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1 Introduction

Deep architectures, such as neural networks with two or more hidden layers
of units, are a class of machines that comprise several levels of non-linear op-
erations, each expressed in terms of parameters that can be learned [1]. The
organisation of the mammal brain, as well as the apparent depth of cognitive
processes, are among the main motivations for the use of such architectures. In
spite of this, until 2006, attempts to train deep architectures resulted in poorer
performance than that achieved by their shallow counterparts. The only ex-
ception to this difficulty was the convolutional neural network [7], a specialised
architecture for image processing, modelled after the structure of the visual
cortex.

A breakthrough took place with the introduction by Hinton et al. of the deep
belief network [4], a learning approach where the hidden layers of a deep net-
work are initially treated as restricted Boltzmann machines (RBMs) [9] and
pre-trained, one at a time, in an unsupervised greedy approach. Given that
auto-encoders [3] are easier to train than RBMs, this unsupervised greedy pro-
cedure was soon generalised into algorithms that pre-train the hidden levels of
a deep network by seeing them as a stack of auto-encoders [2, 6].

The auto-encoder (also called auto-associator or Diabolo network) is a type
of neural network that is trained to output a reconstruction of its own input.
Thus, during the training of auto-encoders, input vectors can themselves be
interpreted as target vectors. This presents an opportunity for the comparison
of various training criteria, namely different cost functions capable of reflecting
the mismatch between inputs and targets.

Marques de Sá et al. [8] have recently applied the information theoretical concept
of minimum error entropy to data classification machines, providing evidence
that risk functionals do not perform equally in their attainment of solutions
that approximate the minimum probability of error. In their work, Marques de
Sá et al. discuss the features of classic cost functions such as the mean squared
error (MSE) cost and the so-called cross-entropy (CE) cost, and propose some
approaches inspired by the error entropy concept. One such approach is a
parameterised function called exponential (EXP) cost, sufficiently flexible to
emulate the behaviour of classic costs, such as MSE and CE, and to exhibit
properties that are desirable in certain types of problems, such as good robust-
ness to the presence of outliers.

In this work, we aim to compare the performances of MSE, CE, and EXP costs
when employed in the pre-training of deep networks whose hidden layers are
treated as stacks of auto-encoders. A variant of auto-encoders called denoising
auto-encoders was also tested. The output layer of the networks we used was
designed for classification learning, so the three cost functions could be compared
in terms of their impact on classification test error, evaluated on five popular
data sets.

The remainder of this report is organised as follows. Section 2 gives a brief
overview of the principles behind auto-encoders and denoising auto-encoders,
explaining how they can be used to pre-train the hidden layers of deep networks.
Section 3 presents the empirical formulation of the MSE, CE, and EXP cost
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(a) (b) (c)

Figure 1: (a) An auto-encoder. (b) Pre-training of hidden layers of a deep
network using auto-encoders. (c) A pre-trained deep network with an additional
output layer. (Based on Larochelle et al. [6].)

functions to be used in the unsupervised training of auto-encoders. Section (4)
presents the calculations for the gradients of the three cost functions. Section
5 presents some data sets that can be used in our experiments, describes the
experimental setup and how hyper-parameters can be selected, and explains
how the achieved classification results should be reported.

2 Stacked auto-encoders

The auto-encoder (AE) is a simple network that tries to produce at its output
what is presented at the input. As exemplified in Figure 1a, the most basic AE is
in fact a multi-layer perceptron that has one hidden layer and one output layer,
with two restrictions: the weight matrix of the output layer is the transposed
of the weight matrix of the hidden layer (i.e. weights are clamped); and the
number of output neurons is equal to the number of inputs.

The values of the hidden layer neurons, called the encoding, are obtained with
Equation (1), where x is the input vector, s denotes the sigmoid function, b is
the vector of hidden neuron biases, and W is the matrix of hidden weights. The
values of the output neurons, called the decoding, are computed as in Equation
(2), where c is the vector of output neuron biases.

h(x) = s (b + Wx) (1)

x̂(h(x)) = s
(

c + WTh(x)
)

(2)

In a variant of AEs called denoising auto-encoders (DEAs) [10], the input values
are corrupted with noise so that some are set to zero, with a probability denoted
by ν. The goal is to force learning even with partial input. Unsupervised
learning of the weights and biases of AEs and DAEs can be achieved by gradient
descent, based on a training set of input vectors (if target vectors are available,
they are ignored).
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The deep networks we used for classification had an architecture similar to that
shown in black in Figure 1c, with a layer of inputs, two or more hidden layers,
and an output layer with as many units as classes (or a single output unit, if only
two classes exist). The hidden layers of such a network can be pre-trained in an
unsupervised way, one at a time, starting from the bottom layer. In order to be
pre-trained, a hidden layer is seen as belonging to an AE. Once a given AE has
learned to reconstruct its own input, its output layer is no longer needed and
its hidden layer values become the input to the next level, as shown in Figure
1b. The next level is in turn pre-trained as an individual AE, and the process
is repeated until there are no more hidden layers, as in Figure 1c.

The goal of unsupervised pre-training is to bring the network’s weights and
biases to a region of the parameter space that constitutes a better starting point
for a supervised training stage than a random initialisation. In this context, the
supervised training stage is usually called fine-tuning and can be achieved by
conventional gradient descent, based on a training set of paired input and target
vectors. It should be noted that the output layer weights U are not involved in
the pre-training stage, so they are randomly initialised and learned only in the
supervised stage.

3 Cost functions for auto-encoders

3.1 Conventional auto-encoders

Since the goal of AE training is to obtain at the output the same data values
fed into the input, an adequate cost function should compare these two vectors.
For real-valued inputs, the typical approach is to use an empirical version of
the sum of squared errors (SSE) cost, as in Equation (3), where x̂k and xk
denote the kth elements of the output and input, respectively, and nx denotes
the number of inputs and outputs. For binary inputs, the cross-entropy (CE)
cost in Equation (4) can be used. Another possibility is to use the exponential
(EXP) cost in Equation (5), which features an extra parameter τ .

CSSE(x̂,x) =
nx∑
k=1

(x̂k − xk)2 (3)

CCE(x̂,x) =−
nx∑
k=1

(
xk ln(x̂k) + (1− xk) ln(1− x̂k)

)
(4)

CEXP (x̂,x) =τ exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)

(5)

Given a training input vector, the change that it implies in the weight Wij

connecting hidden neuron i and input j can be expressed in a generic way by
Equation (6), where n is the number of inputs and outputs, nh is the number
of hidden neurons, η is called the learning rate and, most importantly, Q is a
term that changes according to the chosen cost function. The updates to the
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biases of hidden neuron i and input j can be expressed as in Equations (7) and
(8), respectively.

∆Wij = −η ∂C

∂Wij
(6)

∆bi = −η ∂C
∂bi

(7)

∆cj = −η ∂C
∂cj

(8)

As detailed in the next section, the derivatives of the SSE, CE, and EXP costs
in order to a weight or a bias take the form of the following expressions:
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So we can write more compactly

∂C

∂Wij
=A
(
Bj(x̂j − xj)hi + xjhi(1− hi)

nx∑
k=1

Bk(x̂k − xk)Wik

)
(9)

∂C

∂bi
=Ahi(1− hi)

nx∑
k=1

Bk(x̂k − xk)Wik (10)

∂C

∂cj
=ABj(x̂j − xj) (11)

where A and Bk take the values in the following table:

Cost A Bk

SSE 2 x̂k(1− x̂k)
CE 1 1
EXP 2 exp

(
1
τ

∑nx

k=1(x̂k − xk)2
)

x̂k(1− x̂k)

3.2 Denoising auto-encoders

In a denoising auto-encoder (DEA), given an input vector x, each input xj , j =
1, ..., nx can be set to zero (corrupted) with a given probability. So, from x we
get a corrupted input vector x̃, with elements x̃j , j = 1, ..., nx. This is reflected
in the forward propagation:

ai =bi +
nx∑
w=1

Wiwx̃w (12)

From this, the same way that we arrived at formula (43) (see detailed calcula-
tions in Section (4)), we arrive at

∂ai
∂Wij

=x̃j (13)

Just like with normal auto-encoders, we are interested in cost C(x̂,x) associated
with uncorrupted input vector x and output vector x̂. So, corrupted input x̃j
will appear only in the expression for ∂C(x̂,x)/∂Wij , as a term that results
directly from the formula above:

∂C(x̂,x)
∂Wij

=A
(
Bj(x̂j − xj)hi + x̃j︸︷︷︸hi(1− hi)

nx∑
k=1

Bk(x̂k − xk)Wik

)
(14)
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4 Detailed calculations

4.1 Notation

The following sections contain calculations for the partial derivatives of the
sum of squared errors (SSE), cross-entropy (CE), and exponential (EXP) cost
functions in order to the weights and biases of an auto-encoder. The following
notation is used for the auto-encoder:
nx number of inputs and outputs
nh number of hidden units
xj , j ∈ {1, 2, ..., nx} value of jth input
hi, i ∈ {1, 2, ..., nh} value of ith hidden unit
x̂j , j ∈ {1, 2, ..., nx} value of jth output

Wij
weight connecting ith hidden unit to jth input
weight connecting ith hidden unit to jth output

bi bias of ith hidden unit
cj bias of jth output
θ any individual weight or bias

Each
∑

or ∂
∂θ symbol applies to all multiplicative terms to its right.

4.2 SSE

The SSE error between an x̂ vector of outputs and an x vector of inputs is
expressed by

CSSE(x̂,x) =
nx∑
k=1

(x̂k − xk)2 (15)

So,

∂CSSE
∂θ

=
nx∑
k=1

∂

∂θ
(x̂k − xk)2 (16)

=
nx∑
k=1

2(x̂k − xk) ∂
∂θ

(x̂k − xk) (17)

We note that

∂xk
∂θ

=0,∀k (18)

because inputs are independent from weights and biases. So,
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∂CSSE
∂θ

=2
nx∑
k=1

(x̂k − xk)∂x̂k
∂θ

(19)

4.2.1 Weights

In order to obtain ∂x̂k

∂θ , we note that

x̂k =s(âk) (20)

where s(.) denotes the sigmoid function. So,

∂x̂k
∂θ

= ∂

∂θ
s(âk) (21)

=s(âk)
(

1− s(âk)
)∂âk
∂θ

(22)

=x̂k(1− x̂k)∂âk
∂θ

(23)

In order to obtain ∂âk

∂Wij
, we note that

âk =ck +
nh∑
z=1

Wzkhz (24)

So,

∂âk
∂Wij

= ∂

∂Wij
(ck +

nh∑
z=1

Wzkhz) (25)

=
nh∑
z=1

∂

∂Wij
Wzkhz (26)

From the architecture of an auto-encoder, it is clear that

∂

∂Wij
Wzkhz =0,∀z 6=i (27)

because, if z 6= i, then Wzk is cannot be Wij and hz cannot be influenced by
Wij . (This is the first difference in relation to the incorrect calculations.) So,
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∂âk
∂Wij

= ∂

∂Wij
Wikhi (28)

=Wik
∂hi
∂Wij

+ ∂Wik

∂Wij
hi (29)

Now we note that

∂Wik

∂Wij
=
{

1 if k = j

0 if k 6= j
(30)

that is, the hi term in the expression for ∂âk

∂Wij
is “switched on” only for k = j.

(This is the second difference in relation to the incorrect calculations.) So,

∂âk
∂Wij

=
{
Wij

∂hi

∂Wij
+ hi if k = j

Wik
∂hi

∂Wij
if k 6= j

(31)

Alternatively, we could denote ∂Wik

∂Wij
as 1k=j and keep ∂âk

∂Wij
in compact form:

∂âk
∂Wij

=Wik
∂hi
∂Wij

+ 1k=jhi (32)

In order to obtain ∂hi

∂Wij
, we note that

hi =s(ai) (33)

So,

∂hi
∂θ

= ∂

∂θ
s(ai) (34)

=s(ai)
(

1− s(ai)
)∂ai
∂θ

(35)

=hi(1− hi)
∂ai
∂θ

(36)

In order to obtain ∂ai

∂Wij
, we note that

ai =bi +
nx∑
w=1

Wiwxw (37)
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So,

∂ai
∂Wij

= ∂

∂Wij
(bi +

nx∑
w=1

Wiwxw) (38)

=
nx∑
w=1

∂

∂Wij
Wiwxw (39)

=
nx∑
w=1

(Wiw
∂xw
∂Wij

+ ∂Wiw

∂Wij
xw) (40)

We now note that

∂xw
∂θ

= 0,∀w (41)

because inputs are not influenced by weights or biases. We also note that

∂Wiw

∂Wij

{
1 if w = j

0 if w 6= j
(42)

So the expression for ∂ai

∂Wij
becomes simply

∂ai
∂Wij

=xj (43)

From this and (36),

∂hi
∂Wij

=hi(1− hi)xj (44)

From this and (31),

∂âk
∂Wij

=
{
Wijhi(1− hi)xj + hi if k = j

Wikhi(1− hi)xj if k 6= j
(45)

From this and (23),

∂x̂k
∂Wij

=
{
x̂k(1− x̂k)

(
Wijhi(1− hi)xj + hi

)
if k = j

x̂k(1− x̂k)Wikhi(1− hi)xj if k 6= j
(46)
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Finally, from this and (19),

∂CSSE
∂Wij

=2(x̂j − xj)x̂j(1− x̂j)
(
Wijhi(1− hi)xj + hi

)
+ (47)

2
nx∑
k 6=j

(x̂k − xk)x̂k(1− x̂k)Wikhi(1− hi)xj (48)

=2(x̂j − xj)x̂j(1− x̂j)hi+ (49)
2(x̂j − xj)x̂j(1− x̂j)Wijhi(1− hi)xj+ (50)

2
nx∑
k 6=j

(x̂k − xk)x̂k(1− x̂k)Wikhi(1− hi)xj (51)

=2(x̂j − xj)x̂j(1− x̂j)hi+ (52)

2hi(1− hi)xj
nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)Wik (53)

Alternatively, we could start from the compact form of ∂âk

∂Wij
shown in equation

(32):

∂âk
∂Wij

=Wikhi(1− hi)xj + 1k=jhi (54)

∂x̂k
∂Wij

=x̂k(1− x̂k)
(
Wikhi(1− hi)xj + 1k=jhi

)
(55)

∂CSSE
∂Wij

=2
nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)
(
Wikhi(1− hi)xj + 1k=jhi

)
(56)

=2
nx∑
k=1

(
(x̂k − xk)x̂k(1− x̂k)Wikhi(1− hi)xj+ (57)

(x̂k − xk)x̂k(1− x̂k)1k=jhi

)
(58)

=2(x̂j − xj)x̂j(1− x̂j)hi+ (59)

2hi(1− hi)xj
nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)Wik (60)

4.2.2 Hidden biases

From (24),
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∂âk
∂bi

= ∂

∂bi
(ck +

nh∑
z=1

Wzkhz) (61)

=
nh∑
z=1

∂

∂bi
Wzkhz (62)

=
nh∑
z=1

(Wzk
∂hz
∂bi

+ ∂Wzk

∂bi
hz) (63)

We note that

∂Wzk

∂bi
=0,∀i (64)

And also that

∂hz
∂bi

=0,∀z 6=i (65)

because bias bi influences only hidden unit hi. So,

∂âk
∂bi

=Wik
∂hi
∂bi

(66)

From (37) and (41),

∂ai
∂bi

= ∂

∂bi
(bi +

nx∑
w=1

Wiwxw) (67)

=1 (68)

From this and (36),

∂hi
∂bi

=hi(1− hi) (69)

From this and (66),

∂âk
∂bi

=Wikhi(1− hi) (70)
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From this and (23),

∂x̂k
∂bi

=x̂k(1− x̂k)Wikhi(1− hi) (71)

Finally, from this and (19),

∂CSSE
∂bi

=2hi(1− hi)
nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)Wik (72)

4.2.3 Output biases

From (24),

∂âk
∂cj

= ∂

∂cj
(ck +

nh∑
z=1

Wzkhz) (73)

=∂ck
∂cj

+
nh∑
z=1

∂

∂cj
Wzkhz (74)

We note that

∂ck
∂cj

=
{

1 if k = j

0 if k 6= j
(75)

And also

∂

∂cj
Wzkhz =0,∀j (76)

because cj doesn’t influence weights or hidden units. So,

∂âk
∂cj

=
{

1 if k = j

0 if k 6= j
(77)

From this and (23),

∂x̂k
∂cj

=
{
x̂k(1− x̂k) if k = j

0 if k 6= j
(78)
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Finally, from this and (19),

∂CSSE
∂cj

=2
nx∑
k=j

(x̂k − xk)x̂k(1− x̂k) (79)

=2(x̂j − xj)x̂j(1− x̂j) (80)

4.3 CE

The CE error between an x̂ vector of outputs and an x vector of inputs is
expressed by

CCE(x̂,x) =−
nx∑
k=1

(
xk ln(x̂k) + (1− xk) ln(1− x̂k)

)
(81)

From this and (41),

16



∂CCE
∂θ

=−
nx∑
k=1

( ∂
∂θ
xk ln(x̂k) + ∂

∂θ
(1− xk) ln(1− x̂k)

)
(82)

=−
nx∑
k=1

(
xk

∂

∂θ
ln(x̂k) + ∂xk

∂θ
ln(x̂k)+ (83)

(1− xk) ∂
∂θ

ln(1− x̂k) +
( ∂
∂θ

(1− xk)
)

ln(1− x̂k)
)

(84)

=−
nx∑
k=1

(
xk

1
x̂k

∂x̂k
∂θ

+ (1− xk) 1
1− x̂k

∂

∂θ
(1− x̂k)

)
(85)

=−
nx∑
k=1

(xk
x̂k

∂x̂k
∂θ
− 1− xk

1− x̂k
∂x̂k
∂θ

)
(86)

=−
nx∑
k=1

∂x̂k
∂θ

(xk
x̂k
− 1− xk

1− x̂k

)
(87)

=−
nx∑
k=1

∂x̂k
∂θ

xk(1− x̂k)− (1− xk)x̂k
x̂k(1− x̂k) (88)

=−
nx∑
k=1

∂x̂k
∂θ

xk − xkx̂k − (x̂k − xkx̂k)
x̂k(1− x̂k) (89)

=−
nx∑
k=1

∂x̂k
∂θ

xk − xkx̂k − x̂k + xkx̂k
x̂k(1− x̂k) (90)

=−
nx∑
k=1

∂x̂k
∂θ

xk − x̂k
x̂k(1− x̂k) (91)

=
nx∑
k=1

x̂k − xk
x̂k(1− x̂k)

∂x̂k
∂θ

(92)

4.3.1 Weights

From (92) and (55),

∂CCE
∂Wij

=
nx∑
k=1

x̂k − xk
x̂k(1− x̂k) x̂k(1− x̂k)

(
Wikhi(1− hi)xj + 1k=jhi

)
(93)

=
nx∑
k=1

(
(x̂k − xk)Wikhi(1− hi)xj + (x̂k − xk)1k=jhi

)
(94)

=(x̂j − xj)hi + hi(1− hi)xj
nx∑
k=1

(x̂k − xk)Wik (95)
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4.3.2 Hidden biases

From (92) and (71),

∂CCE
∂bi

=
nx∑
k=1

x̂k − xk
x̂k(1− x̂k) x̂k(1− x̂k)Wikhi(1− hi) (96)

=hi(1− hi)
nx∑
k=1

(x̂k − xk)Wik (97)

4.3.3 Output biases

From (92) and (78),

∂CCE
∂bji

= x̂j − xj
x̂j(1− x̂j)

x̂j(1− x̂j) +
nx∑
k 6=j

x̂k − xk
x̂k(1− x̂k)0 (98)

=x̂j − xj (99)

4.4 EXP

The EXP error between an x̂ vector of outputs and an x vector of inputs is
expressed by

CEXP (x̂,x) =τ exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)

(100)

From this and (41),

∂CEXP
∂θ

=τ exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)1
τ

nx∑
k=1

∂

∂θ
(x̂k − xk)2 (101)

= exp
(1
τ

nx∑
k=1

(x̂k − xk)2
) nx∑
k=1

2(x̂k − xk) ∂
∂θ

(x̂k − xk) (102)

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
) nx∑
k=1

(x̂k − xk)∂x̂k
∂θ

(103)

It is interesting to note that the gradient of the EXP cost is the EXP cost itself
multiplied by the gradient of the SSE cost (see formula (19)).
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4.4.1 Weights

From (103) and (55),

∂CEXP
∂Wij

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)
× (104)

nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)
(
Wikhi(1− hi)xj + 1k=jhi

)
(105)

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)
× (106)

nx∑
k=1

(
(x̂k − xk)x̂k(1− x̂k)Wikhi(1− hi)xj+ (107)

(x̂k − xk)x̂k(1− x̂k)1k=jhi

)
(108)

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)
× (109)(

(x̂j − xj)x̂j(1− x̂j)hi+ (110)

hi(1− hi)xj
nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)Wik

)
(111)

4.4.2 Hidden biases

From (103) and (71),

∂CEXP
∂bi

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
) nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)Wikhi(1− hi)

(112)

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)
hi(1− hi)

nx∑
k=1

(x̂k − xk)x̂k(1− x̂k)Wik

(113)

4.4.3 Output biases

From (103) and (78),
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Table 1: Characteristics of the data sets used in the experiments.
data set # features # targets # instances type

train valid. test
adult 123 2 5000 1414 26147 binary
dna 180 3 1400 600 1186 binary
mnist-subset 784 10 5000 1000 1000 real-valued
mushrooms 112 2 2000 500 5624 binary
rectangles 784 2 1000 200 50000 binary

∂CEXP
∂cj

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
) nx∑
k=j

(x̂k − xk)x̂k(1− x̂k) (114)

=2 exp
(1
τ

nx∑
k=1

(x̂k − xk)2
)

(x̂j − xj)x̂j(1− x̂j) (115)

5 Experiments and results

Note: this work is still ongoing, therefore the selected data sets are not definitive
and the tables for selected hyper-parameters and classification results are still
empty, merely illustrating the way in which the information should be presented
when final results are achieved. A number of preliminary experiments have been
carried out by Chetak Kandaswamy and are described in a separate technical
report [5].

5.1 Data sets

Our experimental evaluation was conducted using code based on the MLPython
library1. We used five data sets for which MLPython has built-in support. Table
1 shows some characteristics of each data set, once prepared for classification
learning . All data sets were obtained without modification from the MLPython
data sets web page2, except for mnist-subset (which is a subset of the mnist
set, available from the same source). Of the data we used, only mnist-subset
contained real-valued features, namely pixel intensities mapped between 0 and
1. The features in the adult, dna, and mushrooms sets resulted mostly from
integer or categorical features that were expanded as sets of mutually exclusive
binary features.

5.2 Setup and hyper-parameter selection

We trained and tested a deep architecture of the type exemplified in black in
Figure (1)c with each of the five data sets, employing either AEs or DAEs as

1See http://www.dmi.usherb.ca/~larocheh/mlpython/.
2See http://www.dmi.usherb.ca/~larocheh/mlpython/datasets.html.
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Table 2: Hyper-parameter values selected for each combination of data set and
greedy module.
data set greedy module

AE DAE
l nh τ ηPT ηFT l nh τ ηPT ηFT

adult 0 0000 0.00 0.00 0.00 0 0000 0.00 0.00 0.00
dna
mnist_subset
mushrooms
rectangles

pre-training greedy modules and using, for each greedy module, either CE, MSE,
or EXP costs. Each network was first pre-trained without supervision using the
training set (input features only), then fine-tuned with supervision using the
training and validation sets, and finally tested on the test set. For comparison,
an additional experiment with no pre-training was conducted.

We aimed to tune five hyper-parameters for each combination of data set and
greedy module, namely: the number of hidden layers l; the hidden layer size nh;
the EXP cost parameter τ ; the pre-training learning rate ηPT (shown as η in
Equations (6) to (8)); and the fine-tuning learning rate ηFT . The same number
of neurons was used for all hidden layers.

A grid search of the hyper-parameter space seemed prohibitive, as our exper-
iments relied on CPUs and could take very long to run (especially when the
image sets mnist-subset and rectangles were involved). Therefore we used an
approximate selection procedure, starting from default values, then tuning each
hyper-parameter individually to minimise the validation error. In most cases,
averaging the error over a few repetitions helped to identify the best value
for the parameter being explored. All hyper-parameters were tuned using CE
pre-training costs, except for τ , which affects specifically the EXP cost function.
Table 2 shows all the selected values.

A few other hyper-parameters were kept at fixed values, namely: five pre-training
epochs were used, with no stop criteria; fine-tuning stopped if the validation er-
ror did not decrease for five consecutive epochs; the fine-tuning decrease constant
was set to zero; and the noise probability ν of DAEs was set to 0.1.

5.3 Classification tests

For each combination of data set, pre-training greedy module, and pre-training
cost function, the test stage was repeated 30 times. Table 3 shows the mean
and standard deviation of the test errors obtained in each case. Also included
for comparison are the results achieved without pre-training (using the same l,
nh, and ηFT values as with AE pre-training).
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Table 3: Mean and standard deviation of test errors for each data set and
pre-training cost function, using as greedy module (a) auto-encoders and (b)
denoising auto-encoders.

(a) AE
data set no pre-training cost function

pre-training CE MSE EXP
adult 00.00±0.00% 00.00±0.00% 00.00±0.00% 00.00±0.00%
dna
mnist_subset
mushrooms
rectangles

(b) DAE
data set no pre-training cost function

pre-training CE MSE EXP
adult 00.00±0.00% 00.00±0.00% 00.00±0.00% 00.00±0.00%
dna
mnist_subset
mushrooms
rectangles
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