
we observe that reusing L1 and L1+L2 perform better other approaches for both
uppercase and lowercase datasets. Thus we perform experiment to test the im-
portance training sample size on the supervised feature transference. The results
are in the FCT technical report.
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