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1 Introduction

This report describes several activities I have undertaken since the beginning of
my contract in August 2012 until the end of the project’s first year, at the start
of May, 2013. Each of the following sections addresses an individual activity.
Activities are ordered more or less chronologically.

Besides the tasks described here, work related with the training of restricted
Boltzmann machines (RBMs) and stacked auto-encoders is described in detail
in two separate technical reports [1, 2].

2 Introduction to deep learning

My work in the project started in August 2012, with a review of introductory
materials about deep learning, which included the first three sections of the
2009 article/book “Learning deep architectures for AI” by Bengio [4], as well
as the 2010 review paper “Deep machine learning – a new frontier in artificial
intelligence research” by Arel et al. [3].

Those readings allowed me to become acquainted with the concepts of shal-
low versus deep architectures, the motivations for the use of deep architectures
(such as their inspiration from nature and their theoretical advantages in terms
of efficiency), and the limitations associated with deep architectures until the
breakthrough led by Hinton et al. [8] in 2006.

I prepared an overview of these topics and presented it in the project meeting
of October 12, 2012. This presentation included a first list of some publicly
available software implementations of deep learning models. It is included in
Appendix A of this report.

3 Visit to LISA lab

In January 2013, for a period of four weeks, I visited the LISA machine learning
laboratory1 at the University of Montreal, headed by Prof. Yoshua Bengio.
LISA is one of the most important research groups worldwide in the area of
deep learning, routinely producing state-of-the-art research.

3.1 Input from Prof. Bengio

Prof. Bengio offered some comments of particular relevance to our project, as
well as some feedback on the work carried out to date within the project, regard-
ing the training of RBMs, which I have demonstrated to him. His comments
are summarised in the following paragraphs.

Machine learning models in general need large amounts of training data. Of-
ten, there is not a lot of data available in biomedical applications, especially

1See https://www.iro.umontreal.ca/rubrique.php3?id_rubrique=27&lang=en.
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data annotated by experts. In order to train deep learning models aimed at
biomedical applications, it would be important to have at least a large amount
of non-labelled data, for unsupervised pre-training.

Computer vision is where deep learning excels the most. A drop in object
classification error rate from about 30% to less than 16% has been recently
achieved using deep convolutional nets, as reported by Krizhevsky et al. [9].

The unsupervised training of auto-encoders could offer an opportunity for the
use of alternative cost functions, given that auto-encoders are trained to re-
construct their own inputs. Moreover, auto-encoders are much simpler to train
than RBMs. These remarks by Prof. Bengio prompted our own work with
auto-encoders, started by Luís Alexandre and continued by myself and Chetak
Kandaswamy, as described in a separate technical report [2].

Regarding the unsupervised training of RBMs, division of the training data
into mini-batches is important not only to avoid operations with very large
matrices, but also in terms of efficiency. Using all the available training data
at each training epoch (iteration) would be excessive, because we don’t need to
update the model’s parameters precisely in the right direction at each epoch;
a smaller amount of data is sufficient to update the parameters in the right
general direction, and much less time-consuming. An analogy can be drawn
with a person going from a point A to a point B in a number of steps: the
person doesn’t need to worry about moving precisely in the direction of point
B at each step taken; a number of roughly precise steps will lead to B just the
same.

A clarification regarding the sampling mechanism used during the training of
RBMs: what we’re using is so-called block Gibbs sampling, as opposed to Gibbs
sampling “one bit at at time”. Block Gibbs sampling allows to more efficiently
explore the modes of the multi-dimensional data distribution, since all bits are
samples in parallel. This is possible in restricted Boltzmann machines, but not
in unrestricted ones.

On the subject of sampling from a trained RBM, in theory, when starting from
a random visible vector, it is necessary to perform a large number of Gibbs sam-
pling steps to obtain a good sample, like we did in our implementation. However,
once this “burn in” is achieved, each new step, if done without restarting from
a random vector, is enough to yield a good sample. In practice, if we start not
from a random vector but from a training vector, we can assume that the “burn
in” is already done and start drawing samples right away. These techniques can
greatly speed up the generation of samples.

The fact that the type of RBM we’ve implemented is meant for use with binary
data doesn’t preclude its use with real-valued data scaled between 0 and 1.
Our discouraging results with real-valued data, in particular with the Iris data
set, could be due to the choice of learning rate. In some cases it is important
to adjust the learning rate throughout the training. (Later, in our work with
auto-encoders, we have implemented adaptive learning rates.)

In case we pursue experiments with RBMs, we should now focus on using more
efficient code, so that we may use data sets with large numbers of features and
examples.
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3.2 Activities and notes

During my visit, I did a more in-depth reading of some parts of Prof. Bengio’s
2009 book [4], in particular the sections on neural networks for deep architec-
tures (Section 4) and on energy-based models and Boltzmann machines (Section
5). Prof. Bengio’s lecture notes “Introduction to Gradient-Based Learning”2

proved to be very useful as an introduction to gradient descent learning meth-
ods. The material I read on convolutional neural networks later helped me to
prepare the presentation described in Section 5.

I spent some time also with the previously mentioned paper by Krizhevsky
et al. [9], which reports recent developments on the use of convolutional neural
networks, as well as with the pre-print of a new review on deep learning by
Bengio et al. [5], which is now publicly available. While not precluding the
reading of the 2009 book, this article contains a lot of information on recent
developments and research directions.

In order to demonstrate my Matlab implementation of RBM training algorithms
to Prof. Bengio, I spent some time tidying up its experimental scripts and
collecting results into a report. This ultimately became the technical report on
experiments with RBMs being submitted separately [1].

I read some introductory materials on the Python programming language, the
NumPy numerical library, as well as Theano, a Python library that facilitates
the development of deep learning models, while giving the option of performing
their training on one or more graphical processing units (GPUs). The LISA lab
was the ideal place to become acquainted with these programming technologies,
as Theano has been developed by researchers at LISA and is extensively used
in their work.

Throughout the visit, I collected some notes on various software implemen-
tations of deep learning models that are publicly available. Those notes are
presented in Section 4.

I had the chance to attend a seminar presented by a leading researcher of the
Canadian company D-Wave Systems Inc.3, on the use of quantum computing
for training deep learning models. This company specialises in the development
and commercialisation of quantum computers, an emerging field with potential
deep learning applications. I attended also a brief “tea talk” about a paper
co-authored by Prof. Pedro Domingos, a Portuguese researcher based in the
U.S. who works with deep architectures [6].

4 Notes on existing software

The following is a list of some software implementations of deep learning models
that are publicly available, collected during my introductory readings and also
during my visit the LISA lab. In each case, the group or researcher responsible
for the software is given (with a link to the relevant web page), as well as the

2See http://www.iro.umontreal.ca/~bengioy/ift6266/H12/html/gradient_en.html.
3See http://www.dwavesys.com.
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programming language and relevant libraries used, and the models that are
implemented.

1. LISA lab
Deep Learning Tutorials
http://deeplearning.net/tutorial/
Python / Numpy / Theano

• logistic regression

• multilayer perceptrons

• deep convolutional networks

• autoencoders, denoising autoencoders

• stacked denoising autoencoders

• restricted boltzmann machines

• deep belief networks

2. LISA lab
Wiki, “fundamental research projects”
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
C++ / PLearn

• deep belief networks

• stacked autoassociators

3. Rasmusberg Palm
DeepLearnToolbox
https://github.com/rasmusbergpalm/DeepLearnToolbox
Matlab

• deep belief networks

• stacked autoencoders

• convolutional neural networks

• convolutional autoencoders

• vanilla neural networks

4. Ruslan Salakhutdinov, Geoff Hinton
Training a deep autoencoder or a classifier on MNIST digits [7]
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
Matlab

• restricted boltzmann machines

– binary hidden and binary visible

– Gaussian hidden and binary visible

• deep autoencoders

• deep belief networks ?
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5. Ruslan Salakhutdinov
Learning Deep Boltzmann Machines
http://www.utstat.toronto.edu/~rsalakhu/DBM.html
Matlab

• deep boltzmann machines

6. Hugo Larochelle
Efficient Learning of Deep Boltzmann Machines [10]
an enhancement of 5
http://www.dmi.usherb.ca/~larocheh/code/dbm_recnet.tar.gz
Matlab

• deep boltzmann machines

7. Andrej Karpathy
matrbm
a simplified version of 4
http://code.google.com/p/matrbm/
Matlab

• restricted boltzmann machines

• deep belief networks (of stacked RBMs)

5 Introduction to convolutional neural
networks

Following up on my visit to the LISA lab, I prepared an introduction to con-
volutional neural networks, focusing on the motivation for their use, the main
differences from traditional networks, the concepts of shared weights and multi-
ple feature maps, down-sampling layers, and a description of the LeNet-5 model.
This introduction was presented in the project meeting of February 22, 1013 and
is included in Appendix B of this report.

6 Notes on UCI biomedical datasets

In order to form an idea of the type of biomedical data that we could use in
our experiments while relying only on CPU power (as opposed to using GPUs),
I searched the Machine Learning Repository maintained by the University of
California - Irvine (UCI) 4 for data sets that fulfilled a number of characteristics,
namely: being life sciences related; being frequently and recently used; being
appropriate for classification learning; and being neither too small (less than
1000 examples) nor too big (say below 10000 examples).

A spreadsheet gathering the collected information on 62 available life sciences
data sets is included in Appendix C. The data sets are ordered by decreasing
number of papers citing them. This number of citations, as well as the range of

4See http://archive.ics.uci.edu/ml/index.html.
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dates of those citations, provides a measure of how popular and recently used
each data set is.

Taking into account the characteristics we desired, the five data sets highlighted
in yellow seemed to be the most interesting ones, namely: Mushroom data;
Splice-junction gene sequence data; Abalone data; Thyroid disease data; and
Yeast data. These findings were discussed in the project meeting of March 15,
2013. We have subsequently used two of these data sets in our experiments with
auto-encoders.

7 Notes on relevant conferences

I gathered in the table shown below information on conferences that are po-
tentially interesting for publication of our work. Conferences are categorised
into machine learning (ML), computer vision (CV), and biomedical engineering
(BME). This list was discussed in the project meeting of April 19, 2013, but it
should be kept up to date.
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A Slides: Introduction to deep learning
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Introduction to deep architectures and

planning of work directions

Telmo Amaral

12th October 2012

Telmo Amaral Deep architectures and work directions

Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Outline

1 Shallow vs. deep architectures

2 Motivation for deep architectures

E�ciency

Inspiration from nature

3 Limitations and recent breakthrough

4 Work directions
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Depth of a �ow graph

Learning architectures can be

represented as �ow graphs.

Depth: length of longest path

from an input to an output.

E.g. multi-layer perceptrons

(MLPs) have depth 2.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Another shallow example

Support vector machines

(SVMs) have depth 2 as well.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Two deeper architectures

A convolutional neural network

(CNN):

A deep belief network (DBN):
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

E�ciency
Inspiration from nature

Local generalisation

Principle exploited by majority

of learning algorithms.

Locally capture the variations: if

two inputs are close, the

corresponding outputs should

also be close.

But there should be at least as

many training examples as ups

and downs in the target

function.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

E�ciency
Inspiration from nature

Local generalisation

Curse of dimensionality: number

of variations of interest in the

target function can easily be

exponential to the number of

input dimensions.

An alternative is needed...
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

E�ciency
Inspiration from nature

Non-local generalisation � distributed representations

Trivial example: number 9

represented as

0000000001000000 vs.
1
0
0
1

Potential to capture

exponentially more variations for

the same number of free

parameters � better

generalisation.

Telmo Amaral Deep architectures and work directions



Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

E�ciency
Inspiration from nature

Non-local generalisation � distributed representations

Some families of functions with

n inputs can be compactly

represented with O(n) nodes
when depth is d , but require

O(2n) nodes when depth is

d −1.

The existence of a compact,

deep representation suggests an

underlying structure in the

function; a shallow, unstructured

representation won't be able to

generalise well.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

E�ciency
Inspiration from nature

The brain has a deep architecture

E.g. in the visual cortex signals

�ow through a hierarchy of

areas.

Each area represents information

at a higher level of abstraction.

Representations are sparse, but

still exponentially e�cient: 1%

of simultaneously active neurons

is a very large number, and

inputs are represented by the

activation of features that are

not mutually exclusive.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

E�ciency
Inspiration from nature

Cognitive processes seem deep

Cognitive processes involve the hierarchical organisation of

ideas.

Humans �rst learn simpler concepts, then compose them into

more abstract ones.

Engineers typically solve complex problems by breaking them

up into simpler ones.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Problems before 2006

Deep NNs tended to yield worse

training and test errors than

shallow NNs (up to 2 hidden

layers).

Exception: CNNs, though

tailored for very speci�c

applications.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Key principles that constituted a breakthrough

Pre-training of layers through unsupervised learning:

representation learned at each layer used as input to the next

layer, allowing the extraction of gradually higher abstractions.

Fine-tuning of all layers through supervised learning (including

additional top layers that produce predictions).
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Seminal papers

Hinton, Osindero, and Teh, A

fast learning algorithm for deep

belief nets, 2006.

Pre-training achieved by treating

layers as restricted Boltzmann

machines (RBMs).
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Seminal papers

Bengio, Lamblin, Popovici, and

Larochelle, Greedy layer-wise

training of deep networks, 2007.

RBMs vs. auto-encoders.

Ranzato, Poultney, Chopra, and

LeCun, E�cient learning of

sparse representations with an

energy-based model, 2007.

Sparse auto-encoders within a

convolutional architecture.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Performance of deep NNs

Better than shallow NNs in

vision tasks; and
natural language processing (NLP) tasks.

Better than SVMs in vision tasks.

Allow dataset sizes untreatable by SVMs in NLP tasks.
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Some available software

Rasmus Berg Palm's DeepLearnToolbox, a Matlab deep

learning toolbox, including DBNs; stacked and convolutional

auto-encoders; CNNs and vanilla NNs.

Hugo Larochelle's MLPython, a Python machine learning

library, which can be used for deep learning research, featuring

RBMs and auto-encoders.

Ruslan Salakhutdinov's and Geo� Hinton's Matlab code for

training a deep auto-encoder made of stacked RBMs. Andrej

Karpathy's matrbm, simpler Matlab code for the same

purpose.

Ruslan Salakhutdinov's Matlab code for learning Deep

Boltzmann Machines (DBMs, an alternative to DBNs). Hugo

Larochelle's Matlab code for e�cient learning of DBMs

(apparently a continuation of the same work).
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Shallow vs. deep architectures
Motivation for deep architectures

Limitations and recent breakthrough
Work directions

Main directions of work

Use existing toolboxes such as MLPython and

DeepLearnToolbox to test DNNs with di�erent types of

building blocks (e.g. RBMs and auto-associators) and the

more traditional risk functionals (e.g. MSE and cross-entropy).

Develop our own implementation of DNNs, in order to

experiment with risk functionals based on more sophisticated

principles (e.g. error density, MEE, Z-EDM, and EXP).

Telmo Amaral Deep architectures and work directions



B Slides: Introduction to convolutional neural
networks
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Introduction to convolutional neural networks
(CNNs)

Telmo Amaral

22nd February, 2013

Telmo Amaral Introduction to convolutional neural networks (CNNs)

Motivation

CNNs were the only exception to the di�culty in training deep

neural networks before the use of unsupervised pre-training.

CNNs are variants of MLPs inspired from biology.

Cells within the visual cortex are sensitive to small sub-regions

of the visual �eld, called receptive �elds.

Receptive �elds are tiled to cover the whole visual �eld.

Telmo Amaral Introduction to convolutional neural networks (CNNs)

Motivation

Many neurally inspired models emulate the behaviour of the

visual system, such as:

NeoCognitron. Fukushima, K. Neocognitron: A self-organizing

neural network model for a mechanism of pattern recognition

una�ected by shift in position. Biological Cybernetics, 36,

193�202. (1980).

LeNet-5. LeCun, Y., Bottou, L., Bengio, Y., and Ha�ner, P.

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11), 2278�2324. (1998).

HMAX. Serre, T., Wolf, L., Bileschi, S., and Riesenhuber, M.

Robust object recognition with cortex-like mechanisms. IEEE

Trans. Pattern Anal. Mach. Intell., 29(3), 411�426. (2007).
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Main di�erences from traditional MLPs

Local connectivity

Shared weights

Multiple feature maps

Down-sampling layers

Telmo Amaral Introduction to convolutional neural networks (CNNs)

Local / sparse connectivity pattern

Each hidden unit is connected to a local subset of units on the

layer below.

So, spatially local �lters are learnt.

Stacking layers leads to (non-linear) �lters that are increasingly

global in relation to the bottom layer.
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Shared weights

Certain weights are constrained to be identical: the same �lter

is replicated across each layer of weights.

A layer of replicated �lters determines the values of a layer of

hidden units, to form a feature map.
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Shared weights

A feature map h is obtained by convolving �lter W with image

x on the layer below (x can itself be a feature map), then

adding a scalar bias b, and applying a non-linearity such as

tanh:

h = tanh((W ∗ x)+b)

Recalling 1D an 2D convolution:

o[n] = f [n]∗g [n] = ∑∞
u=−∞ f [u]g [u−n] = ∑∞

u=−∞ f [n−u]g [u]

o[m,n] = f [m,n]∗g [m,n] =∑∞
u=−∞ ∑∞

v=−∞ f [u,v ]g [u−m,v−n]

Telmo Amaral Introduction to convolutional neural networks (CNNs)

Shared weights

Why interesting?

Invariance to translation: �lter replication allows for features

to be detected regardless of their position in the visual �eld.

Weight sharing greatly reduces the number of free parameters

to learn.

Gradient descent can still be used to learn shared parameters,

with a small adaptation:

1 compute partial derivatives of loss function with respect to

each connection, as in a conventional MLP with no sharing;

2 add partial derivatives of connections that share each weight,

to form the derivative with respect to that weight.

Telmo Amaral Introduction to convolutional neural networks (CNNs)



Multiple feature maps

For a richer representation, each hidden layer is composed of a

set of feature maps, {h(k),k = 0..K}.

Telmo Amaral Introduction to convolutional neural networks (CNNs)

Multiple feature maps

W kl
ij is the weight connecting any pixel on feature map k of a

given layer to pixel ij (in �lter coordinates) on feature map l of

the layer below.
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Multiple feature maps

If a given layer has K feature maps, the layer below has L

feature maps, and all �lters cover I ×J pixels, then there are

K ×L× I ×J di�erent weights between the two layers.
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Down-sampling layers

Max-pooling: input image is partitioned into a set of

non-overlapping rectangles and, for each rectangle, the

maximum value is output.

Reduces computational complexity for upper layers.

Provides a form of invariance to small translations.
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A full LeNet-5 model

Lower layers alternate between convolution and

down-sampling.

Upper layers are fully connected and equivalent to a traditional

MLP.

(With other types of network it could be di�cult to learn a

reduced representation starting from 10k or 20k pixels, but

with the combination of convolution down-sampling that type

of learning becomes easier.)

Telmo Amaral Introduction to convolutional neural networks (CNNs)

(Image sources)

http://deeplearning.net/tutorial/lenet.html

http://hubel.med.harvard.edu/book/b10.htm

http://mathworld.wolfram.com/HyperbolicTangent.html

Telmo Amaral Introduction to convolutional neural networks (CNNs)
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