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1 Classi�cation Test Results

We present the test results of the Deep Neural Network algorithm on various datasets. The test were conducted
on tunned parameters of the deep neural network. The following sections contain performance measurements of
the sum of squared errors (SSE) or Mean square Error (MSE), cross-entropy (CE), and exponential (EXP) cost
functions in order to the weights and biases of an auto-encoder. In this report, we compare the performances of
MSE, CE, and EXP costs when employed in the pre-training of deep networks whose hidden layers are treated
as stacks of auto-encoders. For each combination of data set, pre-training greedy module, and pre-training cost
function, the test stage was repeated 30 times. Table 1 shows the mean and standard deviation* of the test errors
obtained in each case. Also included for comparison are the results achieved without pre-training.

Table 1: Mean and standard deviation of test errors for each data set and pre-training cost function, using as
greedy module (a) auto-encoders and (b) denoising auto-encoders.

(a) AE
data set no pre-training cost function

pre-training CE MSE EXP

adult 15.98±0.15% 16.73±0.33% 16.5±0.32% 15.91±0.13%

dna 7.30±0.51% 7.58±0.60% 7.28±0.62% 7.42±0.76%
mushrooms 0.29±0.05% 0.23±0.16% 0.16±0.10% 0.15±0.15%

(b) DAE
data set no pre-training cost function

pre-training CE MSE EXP

adult 15.98±0.15% 16.71±0.36% 16.42±0.26% 15.94±0.13%

dna 7.30±0.51% 7.38±0.52% 7.36±0.24% 8.17±0.17%
mushrooms 0.29±0.05% 0.22±0.15% 0.15±0.14% 0.06±0.03%

* mean and std are multiplied 10².

1.1 Graphical representation of Adult, Dna and Mushrooms Dataset Test Errors

Figure 1: Comparison of Test Error of (a) Adult, (b) dna & (c) mushrooms dataset with various Cost functions
(none, CE, MSE and EXP)

1.2 Parameters used for Testing: Based on Mean Validation Error

A grid search of the hyper-parameter was conducted even though it was exhaustive. It was possible for smaller
and quiker datasets as shown in table 4. It seemed prohibitive, as our experiments relied on CPUs and could
take very long to run (especially when the image sets mnist-subset, mnist_basic and rectangles were involved).
We were able to conduct the archtectural grid search for smaller datasets for selection procedure, then tuning
each hyper-parameter individually to minimise the validation error. In most cases, averaging the error over a
few repetitions helped to identify the best value for the parameter being explored. All hyper-parameters were
tuned using CE pre-training costs, except for τ (tau), which a�ects speci�cally the EXP cost function. Table 2
shows all the selected values.To get better approximation and repeatability of the experiments each parameter
is repeated 10 times.
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Table 2: Hyper-parameter values selected for each combination of data set and greedy module.
data set greedy module

AE DAE
l nh τ ηPT ηFT l nh τ ηPT ηFT

adult 2 [4,6] -40 0.01 0.09 2 [4,6] -60 0.009 0.07
dna 2 [6,9] -40 0.009 0.09 2 [6,9] -60 0.01 0.01
mushrooms 2 [10,15] -10 0.01 0.09 2 [10,15] -10 0.01 0.03

2 Calculation of various costs

2.1 Notation

The following sections contain calculations for the partial derivatives of the MSE, CE, and EXP cost functions
in order to the weights and biases of an auto-encoder.The following notation is used for the auto-encoder:

nx number of inputs and outputs
nh number of hidden units
xj , j ∈ {1, 2, ..., nx} value of jth input
hi, i ∈ {1, 2, ..., nh} value of ith hidden unit
x̂j , j ∈ {1, 2, ..., nx} value of jth output

Wij
weight connecting ith hidden unit to jth input
weight connecting ith hidden unit to jth output

bi bias of ith hidden unit
cj bias of jth output
θ any individual weight or bias

Each
∑

or ∂
∂θ symbol applies to all multiplicative terms to its right.

2.2 MSE, CE and EXP

The MSE or (SSE) error between an x̂ vector of outputs and an x vector of inputs is expressed by

CSSE(x̂,x) =

nx∑
k=1

(x̂k − xk)2 (1)

The CE error between an x̂ vector of outputs and an x vector of inputs is expressed by

CCE(x̂,x) =−
nx∑
k=1

(
xk ln(x̂k) + (1− xk) ln(1− x̂k)

)
(2)

The EXP error between an x̂ vector of outputs and an x vector of inputs is expressed by

CEXP (x̂,x) =τ exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)

(3)

3 Parameter Tunning: Adult Dataset

(for both Autoencoder and Denoising Autoencoder Greedy Module )

To test the performance of our designed cost function EXP with traditional cost function like Cross Entropy(CE)
we tune the parameters with CE as the base cost. Thus tunned parameters will be used for comparative
performance study of our EXP with traditional cost function like CE and MSE.

We tune parameter number of hidden layer and size of hidden layer with cost function CE. And tune tau
with cost function EXP as it is a EXP parameter. The noise probability is set to 0.1 for Denoising Autoencoder.
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3.1 Identifying best number of hidden layers and Size (Grid Search)

Figure 2: Sizes of hidden layers for (a) AE and (b) DAE greedy module

3.2 Identifying best Pre training Learning rate

Figure 3: Pre Training Learning rate for (a) AE and (b) DAE greedy module

3.3 Identifying best Fine tuning Learning rate

Figure 4: Fine tuning Learning rate for (a) AE and (b) DAE greedy module
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3.4 Identifying best tau

Figure 5: Various tau's for (a) AE and (b) DAE greedy module

4 Learning Curve for Adult Dataset

The Machine Learning Learning curve is conducted to study the behavior of adult dataset over the Autoencoder
greedy module with EXP cost function. It can be studied that with varying the training set size we can see the
the performance of the deep neural network test error. In the �gure we have studied the Learning curve without
parameter tunning and after parameter tunning. It can be inferred that, proper tunning converges the training
error and testing error thus reducing the variance in the model. It can also be seen that at lower training sizes
the model does not produce over �tting. This response initiates a series of future study into making e�ects of
supervisory mode and also the balanced error rate for the dataset. The experiment was done with 25 repetition
for getting good approximation.

Figure 6: Learning Curve (a) without parameter tunning (b) after parameter tunning

5 Computational Complexity

We studied the impact of computation complexity on the number of neural network units used on various datasets.
The datasets to be used on our designed deep neural network has a limitations as larger the datasets require
higher computation capability. We presently use CPU (Central Processing Unit) based processing for computing
the algorithm.
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Table 3: Characteristics of the data sets used in the experiments.
data set # features # targets # instances type

train valid. test

adult 123 2 5000 1414 26147 binary
dna 180 3 1400 600 1186 binary
mnist-subset 784 10 5000 1000 1000 real-valued
mnist-basic 784 10 10000 2000 50000 real-valued
mushrooms 112 2 2000 500 5624 binary
rectangles 784 2 1000 200 50000 binary

5.1 Order the datasets based on computation time

The simulations were run on 6 datasets for identifying least computation time on the validation instances. The
simulation results indicate the time taken by dna dataset for training and validation is least among the 6 datasets.

Table 4: datasets are ordered to least computation time
# Dataset Validation error Time (Sec)

1 dna 0.069 8.76

2 mushrooms 0.0014 11.98
3 adult 0.069 32.73
4 rectangles 0.084 40.58
5 minst_subset 0.057 116.92
6 mnist_basic 0.0345 282.7

default values:

� greedy Module = DAE with noise_prob of 0.1,

� hidden layer & sizes = [200, 200]

� pt learning rate = 0.01 and ft_learning_rate = 0.1

� cost = EXP and tau = 1

5.2 Data set: mnist_basic

Table 5: Computation time required by the mnist basic dataset
# dataset hidden size time parallel iter val test

1 mnist basic [1800, 2700] 11h 18h 1 0.0265 0.03236
2 mnist basic [1200,1800] 6h 1 0.027 0.03486
3 mnist basic [1000,1500] 5h 10h 1 0.0265 0.03454
4 mnist basic [800, 1200] 5h - 1 0.0295 0.03372
5 mnist basic [600, 900] 2h - 1 0.0265 0.03488
6 mnist basic [200, 200] 5min - 1 0.0345 0.04188

5.3 Identifying best number of hidden layers and Size (Grid Search)

Single iteration for hidden Size above 400 neural network units.
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Figure 7: Sizes of hidden layers

6 Parameter Tunning: DNA Dataset

(for both Autoencoder and Denoising Autoencoder Greedy Module )

To test the performance of our designed cost function EXP with traditional cost function like Cross Entropy(CE)
we tune the parameters with CE as the base cost. Thus tunned parameters will be used for comparative
performance study of our EXP with traditional cost function like CE and MSE.

We tune parameter number of hidden layer and size of hidden layer with cost function CE. And tune tau
with cost function EXP as it is a EXP parameter.

6.1 Identifying best number of hidden layers and Size (Grid Search)

Figure 8: Sizes of hidden layers for (a) AE and (b) DAE greedy module
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6.2 Identifying best Pre training, Fine tuning Learning rate and Tau's

Figure 9: (a) Pre Training Learning rate, (b) Fine Tuning Learning rate & (c) Tau's

7 Parameter Tunning: Mushrooms Dataset

(for both Autoencoder and Denoising Autoencoder Greedy Module )

To test the performance of our designed cost function EXP with traditional cost function like Cross Entropy(CE)
we tune the parameters with CE as the base cost. Thus tunned parameters will be used for comparative
performance study of our EXP with traditional cost function like CE and MSE.

We tune parameter number of hidden layer and size of hidden layer with cost function CE. And tune tau
with cost function EXP as it is a EXP parameter. The noise probability is set to 0.1 for denoising autoencoder.

7.1 Identifying best number of hidden layers and Size (Grid Search)

Figure 10: Sizes of hidden layers for (a) AE and (b) DAE greedy module
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7.2 Identifying best Pre training, Fine tuning Learning rate and Tau's

Figure 11: (a) Pre Training Learning rate, (b) Fine Tuning Learning rate & (c) Tau's

8 Survey on Datasets used for Deep Learning

A table is presented below with recent publications on Deep Learning from 2009 to 2013. The aim is to identify
the trend in deep learning algorithms on the various type of database. The Survey is done from the following
conference and Journals.

International Conference on Machine Learning (ICML)
Journal of Machine Learning Research (JMLR)
Advances in Neural Information Processing Systems (NIPS)
Institute of Electrical and Electronics Engineers (IEEE)
*International Conference on Learning Representations (ICLR) started in 2013
Springer Journal
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# Datasets Cite Reference Publication Type Details
1 MNIST 238 [7][15][2][14][12][11][5][6][16] JMLR,

ICML, ICLR,
Springer

Image Handwritten digits

2 In�niteMNIST [7] JMLR Image Handwritten digits
3 Shapeset 37 [7] JMLR Image Handwritten digits
4 Cornell

grasping
[8] ICLR Image

5 CIFAR-10 28 [3][9] JMLR Image 1.6 millions of tiny
images datasets

6 NORB 38 [3][15] JMLR, ICML Image images of 50 di�erent
3D toy objects

7 STL [3] JMLR Image
8 (no dataset) [1] Trends Image Uses theoretical

explanation to Image
9 (no dataset) [10] Trends Image/

Audio
Uses theoretical

explanation to Image
and audio

10 CUAVE 145 [13] ICML Audio 36 speakers saying
digits 0 to 9

11 AVLetters [13] ICML Audio 10 speakers saying the
letters A to Z

12 AVLetters2 [13] ICML Audio 5 speakers saying the
letters A to Z

13 Stanford
Dataset

[13] ICML Audio 23 volunteers spoke
the digits 0 to 9

14 TIMIT 800 [5][13] ICML Audio (Speech) spoke the
letters A to Z

15 MIREX [17] ICLR Audio Music Information
Retrieval (MIR)

16 Aurora 4
corpus

29 ICLR Audio 5000-word vocabulary

17 Semantic
Role

Labeling

33 [16] Springer Audio 1 million labeled
trainset and 631

million unlabeled set
18 ASTRAL 475 [6] NIPS Domain (Biomedical)set of

protein domains
19 Colon,

Leukemia,
Prostate,
SR- BCT
and Brain

[4] JMLR Domain gene expression data
sets

From the table we can infer the major publications and conferences in recent years generally use Image
database. But Their is a ASTRAL a protein based database has a biomedical references. TIMIT which is a
speech based is generally used for Speech recognition.
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