
Experiments with a restricted Boltzmann
machine

Telmo Amaral

21st December 2012

NNIG Technical Report No. 1/2012

Project “Reusable Deep Neural Networks: Applications to Biomedical Data”
(PDTC/EIA-EIA/119004/2010)

Instituto de Engenharia Biomédica (INEB)
Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Contents
1 Introduction 3

2 Notation 3

3 Implemented training algorithms 3
3.1 Algorithm based on Gibbs sampling 3
3.2 Algorithm based on CD-1

(contrastive divergence with one Gibbs step) 6

4 Matlab visualisation 6

5 Experiments 7
5.1 Binary 3×3 patterns . 7
5.2 Grey-level 3×3 patterns . 11
5.3 Iris data . 12

References 14

2

Figure 1: Architecture of an RBM.

1 Introduction

Restricted Boltzmann Machines (RBMs) [2] are an important concept in deep
learning, since they can be used as a strategy for the unsupervised pre-training
of hidden layers in deep networks. Thus it was decided that I should create
a Matlab implementation of basic training algorithms for RBMs, featuring a
friendly visualisation that would help to understand (and convey to the other
project participants) the functioning of the training process.

The following sections describe the notation used in this report, the two alter-
native training algorithms that were implemented, the Matlab visualisation of
the training process, and some experiments that were carried out.

2 Notation

Figure 1 depicts the architecture of an RBM, while Table 1 explains the notation
used throughout this report.

3 Implemented training algorithms

The implemented algorithms were based on the RBM training procedures de-
scribed in the 2010 technical report “A practical guide to training restricted
Boltzmann machines” by Hinton [3]. Two alternative training algorithms were
covered, namely using repeated Gibbs sampling and using contrastive divergence
with one step of Gibbs sampling (CD-1). These are described in the following
subsections.

3.1 Algorithm based on Gibbs sampling

All “for” loops over samples (n) or over visible or hidden units (i or j) can be
parallel loops, i.e. the iterations that make up a loop are independent and can
be executed concurrently.

3

Table 1: Notation used in this report.
symbol meaning
I number of visible units
J number of hidden units
wij weight of connection between ith visible unit and jth hidden unit
ai bias of ith visible unit
bj bias of jth hidden unit
v vector of visible states
vi state of ith visible unit
pi p(vi = 1|h) = σ(ai +

∑
j hjwij)

σ(x) = 1/(1 + exp(−x))
h vector of hidden states
hj state of jth hidden unit
qj p(hj = 1|v) = σ(bj +

∑
i viwij)

N number of data samples
x(n) nth data sample
Nm number of samples from model
ε learning rate
m learning momentum
d weight decay

The sequence of actions marked with “*” corresponds to one step of Gibbs
sampling.

4

An epoch (i.e. a training iteration):

1. for n = 1...N

(a) set visible states to nth data sample: v(n) = x(n)

(b) for all j compute hidden probabilities q(n)
j

2. for all i and j compute expectations over data distribution

(a) 〈viqj〉data = 1
N

∑
n v

(n)
i q

(n)
j

(b) 〈vi〉data = 1
N

∑
n v

(n)
i

(c) 〈qj〉data = 1
N

∑
n q

(n)
j

3. for n = 1...NmTraining iteration t:

(a) set visible vector v(n) to random states

(b) for many times, do a Gibbs sampling step:

i. * for all j compute hidden probability q(n)
j

ii. * for all j sample hidden state h(n)
j from q

(n)
j

iii. * for all i compute visible probability p(n)
i

iv. * for all i sample visible state v(n)
i from p

(n)
i

(c) for all j compute hidden probability q(n)
j

4. for all i and j compute expectations over model distribution

(a) 〈viqj〉model = 1
Nm

∑
n v

(n)
i q

(n)
j

(b) 〈vi〉model = 1
Nm

∑
n v

(n)
i

(c) 〈qj〉model = 1
Nm

∑
n q

(n)
j

5. for all i and j compute changes in weights and biases

(a) ∆wij = m∆wij + ε(〈viqj〉data − 〈viqj〉model − dwij)

(b) ∆ai = m∆ai + ε(〈vi〉data − 〈vi〉model)

(c) ∆bj = m∆bj + ε(〈qj〉 − 〈qj〉model)

6. for all i and j apply changes in weights and biases

(a) wij = wij + ∆wij

(b) ai = ai + ∆ai

(c) bj = bj + ∆bj

5

3.2 Algorithm based on CD-1
(contrastive divergence with one Gibbs step)

An epoch:

1. for n = 1...N

(a) set visible states to nth data sample: v(n.0) = x(n)

(b) * for all j compute hidden probability q(n.0)
j

(c) * for all j sample hidden state h(n.0)
j from q

(n.0)
j

(d) * for all i compute reconstructed visible probability p(n.1)
i

(e) * for all i sample a reconstructed visible state v(n.1)
i from p

(n.1)
i

(f) for all j compute hidden probability q(n.1)
j

2. for all i and j compute expectations over data distribution

(a) 〈viqj〉data = 1
N

∑
n v

(n.0)
i q

(n.0)
j

(b) 〈vi〉data = 1
N

∑
n v

(n.0)
i

(c) 〈qj〉data = 1
N

∑
n q

(n.0)
j

3. for all i and j compute expectations over reconstructions

(a) 〈viqj〉recon = 1
N

∑
n v

(n.1)
i q

(n.1)
j

(b) 〈vi〉recon = 1
N

∑
n v

(n.1)
i

(c) 〈qj〉recon = 1
N

∑
n q

(n.1)
j

4. for all i and j compute changes in weights and biases

(a) ∆wij = m∆wij + ε(〈viqj〉data − 〈viqj〉recon − dwij)

(b) ∆ai = m∆ai + ε(〈vi〉data − 〈vi〉recon)

(c) ∆bj = m∆bj + ε(〈qj〉 − 〈qj〉recon)

5. for all i and j apply changes in weights and biases

(a) wij = wij + ∆wij

(b) ai = ai + ∆ai

(c) bj = bj + ∆bj

4 Matlab visualisation

Figure 2 shows an aspect of the created visualisation, during the training of
an RBM with four visible units and five hidden units. In this example, the
probability of the third hidden unit (i.e. the value shown on the bottom half
of the circle representing the unit) has been updated by forward propagation,

6

Figure 2: Aspect of the visualisation of an RBM being trained.

based on the values of the four visible units and visible bias and on the weights
of the five associated connections. The actual value of the hidden unit was then
sampled from the updated probability.

Via the use of breakpoints, this visualisation allows to follow the process of
updating the probability and sampling the value of each unit at a time, for both
hidden units (forward propagation) and visible units (backward propagation).
Any numbers of hidden and visible units can be defined, as long as they fit
reasonably within the visualisation window.

5 Experiments

Experiments were carried using different types of data (e.g. binary and real-
valued, visual and non-visual), to produce plots that helped to understand how
the generative nature of the RBM model allows it to develop the ability to
reconstruct the training data as training progresses. The three most important
experiments are described in the following subsections, named after the type of
data involved.

5.1 Binary 3×3 patterns

This experiment is coded in script1.m.

7

Parameters

see note
I 9
N 100
J 8 1
standard deviation. for initialisation of wij 0.01
initial ai 2
number of epochs 300
Nm 100
number of Gibbs sampling steps 10
ε 0.0930 3
m 0.9 4
d 0.0002

Notes:

1. J computed from I + J + I × J = I × N/10, based on Hinton’s recipe:
“estimate how many bits it would take to describe each data-vector (...).
Then multiply that estimate by the number of training cases and use a
number of parameters that is about an order of magnitude smaller.”

2. ai initialised based on Hinton’s recipe: “It is usually helpful to initialize
the bias of visible unit i to log(pi/(1 − pi)) where pi is the proportion of
training vectors in which unit i is on.”

3. ε set on first iteration so that mean absolute weight change is about 1/100
of mean absolute weight. This is a simplification of Hinton’s recipe: “A
good rule of thumb for setting the learning rate (...) is to look at a
histogram of the weight updates and a histogram of the weights. The
updates should be about 10−3 times the weights (to within about an order
of magnitude).”

4. The setting of m could be improved (maybe interactively) based on Hin-
ton’s recipe: “Start with a momentum of 0.5. Once the large initial
progress in the reduction of the reconstruction error has settled down
to gentle progress, increase the momentum to 0.9.”

Training data

Shown below is a set of 100 3 × 3 binary visual patterns used to train the
RBM, corresponding to horizontal, vertical, and diagonal patterns. These data
were created adding some “noise”: the probability of any given bit (pixel) being
inverted was 0.02.

8

Training based on Gibbs sampling

The first plot blow is a histogram of training data vectors. The second plot is a
histogram of model samples after the 300 training epochs (iterations), i.e. the
distribution of reconstructed data. Since the patterns are binary and formed
by 9 pixels each, they can be represented as binary 9-bit words. So, there are
2I=9 = 512 possible data vectors / model samples. It is apparent that the
distribution of reconstructed data converged towards the distribution of the
training data.

The third plot shows how the mean square change on weights of the connec-
tions between visible and hidden units of the RBM evolves as a function of the
training epoch. The fourth plot shows how the correlation between the data
and model distributions evolves as a function of the epoch. It can be seen that
the connection weights changed mostly between epochs 50 and 150, when the
accuracy of reconstruction increased more sharply.

The mean duration of an epoch was 1.0593 seconds.

9

Training based on CD-1

The second plot below is now a histogram over data vector reconstructions.

The fifth plot shows how the mean square error (between data bits and recon-
structed bit probabilities) evolves as a function of the epoch.

The mean duration of an epoch was 0.1464 seconds (seven times faster than
using Gibbs sampling with 10 steps).

Generated data

Shown below are 100 data samples generated (i.e. synthesised) by the RBM
once it was trained. Each sample was generated after 10 Gibbs sampling steps.

10

5.2 Grey-level 3×3 patterns

The implemented version of RBM is more appropriate for use with binary data.
Nevertheless, it can be trained with real-valued data.

This experiment is coded in script2.m.

Parameters

see note
I 9
N 100
J 8 1
standard deviation for initialisation of wij 0.01
initial ai 2
number of epochs 300
ε 0.0505 3
m 0.9 4
d 0.0002

Training data

Shown below are 100 real-valued 3 × 3 grey-level visual patterns used to train
the RBM. These data were created without any noise.

11

Training based on CD-1

Generated data

Each sample shown below was generated after 10 Gibbs sampling steps. It can
be seen that the generated data roughly approximate the patterns present in
the training data, though not as successfully as in the binary case.

5.3 Iris data

This experiment is coded in script3.m.

12

Parameters

see note
I 4
N 150
J 11 1
standard deviation for initialisation of wij 0.01
initial ai 2
number of epochs 300
ε 0.0480 3
m 0.9 4
d 0.0002

Training data

The original data were normalised to zero mean and unit variance, then squashed
between 0 and 1, via a sigmoid function.

This is the scatter plot over features 1 (sepal length, horizontal axis) and 3
(petal length, vertical axis):

13

Training based on CD-1

Generated data

Each sample was generated after 10 Gibbs sampling steps.

It is clear that, in this case, the RBM was not able to properly learn the data
distribution.

During my visit to the LISA lab at the University of Montreal, Prof. Yoshua
Bengio offered some comments on these experiments, which are included in a
separate activities report Amaral [1].

14

References
[1] T. Amaral. Activities report from August 2012 to April 2013, April 2013.

14

[2] G. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800, 2002. 3

[3] G. Hinton. A practical guide to training restricted boltzmann machines.
Technical report, University of Toronto, 2010. 3

15

	Introduction
	Notation
	Implemented training algorithms
	Algorithm based on Gibbs sampling
	Algorithm based on CD-1 (contrastive divergence with one Gibbs step)

	Matlab visualisation
	Experiments
	Binary 33 patterns
	Grey-level 33 patterns
	Iris data

	References

